Сила Лоренца — основные понятия, формулы и определение с примерами
Содержание:
Сила Лоренца:
Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле
Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.
По закону Ампера на проводник длиной
Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде
где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), — средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.
Тогда
где — число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной
Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:
где v — модуль скорости движущегося заряда.
Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:
Как определить направление силы Лоренца
Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости составляющая вектора индукции
магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца
действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.
Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.
Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.
Ускорение частицы (R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности
и радиус окружности
описываемой частицей в магнитном поле.
Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):
В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле
Действие силы Лоренца широко применяется в различных электротехнических устройствах:
- электронно-лучевых трубках телевизоров и дисплеев;
- ускорителях заряженных частиц (циклотронах);
- масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
- магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).
Что такое сила Лоренца
Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:
где — электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная
— магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.
Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.
Для упрощения рассмотрим случай, когда , а сила Лоренца равна магнитной составляющей.
Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике — это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:
где I — сила тока; е — заряд частицы; — концентрация частиц в проводнике; V — объем;
— скорость движения частиц; S площадь поперечного сечения проводники.
Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:
Если учесть, то
Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:
Это и есть формула для расчета магнитной составляющей силы Лоренца:
Магнитная составляющая силы Лоренца
Анализ этой формулы позволяет сделать выводы, что:
- магнитная составляющая силы Лоренца действует только на движущуюся частицу (
≠ 0);
- магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).
Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.
Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).
Для случая, если
Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение
Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.
Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.
Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа
Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.
Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.
Puc. 2.17. Схема, объясняющая действие МГД-генератора
Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.
Пример решения задачи
Электрон влетает в однородное магнитное поле с индукцией 10 -4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10 6 м/с. Найти радиус окружности, по которой движется электрон.
Отсюда
Подставим значения физических величин:
Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10 -2 м.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Правило Буравчика в физике
- Шунт и добавочное сопротивление
- Электродвижущая сила
- Электрические измерительные приборы
- Закон Ома для полной цепи
- Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
- Сила и закон Ампера
- Закон взаимодействия прямолинейных параллельных проводников с током
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Сила Лоренца
Сила Лоренца. Определение и формула
Сила Ампера, воздействующая на часть проводника длиной Δ l с некоторой силой тока I , находящийся в магнитном поле B , F = I · B · Δ l · sin α может выражаться через действующие на конкретные носители заряда силы.
Пускай заряд носителя обозначается как q , а n является значением концентрации носителей свободного заряда в проводнике. В этом случае произведение n · q · υ · S , в котором S представляет собой площадь поперечного сечения проводника, эквивалентно току, протекающему в проводнике, а υ – это модуль скорости упорядоченного движения носителей в проводнике:
Формула силы Ампера может записываться в следующем виде:
F = q · n · S · Δ l · υ · B · sin α .
По причине того, что полное число N носителей свободного заряда в проводнике сечением S и длиной Δ l равняется произведению n · S · Δ l , действующая на одну заряженную частицу сила равняется выражению: F Л = q · υ · B · sin α .
Найденная сила носит название силы Лоренца. Угол α в приведенной формуле эквивалентен углу между вектором магнитной индукции B → и скоростью ν → .
Направление силы Лоренца, которая воздействует частицу с положительным зарядом, таким же образом, как и направление силы Ампера, находится по правилу буравчика или же с помощью правила левой руки. Взаимное расположение векторов ν → , B → и F Л → для частицы, несущей положительный заряд, проиллюстрировано на рис. 1 . 18 . 1 .
Рисунок 1 . 18 . 1 . Взаимное расположение векторов ν → , B → и F Л → . Модуль силы Лоренца F Л → численно эквивалентен произведению площади параллелограмма, построенного на векторах ν → и B → и заряда q .
Сила Лоренца направлена нормально, то есть перпендикулярно, векторам ν → и B → .
Сила Лоренца не совершает работы при движении несущей заряд частицы в магнитном поле. Данный факт приводит к тому, что модуль вектора скорости в условиях движения частицы так же не меняет своего значения.
Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость ν → лежит в плоскости, которая направлена нормально по отношению к вектору B → , то частица будет совершать движение по окружности некоторого радиуса, рассчитывающегося с помощью следующей формулы:
Сила Лоренца в данном случае применяется в качестве центростремительной силы (рис. 1 . 18 . 2 ).
Рисунок 1 . 18 . 2 . Круговое движение заряженной частицы в однородном магнитном поле.
Для периода обращения частицы в однородном магнитном поле будет справедливо следующее выражение:
T = 2 π R υ = 2 π m q B .
Данная формула наглядно демонстрирует отсутствие зависимости заряженных частиц заданной массы m от скорости υ и радиуса траектории R .
Применение силы Лоренца
Приведенное снизу соотношение представляет собой формулу угловой скорости движения заряженной частицы, происходящего по круговой траектории:
ω = υ R = υ q B m υ = q B m .
Оно носит название циклотронной частоты. Данная физическая величина не имеет зависимости от скорости частицы, из чего можно сделать вывод, что и от ее кинетической энергии она не зависит.
Данное обстоятельство находит свое применение в циклотронах, а именно в ускорителях тяжелых частиц (протонов, ионов).
На рисунке 1 . 18 . 3 приводится принципиальная схема циклотрона.
Рисунок 1 . 18 . 3 . Движение заряженных частиц в вакуумной камере циклотрона.
Дуант – это полый металлический полуцилиндр, помещенный в вакуумную камеру между полюсами электромагнита в качестве одного из двух ускоряющих D -образного электрода в циклотроне.
К дуантам приложено переменное электрическое напряжение, чья частота эквивалентна циклотронной частоте. Частицы, несущие некоторый заряд, инжектируются в центре вакуумной камеры. В промежутке между дуантами они испытывают ускорение, вызываемое электрическим полем. Частицы, находящиеся внутри дуантов, в процессе движения по полуокружностям испытывают на себе действие силы Лоренца. Радиус полуокружностей возрастает с увеличением энергии частиц. Как и во всех других ускорителях, в циклотронах ускорение заряженной частицы достигается путем применения электрического поля, а ее удержание на траектории с помощью магнитного поля. Циклотроны дают возможность ускорять протоны до энергии, приближенной к 20 М э В .
Однородные магнитные поля используются во многих устройствах самых разных типов назначений. В частности, они нашли свое применение так называемых масс-спектрометрах.
Масс-спектрометры – это такие устройства, использование которых позволяет нам измерять массы заряженных частиц, то есть ионов или ядер различных атомов.
Данные приборы используются для разделения изотопов (ядер атомов с одинаковым зарядом, но разными массами, к примеру, Ne 20 и Ne 22 ). На рис. 1 . 18 . 4 изображен простейшая версия масс-спектрометра. Вылетающие из источника S ионы проходят через несколько малых отверстий, которые в совокупности формируют узкий пучок. После этого они попадают в селектор скоростей, где частицы движутся в скрещенных однородных электрическом, создающимся между пластинами плоского конденсатора, и магнитном, возникающим в зазоре между полюсами электромагнита, полях. Начальная скорость υ → заряженных частиц направлена перпендикулярно векторам E → и B → .
Частица, которая движется в скрещенных магнитном и электрическом полях, испытывает на себе воздействия электрической силы q E → и магнитной силы Лоренца. В условиях, когда выполняется E = υ B , данные силы полностью компенсируют воздействие друг друга. В таком случае частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, которые движутся со скоростью υ = E B .
После данных процессов частицы с одинаковыми значениями скорости попадают в однородное магнитное поле B → камеры масс-спектрометра. Частицы под действием силы Лоренца движутся в камере перпендикулярной магнитному полю плоскости. Их траектории представляют собой окружности с радиусами R = m υ q B ‘ . В процессе измерения радиусов траекторий при известных значениях υ и B ‘ , мы имеем возможность определить отношение q m . В случае изотопов, то есть при условии q 1 = q 2 , масс-спектрометр может разделить частицы с разными массами.
С помощью современных масс-спектрометров мы имеем возможность измерять массы заряженных частиц с точностью, превышающей 10 – 4 .
Рисунок 1 . 18 . 4 . Селектор скоростей и масс-спектрометр.
Магнитное поле
В случае, когда скорость частицы υ → имеет составляющую υ ∥ → вдоль направления магнитного поля, подобная частица в однородном магнитном поле будет совершать спиралевидное движение. Радиус такой спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектор υ → , а шаг спирали p – от модуля продольной составляющей υ ∥ (рис. 1 . 18 . 5 ).
Рисунок 1 . 18 . 5 . Движение заряженной частицы по спирали в однородном магнитном поле.
Исходя из этого, можно сказать, что траектория заряженной частицы в каком-то смысле «навивается» на линии магнитной индукции. Данное явление используется в технике для магнитной термоизоляции высокотемпературной плазмы — полностью ионизированного газа при температуре порядка 10 6 K . При изучении управляемых термоядерных реакций вещество в подобном состоянии получают в установках типа «Токамак». Плазма не должна касаться стенок камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. На рисунке 1 . 18 . 6 в качестве примера проиллюстрирована траектория движения несущей заряд частицы в магнитной «бутылке» (или ловушке).
Рисунок 1 . 18 . 6 . Магнитная «бутылка». Заряженные частицы не выходят за ее пределы. Необходимое магнитное поле может быть создано с помощью двух круглых катушек с током.
Такое же явление происходит в магнитном поле Земли, которое защищает все живое от потока несущих заряд частиц из космического пространства.
Быстрые заряженные частицы из космоса, по большей степени от Солнца, «перехватываются» магнитным полем Земли, вследствие чего образуются радиационные пояса (рис. 1 . 18 . 7 ), в которых частицы, будто в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за доли секунды.
Исключением являются полярные области, в которых часть частиц прорывается в верхние слои атмосферы, что может приводить к возникновению таких явлений, как «полярные сияния». Радиационные пояса Земли простираются от расстояний около 500 к м до десятков радиусов нашей планеты. Стоит вспомнить, что южный магнитный полюс Земли находится поблизости с северным географическим полюсом на северо-западе Гренландии. Природа земного магнетизма до сих пор не изучена.
Рисунок 1 . 18 . 7 . Радиационные пояса Земли. Быстрые заряженные частицы от Солнца, в основном электроны и протоны, попадают в магнитные ловушки радиационных поясов.
Возможно их вторжение в верхние слои атмосферы, служащее причиной возникновения «северных сияний».
Рисунок 1 . 18 . 8 . Модель движения заряда в магнитном поле.
Рисунок 1 . 18 . 9 . Модель Масс-спектрометра.
Рисунок 1 . 18 . 10 . Модель селектора скоростей.
Сила Лоренца
теория по физике 🧲 магнетизм
Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).
Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:
Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля → B можно считать неизменным в пределах этого отрезка проводника.
Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:
Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:
F = | I | Δ l B sin . α
Подставляя сюда выражение, полученное для силы тока, получим:
F = | q n v S | Δ l B sin . α = | q | n v S Δ l B sin . α
Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:
F = | q | v N B sin . α
Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:
F Л = F N . . = | q | v N B sin . α N . . = | q | v B sin . α
α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.
Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45 o к вектору магнитной индукции.
F Л = | q | v B sin . α = 0 , 005 · 200 · 0 , 3 · √ 2 2 . . ≈ 0 , 2 ( Н )
Направление силы Лоренца
Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:
Если левую руку расположить так, чтобы составляющая магнитной индукции → B , перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.
Пример №2. Протон p имеет скорость → v , направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?
В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.
Работа силы Лоренца
Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90 о . Работа любой силы определяется формулой:
Но так как косинус 90 о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.
Полная сила, действующая на заряд
При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила → F э л , действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:
Следовательно, полная сила, действующая на заряд, равна:
→ F = → F э л + → F л = q → E + | q | → v → B sin . α
Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна → E . Какова индукция → B магнитного поля?
Прямолинейное движение протона возможно в двух случаях:
- Вектор → E направлен вдоль траектории движения протона. Тогда вектор → B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
- Векторы → E , → B и → v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).
Заряд протона равен модулю заряда электрона — e . Сложим силы, действующие на протон по оси ОУ:
В скалярной форме:
Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.
http://zaochnik.com/spravochnik/fizika/magnitnoe-pole/sila-lorentsa/
Сила Лоренца
Сила Лоренца действующая на электрон
В частном случае носителем заряда является электрон. Тогда в формулу (5) в качестве Q следует подставить
[ е = — 1.602 cdot 10^{-19} enspace Кл. ]
При определении направления движения электронов с помощью правила левой руки следует учитывать, что направление движения электронов противоположно техническому направлению тока.
Сила Лоренца действующая на электрон и протон
Величина и направление силы Лоренца определяются соотношением
[ vector{F_{L}}= e vector{v} × vector{B} ]
где $vector{v}$, $vector{B}$ и $vector{F}$ образуют правую систему.
Для электронов, движущихся перпендикулярно магнитному полю, формула упрощается:
[ F_{L} = e v B ]
Так как сила действует перпендикулярно скорости и направлению поля, она создает центростремительное ускорение, т.е. изменяет направление скорости, не меняя ее величины.
Поэтому электрон движется в магнитном поле по окружности.
Вычислить, найти силу Лоренца действующую на электрон или протон
Радиус траектории электрона в магнитном поле
Для определения радиуса круговой траектории электрона приравняем силу Лоренца и центростремительную силу.
Если
r | радиус круговой траектории электрона, | метр |
---|---|---|
me | 9,11 · 10-31 кг — масса электрона, | кг |
e | 1,602 · 10-19 Кл — элементарный электрический заряд, | Кулон |
v | скорость электрона, | м/с |
B | магнитная индукция, | Тесла |
то, приравнивая обе силы, получаем
[ evB = frac{m_{e} v^{2}}{r} ]
и, следовательно,
[ r = frac{m_{e} v}{eB} ]
Сила Лоренца действующая на протон
Электрический заряд протона равен по модулю заряду электрона, но имеет положительный знак.
[ p = + 1.602 cdot 10^{-19} enspace Кл. ]
При определении направления движения протонов с помощью правила левой руки направление движения протонов совпадает с техническим направлением тока и с картинкой.
Таким образом электрон и протон влетая в магнитное поле в одном направлении будут отклоняться в разные стороны.
Сила Лоренца действующая на протон
Величина силы действующая на электрон и на протон будет одинакова (определяется формулой №3), но поскольку протон гораздо тяжелее электрона, радиус закручивания для протона будет больше.
Радиус траектории протона в магнитном поле
Если
r | радиус круговой траектории протона, | метр |
---|---|---|
mp | 1,67 · 10-27 кг — масса протона, | кг |
p | 1,602 · 10-19 Кл — элементарный электрический заряд, | Кулон |
v | скорость протона, | м/с |
B | магнитная индукция, | Тесла |
Радиус траектории для протона будет вычисляться по аналогичной формуле
[ r = frac{m_{p} v}{p B} ]
Из этой формулы видно что при одинаковых скоростях электрона и протона радиус траектории протона будет значительно больше, чем у электрона пропорционально отношению масс этих частиц
Сила Лоренца |
стр. 667 |
---|
Содержание:
- Определение и формула силы Лоренца
- Направление силы Лоренца
- Следствия свойств силы Лоренца
- Формула силы Лоренца при наличии магнитного и электрического полей
- Единицы измерения силы Лоренца
- Примеры решения задач
Определение и формула силы Лоренца
Определение
Сила $bar{F}$ , действующая на движущуюся заряженную частицу в магнитном поле, равная:
$$bar{F}=q[bar{v} times bar{B}](1)$$
называется силой Лоренца (магнитной силой).
Исходя из определения (1) модуль рассматриваемой силы:
$$F=q v B sin alpha(2)$$
где $bar{v}$ – вектор скорости частицы, q – заряд частицы,
$bar{B}$ – вектор магнитной индукции поля в точке нахождения заряда,
$alpha$ – угол между векторами
$bar{v}$ и
$bar{B}$. Из выражения (2) следует, что если заряд движется параллельно
силовым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс:
$bar{F}_L$
Направление силы Лоренца
Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости
$bar{v}$ и вектору
$bar{B}$ (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной
индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом,
тонаправление силы Лоренца противоположно результату векторного произведения
(рис.1(b)).
вектор $bar{B}$ направлен перпендикулярно плоскости рисунков на нас.
Следствия свойств силы Лоренца
Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается,
что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.
Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействием
силы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции.
При этом радиус окружности равен:
$$R=frac{m gamma v}{|q| B}(3)$$
где m – масса частицы,|q|- модуль заряда частицы,
$gamma=frac{1}{sqrt{1-frac{v^{2}}{c^{2}}}}$ – релятивистский множитель Лоренца, c – скорость света в вакууме.
Сила Лоренца — это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).
Формула силы Лоренца при наличии магнитного и электрического полей
Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и
электрическое), то сила, которая действует на нее, равна:
$$bar{F}=q bar{E}+q[bar{v} times bar{B}](4)$$
где $bar{E}$ – вектор напряженности электрического поля в точке, в которой находится заряд.
Выражение (4) было эмпирически получено Лоренцем. Сила
$bar{F}$, которая входит в формулу (4) так же называется силой Лоренца
(лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую
$(bar{F} = q bar{E})$ и магнитную
$(bar{F}=q[bar{v} times bar{B}])$ относительно, так как связано с выбором инерциальной системы отсчета.
Так, если система отсчета будет двигаться с такой же скоростью
$bar{v}$, как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.
Единицы измерения силы Лоренца
Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: [F]=H
В СГС: [F]=дин
Примеры решения задач
Пример
Задание. Какова угловая скорость электрона, который движется по окружности в магнитном поле с индукцией B?
Решение. Так как электрон (частица имеющая заряд) совершает перемещение в магнитном поле, то на
него действует сила Лоренца вида:
$$bar{F}=q[bar{v} times bar{B}](1.1)$$
где q=qe – заряд электрона. Так как в условии сказано, что электрон движется по окружности, то это означает, что
$bar{v} perp bar{B}$, следовательно, выражение для модуля силы Лоренца примет вид:
$$F=q v B(1.2)$$
Сила Лоренцаявляется центростремительной и кроме того, по второму закону Ньютона будет в нашем случае равна:
$$F=m a_{n}=m frac{v^{2}}{R}(1.3)$$
Приравняем правые части выражений (1.2) и (1.3), имеем:
$$q v B=m frac{v^{2}}{R}(1.4)$$
Из выражения (1.3) получим скорость:
$$v=frac{q B R}{m}(1.5)$$
Период обращения электрона по окружности можно найти как:
$$T=frac{2 pi R}{v}=frac{2 pi m}{q B}(1.6)$$
Зная период, можно найти угловую скорость как:
$$omega=frac{2 pi}{T}=frac{q_{e} B}{m}$$
Ответ. $omega=frac{q_{e} B}{m}$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле
напряженностью E и магнитное поле с индукцией B. Векторы $bar{E}$ и
$bar{B}$ совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если
$bar{v} uparrow bar{B} uparrow bar{E}$?
Решение. Сделаем рисунок.
На заряженную частицу действует сила Лоренца:
$$bar{F}=q bar{E}+q[bar{v} times bar{B}](2.1)$$
Магнитная составляющая имеет направление перпендикулярное вектору скорости ($bar{v}$) и вектору
магнитной индукции ($bar{B}$).
Электрическая составляющая сонаправлена с вектором напряжённости ($bar{E}$) электрического поля.
В соответствии со вторым законом Ньютона имеем:
$$bar{F}=q bar{E}+q[bar{v} times bar{B}]=m bar{a}(2.2)$$
Получаем, что ускорение равно:
$$frac{q bar{E}+q[bar{v} times bar{B}]}{m}=bar{a}(2.3)$$
Если скорость заряда параллельна векторам $bar{E}$ и
$bar{B}$, тогда $[bar{v} times bar{B}]=0$, получим:
$$bar{a}=frac{q bar{E}}{m}$$
Ответ. $bar{a}=frac{q bar{E}}{m}$
Читать дальше: Формула силы натяжения нити.
Решение задач – обязательная практика в жизни всех студентов-технарей. В сегодняшней статье разберемся, как решать задачи на силу Лоренца.
Если вам скучно читать про решение задач, переходите в наш телеграм-канал. Там найдется интересная информация и новости для всех специальностей. А еще, у нас есть второй канал, где мы рассказываем об акциях нашего сервиса и дарим приятные скидки. Проверьте — и не упустите выгоду!
Задачи по теме «сила Лоренца»
Даже если вы не новичок, прежде чем решать задачи, прочтите общую памятку и на всякий случай держите под рукой полезные формулы.
Задача на силу Лоренца №1
Условие
Электрон с энергией 300 эВ движется перпендикулярно линиям индукции однородного магнитного поля напряженностью 465 А/м. Определить силу Лоренца, скорость и радиус траектории электрона.
Решение
Скорость электрона можно найти из формулы кинетической энергии:
Eк=m·v22v=2Eкm
Сила Лоренца является центростремительной силой, значит, по второму закону Ньютона, можно записать:
Магнитная индукция равна напряженности, умноженной на магнитную постоянную. Подставив ранее найденное выражение для скорости в формулу для радиуса и силы Лоренца, запишем:
R=m2Eктqμ0H=2Eктqμ0HFл=q2Eктμ0H
Теперь осталось только подставить значения и вычислить:
v=2·4,8·10-169,1·10-31=3,25·107 мсFл=4·3,14·10-7·465·1,6·10-19·3,25·107=3·10-15НR=2·4,8·10-16·9,1·10-314·3,14·10-7·465·1,6·10-19=0,32 м
Ответ: v=3,25·107 мс; Fл=3·10-15Н; R=0,32 м.
Задача на силу Лоренца №2
Условие
Альфа-частица влетает в магнитное поле с индукцией 1 Тл перпендинулярно силовым линиям. Найти момент импульса частицы относительно центра окружности, по которой она будет двигаться.
Решение
Когда частица влетает в поле перпендикулярно силовым линиям, на нее начинает действовать сила Лоренца, которая выполняет роль центростремительной силы. Радиус окружности, по которой будет двигаться частица:
R=mvQBm=6,65·10-27 кг — масса альфа частицыQ=2e=3,2·10-19Кл — заряд альфа частицы
Момент импульса частицы относительно центра окружности найдем по формуле:
L=mvR=m2v2QB=6,65·10-272·0,35·10723,2·10-19·1=5,42·10-21кг·м2с
Ответ: 5,42·10-21 кг·м2с.
Задача на силу Лоренца №3
Условие
В однородном магнитном поле с индукцией В = 0,5 Тл вращается с частотой n = 10 с-1 стержень длиной l = 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определите разность потенциалов U на концах стержня.
Решение
Рассмотрим физическую суть процессов, проходящих в стержне. Когда стержень движется в магнитном поле, в нем возникает ЭДС индукции, которая обусловлена действием силы Лоренца на заряды стержня.
Под действием этой силы в стержне происходит разделение зарядов: свободные электроны перемещаются вверх и между концами стержня возникает разность потенциалов.
Заряды на концах стержня создают поле E, препятствующее дальнейшему разделению зарядов. В какой-то момент сила Лоренца уравновесится с силой возникающего поля:
Fл=e·ЕЕ=Fле=evBe=vB
Скорость нижнего конца стержня, а значит, и скорость электронов в нем, можно найти, зная частоту вращения и длину стержня:
v=2π·n·l
C учетом этого, перепишется выражения для напряженности электрического поля:
Е=2πnlB
Индуцируемая разность потенциалов, по определению, равна:
U=Е·lU=2πnl2B=2·3,14·10-1·0,22·0,5=1,3В
Ответ: 1,3 В.
Задача на силу Лоренца №4
Условие
Какая сила действует на заряд 0,005 Кл, движущийся в магнитном поле с индукцие 0,5 Тл со скоростью 150 м/с под углом 45 градусов к вектору магнитной индукции?
Решение
Это простейшая задача на определение силы Лоренца. Вспомним формулу и запишем, что на заряд действует сила Лоренца, равная:
F=q·v·B·sinα
Подставим значения и вычислим:
F=0,005·150·0,5·22=0,26 Н
Ответ: 0,26 Н.
Задача на силу Лоренца №5
Условие
На тело с зарядом 0,8 мКл, движущееся в магнитном поле, со стороны поля действует сила, равная 32Н. Какова скорость тела, если вектор магнитного поля перпендикулярен ей?
Решение
Это классическая задача на применение формулы силы Лоренца. Так как векторы скорости и магнитной индукции перпендикулярны, можно записать:
F=qvBsinα=qvBv=FqB=320,8·10-3·2=20·103 мс
Ответ: 20000 м/с.
Проходите магнитостатику? Вам также может быть интересно:
- Задачи на закон Био-Савара-Лапласа.
- Задачи на теорему о циркуляции магнитного поля.
Вопросы на тему «Сила Лоренца»
Вопрос 1. Что такое сила Лоренца?
Ответ. Сила Лоренца — это сила, с которой магнитное поле действует на заряженную частицу, движущуюся в нем.
Сила Лоренца действует только на движущиеся заряды.
Вопрос 2. Как определить направление силы Лоренца?
Ответ. Направление силы Лоренца определяется по правилу левой руки:
Если левую руку расположить так, чтобы составляющая вектора В, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движении положительного заряда (= против движения отрицательного заряда), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.
Вопрос 3. Зависит ли сила Лоренца от знака заряда?
Ответ. Да, зависит. Для противоположных зарядов сила Лоренца будет направлена в противоположные стороны.
Вопрос 4. Совершает ли сила Лоренца работу?
Ответ. Нет. Сила Лоренца не совершает работу, т.к., являясь перпендикулярной вектору скорости частицей, может изменить лишь направление скорости, но не ее значение. Работа силы Лоренца всегда равна нулю!
Вопрос 5. По какой траектории движется частица, попадающая в магнитное поле, перпендикулярное вектору скорости?
Ответ. Частица, влетающая в магнитное поле перпендикулярно линиям магнитной индукции, будет двигаться в этом поле по окружности определенного радиуса под действием силы Лоренца.
Нужна помощь в решении задач и других заданий по учебе? Профессиональный сервис для студентов посодействует, обращайтесь в любое время!
• Сила
F,
действующая на заряд
Q,
движущийся со скоростью v
в магнитном поле с
индукцией В (сила
Лоренца), выражается формулой
F=Q
[v
B]
или F=|Q|B
sin,
где —
угол, образованный вектором скорости
v движущейся
частицы и вектором В индукции
магнитного поля.
Примеры решения задач
Пример
1. Электрон, пройдя
ускоряющую разность потенциалов
U=400
В, попал в однородное
магнитное поле с индукцией B=1,5
мТл. Определить: 1)
радиус R
кривизны траектории;
2) частоту
п
вращения электрона
в магнитном
поле. Вектор скорости электрона
перпендикулярен линиям индукции.
Решение.
1. Радиус кривизны
траектории электрона определим,
исходя из следующих соображений: на
движущийся в магнитном поле электрон
действует сила Лоренца F.
(Действием силы тяжести
можно пренебречь.) Вектор силы Лоренца
перпендикулярен вектору скорости
и, следовательно, по второму закону
Ньютона, сообщает электрону нормальное
ускорение аn
: F=man.
Подставив сюда
выражения F
и аn,
получим
eB
sin
=m2/R,
(1)
где
е, ,
т — заряд, скорость,
масса электрона; В —
индукция магнитного
поля; R
— радиус кривизны
траектории;
— угол между направлениями векторов
скорости v
и индукции В
(в нашем случае vB
и
= 90°, sin
=l).
Из формулы (1) найдем
(2)
Входящий
в выражение (2) импульс m
выразим через
кинетическую энергию Т
электрона:
(3)
Но
кинетическая энергия электрона,
прошедшего ускоряющую разность
потенциалов U,
определяется равенством Т=
eU.
Подставив это выражение
Т в
формулу (3), получим
Тогда выражение
(2) для радиуса кривизны приобретает вид
Убедимся
в том, что правая часть этого равенства
дает единицу длины (м):
После вычисления
по формуле (4) найдем
R=45
мм.
2. Для определения частоты вращения воспользуемся формулой связывающей частоту со скоростью и радиусом кривизны траектории,
Подставив
R
из выражения (2) в эту
формулу, получим
Произведя
вычисления, найдем n=4,20
107
c-1
.
Пример
2. Электрон, имея
скорость =2
Мм/с, влетел в однородное
магнитное поле с индукцией В=30
мТл под углом =30°
к направлению линий индукции. Определить
радиус R
и шаг h
винтовой линии, по
которой будет двигаться
электрон.
Решение.
Известно, что на заряженную частицу,
влетевшую в магнитное поле, действует
сила Лоренца, перпендикулярная векторам
магнитной индукции В
и скорости v
частицы:
F=QB
sin ,
(1)
где Q
— заряд частицы.
В
случае, если частицей является электрон,
формулу (1) можно записать в виде
F=
eB
sin
.
Так
как вектор силы Лоренца перпендикулярен
вектору скорости, то модуль скорости
не будет изменяться под действием этой
силы. Но при постоянной скорости, как
это следует из формулы (1), останется
постоянным и значение силы Лоренца. Из
механики известно, что постоянная сила,
перпендикулярная скорости, вызывает
движение по окружности. Следовательно,
электрон, влетевший в магнитное поле,
будет двигаться по окружности в плоскости,
перпендикулярной линиям индукции, со
скоростью, равной поперечной
составляющей 1
скорости (рис. 23.1);
одновременно он будет двигаться и
вдоль поля со скоростью :
=
sin
,
=
cos
.
В
результате одновременного участия в
движениях по окружности и по прямой
электрон будет двигаться по винтовой
линии.
Радиус
окружности, по которой движется электрон,
найдем следующим образом. Сила Лоренца
F
сообщает электрону
нормальное ускорение ап.
По второму закону
Ньютона, F=man,
где F=e1B
и an=2
R,.
Тогда
eB
= m22/R,
откуда
после сокращения на z
находим радиус винтовой
линии:
Подставив
значения величин т,
,
e,
В и
и произведя вычисления, получим
R=0,19
мм.
Шаг
винтовой линии равен пути, пройденному
электроном вдоль поля со скоростью x
за
время, которое
понадобится электрону для того, чтобы
совершить один оборот,
h
=
T
(2)
где
T=2R/—
период вращения
электрона. Подставив это выражение
для Т в
формулу (2), найдем
Подставив
в эту формулу значения величин ,
R
и
и вычислив, получим
h=2,06
мм.
Пример
3. Электрон движется
в однородном
магнитном поле с индукцией В=0,03 Тл по
окружности радиусом
r=10
см. Определить
скорость
электрона.
Решение.
Движение электрона по окружности в
однородном магнитном поле совершается
под действием силы Лоренца (см. примеры
1 и 2). Поэтому можно написать
(1)
откуда найдем
импульс электрона:
р=т=еВr.
(2)
Релятивистский
импульс выражается формулой
Выполнив
преобразования, получим следующую
формулу для определения скорости
частицы:
(3)
В
данном случае р= eBr.
Следовательно,
В
числитель и знаменатель формулы (4)
входит выражение е
Вr(т0
с). Вычислим
его отдельно:
|е| Вr
/ (m0c)
= 1,76.
Подставив
найденное значение отношения е
Вr(т0
с) в
формулу (4), получим
=
0,871, или
= с=
2,61-108
м/с.
Электрон, обладающий
такой скоростью, является релятивистским
(см. § 5).
Пример
4. Альфа-частица прошла
ускоряющую разность потенциалов U=104
В и влетела в скрещенные под прямым
углом электрическое (E=10
кВ/м) и магнитное (B=0,1
Тл) поля. Найти отношение заряда
альфа-частицы к ее массе, если, двигаясь
перпендикулярно обоим полям, частица
не испытывает отклонений от прямолинейной
траектории.
Решение.
Для того чтобы найти отношение заряда
Q
альфа-частицы к ее массе m,
воспользуемся связью между работой сил
электрического поля и изменением
кинетической энергии частиц:
QU=m2/2,
откуда
Q/m=2/(2U).
(1)
Скорость
альфа-частицы найдем
из следующих соображений. В скрещенных
электрическом и магнитном полях на
движущуюся заряженную частицу действуют
две силы:
а) сила
Лоренца Fл=Q[vВ],
направленная перпендикулярно скорости
v
и вектору магнитной индукции В;
б)
кулоновская сила FK=QE,
сонаправленная с вектором напряженности
Е
электростатического поля (Q>0).
Сделаем
рисунок с изображением координатных
осей и векторных
величин. Направим
вектор магнитной индукции В вдоль оси
Оz (рис.
23.2), скорость v—в
положительном направлении оси Ох,
тогда Fл и Fk
будут направлены так, как это указано
на рисунке.
Альфа-частица не
будет испытывать отклонения, если
геометрическая сумма сил Fл+Fk
будет равна нулю. В проекции на ось
Рис. 23.2
Оу получим
следующее равенство (при этом учтено,
что вектор скорости v перпендикулярен
вектору магнитной индукции В и Sin
(vB)=l):
QE—QB
= O,
откуда
=E/B.
Подставив это
выражение скорости в формулу (1), получим
Q/m=E2(
2UB2).
Убедимся в том,
что правая часть равенства дает единицу
отношения заряда к массе (Кл/кг):
Произведем
вычисления: