Как найти производную произведения формула

Производная произведения и производная частного

3 февраля 2015

В этом уроке мы продолжаем изучать производные функций и переходим к более сложной теме, а именно, к производным произведения и частного. Если вы смотрели предыдущий урок, то наверняка поняли, что мы рассматривали лишь самые простые конструкции, а именно, производную степенной функции, суммы и разности. В частности, мы узнали, что производная суммы равна их сумме, а производная разности равна, соответственно, их разности. К сожалению, в случае с производными частного и произведения формулы будут гораздо сложнее. Начнем мы именно с формулы производной произведения функций.

Производные тригонометрических функций

Для начала позволю себе небольшое лирическое отступление. Дело в том, что помимо стандартной степенной функции — $y={{x}^{n}}$, в этом уроке будут встречаться и другие функции, а именно, $y=sin x$, а также $y=cos x$ и прочая тригонометрия — $y=tgx$ и, разумеется, $y=ctgx$.

Если производную степенной функции мы все прекрасно знаем, а именно $left( {{x}^{n}} right)=ncdot {{x}^{n-1}}$, то, что касается тригонометрических функций, нужно упомянуть отдельно. Давайте запишем:

[begin{align} {{left( sin x right)}^{prime }} &=cos x \ {{left( cos x right)}^{prime }} &=-sin x \ {{left( tgx right)}^{prime }} &=frac{1}{{{cos }^{2}}x} \ {{left( ctgx right)}^{prime }} &=frac{1}{{{cos }^{2}}x} \end{align}]

Но эти формулы вы прекрасно знаете, давайте пойдем дальше.

Что такое производная произведения?

Для начала самое главное: если функция представляет собой произведение двух других функций, например, $fcdot g$, то производная этой конструкции будет равна следующему выражению:

[{{left( fcdot g right)}^{prime }}={f}’cdot g+fcdot {g}’]

Как видите, эта формула значительно отличается и является более сложной, нежели те формулы, которые мы рассматривали ранее. Например, производная суммы считается элементарно —${{left( f+g right)}^{prime }}={f}’+{g}’$, либо производная разности, которая тоже элементарно считается ― ${{left( f-g right)}^{prime }}={f}’-{g}’$.

Давайте попробуем применить первую формулу для вычисления производных двух функций, которые нам даны в задаче. Начнем с первого примера:

[y={{x}^{3}}left( x-5 right)]

Очевидно, что в качестве произведения, точнее, в качестве множителя, выступает следующая конструкция: ${{x}^{3}}$, мы можем рассматривать в качестве $f$, а $left( x-5 right)$ мы можем рассматривать в качестве $g$. Тогда их произведение как раз и будет произведением двух функций. Решаем:

[begin{align}& {{left( {{x}^{3}}cdot left( x-5 right) right)}^{prime }}={{left( {{x}^{3}} right)}^{prime }}cdot left( x-5 right)+{{x}^{3}}cdot {{left( x-5 right)}^{prime }}= \& =3{{x}^{2}}cdot left( x-5 right)+{{x}^{3}}cdot 1 \end{align}].

Теперь давайте внимательно посмотрим на каждое из наших слагаемых. Мы видим, что и в первом, и во втором слагаемом присутствует степень $x$: в первом случае это ${{x}^{2}}$, а во втором — ${{x}^{3}}$. Давайте вынесем наименьшую степень за скобки, в скобке останется:

[begin{align}& 3{{x}^{2}}cdot left( x-5 right)+{{x}^{3}}cdot 1={{x}^{2}}left( 3cdot 1left( x-5 right)+x right)= \& ={{x}^{2}}left( 3x-15+x right)={{x}^{2}}(4x-15) \end{align}]

Все, мы нашли ответ.

Возвращаемся к нашим задачам и попробуем решить:

[fleft( x right)=xleft( sqrt[3]{x}-1 right)]

Итак, переписываем:

[fleft( x right)=xcdot left( sqrt[3]{x}-1 right)]

Опять же замечаем, что речь идет о произведении произведения двух функций: $x$, которую можно обозначить за $f$, и $left( sqrt[3]{x}-1 right)$, которую можно обозначить за $g$.

Таким образом, перед нами вновь произведение двух функций. Для нахождения производной функции $fleft( x right)$ вновь воспользуемся нашей формулой. Получим:

[begin{align}& {f}’=left( x right)’cdot left( sqrt[3]{x}-1 right)+xcdot {{left( sqrt[3]{x}-1 right)}^{prime }}=1cdot left( sqrt[3]{x}-1 right)+xfrac{1}{3sqrt[3]{x}}= \& =sqrt[3]{x}-1+sqrt[3]{x}cdot frac{1}{3}=frac{4}{3}sqrt[3]{x}-1 \end{align}]

Ответ найден.

Зачем раскладывать производные на множители?

Только что мы использовали несколько очень важных математических фактов, которые сами по себе не имеют отношения к производным, однако без их знания все дальнейшее изучение этой темы просто не имеет смысла.

Во-первых, решая самую первую задачу и, уже избавившись от всех знаков производных, мы зачем-то начали раскладывать это выражение на множители.

Во-вторых, решая следующую задачу, мы несколько раз переходили от корня к степени с рациональным показателем и обратно, при этом используя формулу 8-9-го класса, которую стоило бы повторить отдельно.

По поводу разложения на множители ― зачем вообще нужны все эти дополнительные усилия и преобразования? На самом деле, если в задаче просто сказано «найти производную функции», то эти дополнительные действия не требуются. Однако в реальных задачах, которые ждут вас на всевозможных экзаменах и зачетах, просто найти производную зачастую недостаточно. Дело в том, что производная является лишь инструментом, с помощью которой можно узнать, например, возрастание или убывание функции, а для этого требуется решать уравнение, раскладывать его на множители. И вот здесь этот прием будет очень уместен. Да и вообще, с функцией, разложенной на множители, гораздо удобней и приятней работать в дальнейшем, если требуются какие-то преобразования. Поэтому правило № 1: если производную можно разложить на множители, именно так и стоит поступать. И сразу правило № 2 (по сути, это материал 8-9-го класса): если в задаче встречается корень n-ной степени, причем, корень явно больше двух, то этот корень можно заменить обычной степенью с рациональным показателем, причем в показателе появится дробь, где n― та самая степень ― окажется в знаменателе этой дроби.

Разумеется, если под корнем присутствует какая-то степень (в нашем случае это степень k), то она никуда не девается, а просто оказывается в числителе этой самой степени.

А теперь, когда вы все это поняли, давайте вернемся к производным произведения и посчитаем еще несколько уравнений.

Но прежде чем переходить непосредственно к вычислениям, хотел бы напомнить такие закономерности:

[begin{align}& {{left( sin x right)}^{prime }}=cos x \& {{left( cos x right)}^{prime }}=-sin x \& left( tgx right)’=frac{1}{{{cos }^{2}}x} \& {{left( ctgx right)}^{prime }}=-frac{1}{{{sin }^{2}}x} \end{align}]

Считаем первый пример:

[y={{x}^{4}}cdot sin x]

У нас опять произведение двух функций: первая ― $f$, вторая ― $g$. Напомню формулу:

[{{left( fcdot g right)}^{prime }}={f}’cdot g+fcdot {g}’]

Давайте решим:

[begin{align}& {y}’={{left( {{x}^{4}} right)}^{prime }}cdot sin x+{{x}^{4}}cdot {{left( sin x right)}^{prime }}= \& =3{{x}^{3}}cdot sin x+{{x}^{4}}cdot cos x={{x}^{3}}left( 3sin x+xcdot cos x right) \end{align}]

Переходим ко второй функции:

[y=left( 3x-2 right)cos x]

Опять же, $left( 3x-2 right)$ ― это функция $f$, $cos x$ ― это функция $g$. Итого производная произведения двух функций будет равна:

[begin{align}& {y}’={{left( 3x-2 right)}^{prime }}cdot cos x+left( 3x-2 right)cdot {{left( cos x right)}^{prime }}= \& =3cdot cos x+left( 3x-2 right)cdot left( -sin x right)=3cos x-left( 3x-2 right)cdot sin x \end{align}]

Вот такое решение.

Идем далее и переходим к более сложным примерам. Для экономии времени я буду пропускать очевидные действия и буду писать лишь ключевые шаги. Итак:

[y={{x}^{2}}cos x+4xsin x]

Запишем:

[{y}’={{left( {{x}^{2}}cdot cos x right)}^{prime }}+{{left( 4xsin x right)}^{prime }}]

Выпишем по отдельности:

[begin{align}& {{left( {{x}^{2}}cdot cos x right)}^{prime }}=left( {{x}^{2}} right)’cos x+{{x}^{2}}cdot {{left( cos x right)}^{prime }}= \& =2xcdot cos x+{{x}^{2}}cdot left( -sin x right)=2xcdot cos x-{{x}^{2}}cdot sin x \end{align}]

На множители мы это выражение не раскладываем, потому что это еще не окончательный ответ. Сейчас нам предстоит решить вторую часть. Выписываем ее:

[begin{align}& {{left( 4xcdot sin x right)}^{prime }}={{left( 4x right)}^{prime }}cdot sin x+4xcdot {{left( sin x right)}^{prime }}= \& =4cdot sin x+4xcdot cos x \end{align}]

А теперь возвращаемся к нашей изначальной задаче и собираем все в единую конструкцию:

[begin{align}& {y}’=2xcdot cos x-{{x}^{2}}cdot sin x+4sin x+4xcos x=6xcdot cos x= \& =6xcdot cos x-{{x}^{2}}cdot sin x+4sin x \end{align}]

Все, это окончательный ответ.

Переходим к последнему примеру ― он будет самым сложным и самым объемным по вычислениям. Итак, пример:

[y={{x}^{2}}tgx-2xctgx]

Считаем:

[{y}’={{left( {{x}^{2}}cdot tgx right)}^{prime }}-{{left( 2xctgx right)}^{prime }}]

Считаем каждую часть отдельно:

[begin{align}& {{left( {{x}^{2}}cdot tgx right)}^{prime }}={{left( {{x}^{2}} right)}^{prime }}cdot tgx+{{x}^{2}}cdot {{left( tgx right)}^{prime }}= \& =2xcdot tgx+{{x}^{2}}cdot frac{1}{{{cos }^{2}}x} \end{align}]

[begin{align}& {{left( 2xcdot ctgx right)}^{prime }}={{left( 2x right)}^{prime }}cdot ctgx+2xcdot {{left( ctgx right)}^{prime }}= \& =2cdot ctgx+2xleft( -frac{1}{{{sin }^{2}}x} right)=2cdot ctgx-frac{2x}{{{sin }^{2}}x} \end{align}]

Возвращаясь к исходной функции, посчитаем ее производную в целом:

[begin{align}& {y}’=2xcdot tgx+frac{{{x}^{2}}}{{{cos }^{2}}x}-left( 2ctgx-frac{2x}{{{sin }^{2}}x} right)= \& =2xcdot tgx+frac{{{x}^{2}}}{{{cos }^{2}}x}-2ctgx+frac{2x}{{{sin }^{2}}x} \end{align}]

Вот, собственно, и все, что я хотел рассказать по производным произведения. Как видите, основная проблема формулы состоит не в том, чтобы ее заучить, а в том, что получается довольно большой объем вычислений. Но это нормально, потому что сейчас мы переходим к производной частного, где нам придется очень сильно потрудиться.

Что представляет собой производная частного?

Итак, формула производной частного. Пожалуй, это самая сложная формула в школьном курсе производных. Допустим, у нас есть функция вида $frac{f}{g}$, где $f$ и $g$ ― также функции, с которых тоже можно снять штрих. Тогда она будет считаться по следующей формуле:

[{{left( frac{f}{g} right)}^{prime }}=frac{{f}’cdot g-fcdot {g}’}{{{g}^{2}}}]

Числитель чем-то напоминает нам формулу производной произведения, однако между слагаемыми стоит знак «минус» и еще в знаменателе добавился квадрат исходного знаменателя. Давайте посмотрим, как это работает на практике:

[fleft( x right)=frac{{{x}^{2}}-1}{x+2}]

Попытаемся решить:

[{f}’={{left( frac{{{x}^{2}}-1}{x+2} right)}^{prime }}=frac{{{left( {{x}^{2}}-1 right)}^{prime }}cdot left( x+2 right)-left( {{x}^{2}}-1 right)cdot {{left( x+2 right)}^{prime }}}{{{left( x+2 right)}^{2}}}]

Предлагаю выписать каждую часть отдельно и записать:

[begin{align}& {{left( {{x}^{2}}-1 right)}^{prime }}={{left( {{x}^{2}} right)}^{prime }}-{1}’=2x \& {{left( x+2 right)}^{prime }}={x}’+{2}’=1 \end{align}]

Переписываем наше выражение:

[begin{align}& {f}’=frac{2xcdot left( x+2 right)-left( {{x}^{2}}-1 right)cdot 1}{{{left( x+2 right)}^{2}}}= \& =frac{2{{x}^{2}}+4x-{{x}^{2}}+1}{{{left( x+2 right)}^{2}}}=frac{{{x}^{2}}+4x+1}{{{left( x+2 right)}^{2}}} \end{align}]

Мы нашли ответ. Переходим ко второй функции:

[y=frac{1}{{{x}^{2}}+4}]

Судя по тому, что в ее числителе стоит просто единица, то здесь вычисления будут чуть проще. Итак, запишем:

[{y}’={{left( frac{1}{{{x}^{2}}+4} right)}^{prime }}=frac{{1}’cdot left( {{x}^{2}}+4 right)-1cdot {{left( {{x}^{2}}+4 right)}^{prime }}}{{{left( {{x}^{2}}+4 right)}^{2}}}]

Посчитаем каждую часть примера отдельно:

[begin{align}& {1}’=0 \& {{left( {{x}^{2}}+4 right)}^{prime }}={{left( {{x}^{2}} right)}^{prime }}+{4}’=2x \end{align}]

Переписываем наше выражение:

[{y}’=frac{0cdot left( {{x}^{2}}+4 right)-1cdot 2x}{{{left( {{x}^{2}}+4 right)}^{2}}}=-frac{2x}{{{left( {{x}^{2}}+4 right)}^{2}}}]

Мы нашли ответ. Как и предполагалось, объем вычисления оказался существенно меньше, чем для первой функции.

В чем разница между обозначениями?

У внимательных учеников наверняка уже возник вопрос: почему в одних случаях мы обозначаем функцию как $fleft( x right)$, а в других случаях пишем просто $y$? На самом деле, с точки зрения математики нет абсолютно никакой разницы ― вы вправе использовать как первое обозначение, так и второе, при этом никаких штрафных санкций на экзаменах и зачетах не последует. Для тех, кому все-таки интересно, поясню, почему авторы учебников и задач в одних случаях пишут $fleft( x right)$, а в других (гораздо более частых) ― просто $y$. Дело в том, что записывая функцию в виде[fleft( x right)=frac{{{x}^{2}}-1}{x+2}], мы неявно намекаем тому, кто будет читать наши выкладки, что речь идет именно об алгебраической интерпретации функциональной зависимости. Т. е., есть некая переменная $x$, мы рассматриваем зависимость от этой переменной и обозначаем ее $fleft( x right)$. При этом, увидев вот такое обозначение, тот, кто будет читать ваши выкладки, например, проверяющий, будет подсознательно ожидать, что в дальнейшем его ждут лишь алгебраические преобразования ― никаких графиков и никакой геометрии.

С другой стороны, используя обозначения вида[y=frac{1}{{{x}^{2}}+4}], т. е., обозначая переменную одной единственной буквой, мы сразу даем понять, что в дальнейшем нас интересует именно геометрическая интерпретация функции, т. е., нас интересует, в первую очередь, ее график. Соответственно, столкнувшись с записью вида[y=frac{1}{{{x}^{2}}+4}], читатель вправе ожидать графических выкладок, т. е., графиков, построений и т. д., но, ни в коем случае, не аналитических преобразований.

Еще хотел бы обратить ваше внимание на одну особенность оформления задач, которые мы сегодня рассматриваем. Многие ученики считают, что я привожу слишком подробные выкладки, и многие из них можно было бы пропустить или просто решить в уме. Однако именно такая подробная запись позволит вам избавится от обидных ошибок и значительно увеличит процент правильно решенных задач, например, в случае самостоятельной подготовки к контрольным или экзаменам. Поэтому если вы еще неуверенны в своих силах, если вы только начинаете изучать данную тему, не спешите ― подробно расписывайте каждый шаг, выписывайте каждый множитель, каждый штрих, и очень скоро вы научитесь решать такие примеры лучше, чем многие школьные учителя. Надеюсь, это понятно. Давайте посчитаем еще несколько примеров.

Несколько интересных задач

На этот раз, как мы видим, в составе вычисляемых производных присутствует тригонометрия. Поэтому напомню следующее:

[begin{align}& {(sin x)}’=cos x \& {{left( cos x right)}^{prime }}=-sin x \end{align}]

Конечно, нам не обойтись и без производной частного, а именно:

[{{left( frac{f}{g} right)}^{prime }}=frac{{f}’cdot g-fcdot {g}’}{{{g}^{2}}}]

Считаем первую функцию:

[fleft( x right)=frac{sin x}{x}]

Запишем:

[begin{align}& {f}’={{left( frac{sin x}{x} right)}^{prime }}=frac{{{left( sin x right)}^{prime }}cdot x-sin xcdot left( {{x}’} right)}{{{x}^{2}}}= \& =frac{xcdot cos x-1cdot sin x}{{{x}^{2}}}=frac{xcos x-sin x}{{{x}^{2}}} \end{align}]

Вот мы и нашли решение этого выражения.

Переходим ко второму примеру:

[y=frac{xsin x}{cos x}]

Очевидно, что ее производная будет более сложной уже хотя бы потому, что и в числителе, и в знаменателе данной функции присутствует тригонометрия. Решаем:

[{y}’={{left( frac{xsin x}{cos x} right)}^{prime }}=frac{{{left( xsin x right)}^{prime }}cdot cos x-xsin xcdot {{left( cos x right)}^{prime }}}{{{left( cos x right)}^{2}}}]

Заметим, что у нас возникает производная произведения. В этом случае она будет равна:

[begin{align}& {{left( xcdot sin x right)}^{prime }}={x}’cdot sin x+x{{left( sin x right)}^{prime }}= \& =sin x+xcos x \end{align}]

Возвращаемся к нашим вычислениям. Записываем:

[begin{align}& {y}’=frac{left( sin x+xcos x right)cos x-xcdot sin xcdot left( -sin x right)}{{{cos }^{2}}x}= \& =frac{sin xcdot cos x+x{{cos }^{2}}x+x{{sin }^{2}}x}{{{cos }^{2}}x}= \& =frac{sin xcdot cos x+xleft( {{sin }^{2}}x+{{cos }^{2}}x right)}{{{cos }^{2}}x}=frac{sin xcdot cos x+x}{{{cos }^{2}}x} \end{align}]

Вот и все! Мы посчитали.

Как свести производную частного к простой формуле производной произведения?

И вот тут хотелось бы сделать одно очень важное замечание, касающееся именно тригонометрических функций. Дело в том, что наша исходная конструкция содержит в себе выражение вида $frac{sin x}{cos x}$, которую легко можно заменить просто $tgx$. Таким образом, мы сведем производную частного к более простой формуле производной произведения. Вот давайте посчитаем этот пример еще раз и сравним результаты.

Итак, теперь нам нужно учесть следующее:

[frac{sin x}{cos x}=tgx]

Перепишем нашу исходную функцию $y=frac{xsin x}{cos x}$ с учетом этого факта. Получим:

[y=xcdot tgx]

Давайте посчитаем:

[begin{align}& {y}’={{left( xcdot tgx right)}^{prime }}{x}’cdot tgx+x{{left( tgx right)}^{prime }}=tgx+xfrac{1}{{{cos }^{2}}x}= \& =frac{sin x}{cos x}+frac{x}{{{cos }^{2}}x}=frac{sin xcdot cos x+x}{{{cos }^{2}}x} \end{align}]

Теперь, если мы сравним полученный результат с тем, что мы получили ранее, при вычислении по другому пути, то мы убедимся, что получили одно и то же выражение. Таким образом, каким бы путем мы не шли при вычислении производной, если все посчитано верно, то ответ будет одним и тем же.

Важные нюансы при решении задач

В заключении хотел бы рассказать вам еще одну тонкость, связанную с вычислением производной частного. То, что я вам сейчас расскажу, не было в изначальном сценарии видеоурока. Однако за пару часов до съемок я занимался с одним из своих учеников, и мы как раз разбирали тему производных частного. И, как выяснилось, этот момент многие ученики не понимают. Итак, допустим, нам нужно посчитать снять штрих следующей функции:

[y=frac{48}{x}+3{{x}^{2}}+100]

В принципе, ничего сверхъестественного на первый взгляд в ней нет. Однако в процессе вычисления мы можем допустить много глупых и обидных ошибок, которые я бы хотел сейчас разобрать.

Итак, считаем эту производную. Прежде всего, заметим, что у нас присутствует слагаемое $3{{x}^{2}}$, поэтому уместно вспомнить следующую формулу:

[{{left( {{x}^{n}} right)}^{prime }}=ncdot {{x}^{n-1}}]

Кроме того, у нас присутствует слагаемое $frac{48}{x}$ ― с ним мы будем разбираться через производную частного, а именно:

[{{left( frac{f}{g} right)}^{prime }}=frac{{f}’cdot g-fcdot {g}’}{{{g}^{2}}}]

Итак, решаем:

[{y}’={{left( frac{48}{x} right)}^{prime }}+{{left( 3{{x}^{2}} right)}^{prime }}+10{0}’]

С первым слагаемым никаких проблем, смотрите:

[{{left( 3{{x}^{2}} right)}^{prime }}=3cdot {{left( {{x}^{2}} right)}^{prime }}=3k.2x=6x]

А вот с первым слагаемым, $frac{48}{x}$, нужно поработать отдельно. Дело в том, что многие ученики путают ситуацию, когда нужно найти ${{left( frac{x}{48} right)}^{prime }}$и когда нужно найти ${{left( frac{48}{x} right)}^{prime }}$. Т. е., они путаются, когда константа стоит в знаменателе, и когда константа стоит в числителе, соответственно, когда переменная стоит в числителе, либо в знаменателе.

Для начала проработаем первый вариант:

[{{left( frac{x}{48} right)}^{prime }}={{left( frac{1}{48}cdot x right)}^{prime }}=frac{1}{48}cdot {x}’=frac{1}{48}cdot 1=frac{1}{48}]

С другой стороны, если мы попробуем аналогично поступить и со второй дробью, то получим следующее:

[begin{align}& {{left( frac{48}{x} right)}^{prime }}={{left( 48cdot frac{1}{x} right)}^{prime }}=48cdot {{left( frac{1}{x} right)}^{prime }}= \& =48cdot frac{{1}’cdot x-1cdot {x}’}{{{x}^{2}}}=48cdot frac{-1}{{{x}^{2}}}=-frac{48}{{{x}^{2}}} \end{align}]

Однако тот же самый пример можно было посчитать и иначе: на этапе, где мы переходили к производной частного, можно рассмотреть $frac{1}{x}$ как степень с отрицательным показателем, т. е., мы получим следующее:

[begin{align}& 48cdot {{left( frac{1}{x} right)}^{prime }}=48cdot {{left( {{x}^{-1}} right)}^{prime }}=48cdot left( -1 right)cdot {{x}^{-2}}= \& =-48cdot frac{1}{{{x}^{2}}}=-frac{48}{{{x}^{2}}} \end{align}]

И так, и так мы получили один и тот же ответ.

Таким образом, мы еще раз убедились в двух важных фактах. Во-первых, одну и ту же производную можно посчитать совершенно различными способами. Например, ${{left( frac{48}{x} right)}^{prime }}$ можно рассматривать и как производную частного, и как производную степенной функции. При этом если все вычисления выполнены верно, то ответ всегда получится одним и тем же. Во-вторых, при вычислении производных, содержащих и переменную, и константу, принципиально важным является то, где находится переменная ― в числителе или в знаменателе. В первом случае, когда переменная находится в числителе, мы получаем простую линейную функцию, которая элементарно считается. А в случае, если переменная стоит в знаменателе, то мы получаем более сложное выражение с сопутствующими выкладками, приведенными ранее.

На этом урок можно считать законченным, поэтому если вам что-то непонятно по производным частного или произведения, да и вообще, если у вас есть любые вопросы по этой теме, не стесняйтесь ― заходите на мой сайт, пишите, звоните, и я обязательно постараюсь вам помочь.

Сами по себе производные ― тема отнюдь не сложная, но очень объемная, и то, что мы сейчас изучаем, будет использоваться в будущем при решении более сложных задач. Именно поэтому все недопонимания, связанные с вычислениями производных частного или произведения, лучше выявить немедленно, прямо сейчас. Не когда они представляют собой огромный снежный ком недопонимания, а когда представляют собой маленький теннисный шарик, с которым легко разобраться.

Смотрите также:

  1. Вводный урок по вычислению производных степенной функции
  2. Простое определение производной функции
  3. Основное тригонометрическое тождество
  4. Как быстро извлекать квадратные корни
  5. Проценты в задачах на наибольшее-наименьшее значение используем пропорции
  6. Сложная задача B14: работа трех исполнителей

Производная произведения

Определение

Производная произведения равна произведению производной первого множителя на второй множитель плюс произведение первого множителя на производную второго множителя:

$$ (uv)’=u’v+uv’ $$

Следует отметить, что не в коем случае производная произведения функций НЕ РАВНА произведению производных каждого множителя!

Примеры решений

Пример 1
Найти производную произведения двух функций $ y = xln x $
Решение

Находим производные от каждого из множителей. Для множителя $ x $ производная будет равна: $$ (x)’=1 $$

Для второй функции $ ln x $ производная находится по формуле для логарифма и равна:

$$ (ln x)’ = frac{1}{x} $$

В целом пользуясь формулой производной произведения записыаем ответ:

$$ y’=(xln x)’=(x)’ln x + x(ln x)’=ln x + xcdot frac{1}{x} = ln x + 1 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y’=ln x + 1 $$
Пример 2
Найти производную функции $ y = x^2e^{3x} $
Решение

Производная первой функции равна: $$ (x^2)’=2x $$

Производная второй функции равна: $$ (e^{3x})’=e^{3x}cdot (3x)’=e^{3x} cdot 3 = 3e^{3x} $$

Используя правило получаем:

$$ y’=(x^2e^{3x})’=(x^2)’e^{3x}+x^2(e^{3x})’=2xe^{3x}+3x^2e^{3x} $$

Выносим экспоненты за скобки для упрощенной записи ответа:

$$ y’=(3x^2+2x)e^{3x} $$

Ответ
$$ y’=(3x^2+2x)e^{3x} $$

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Геометрический и физический смысл производной

Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

производная объяснение для чайников

Иначе это можно записать так:

высшая математика для чайников производные

Какой смысл в нахождении такого предела? А вот какой:

Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

Геометрический смысл производной

 

Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:

смысл производной

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

производная для чайников в практическом применении

Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.

Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:

производная для чайников в практическом применении

Нам нужно найти скорость в момент времени t=2c. Вычислим производную:

производная для чайников в практическом применении

Правила нахождения производных

Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.

Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.

Таблица производных

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте.

Пример. Вычислим производную:

найти производную функции для чайников

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

как найти производную для чайников

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

как найти производную для чайников

Решение:

как найти производную для чайников

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

как считать производные для чайников

Пример: найти производную функции:

как считать производные для чайников

Решение:Производная сложной функции

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

производная сложной функции для чайников

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

производная определение для чайников

Пример:

производная определение для чайников

Решение:

производная определение для чайников

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Таблица производных, правила нахождения производных

  • Таблица производных основных функций
  • Основные правила нахождения производной
  • Правило дифференцирования сложной функции
  • Логарифмическая производная
  • Производная обратной функции
  • Производная функции, заданной параметрически
  • Производная неявной функции

Таблица производных основных функций


Основные правила нахождения производной


Если

 – постоянная и

,

 – функции, имеющие производные, то

1) Производная от постоянного числа равна нулю. 

2) Производная от переменной равна единице

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

3) Производная суммы равна сумме производных

Пример 1

Найдем производную функции

4) Производная произведения постоянной на
некоторую функцию равна произведению этой постоянной на производную от заданной
функции.

Пример 2

Найдем производную функции

5) Производная
произведения функций

Пример 3

Найдем производную функции

6) Производная
частного:

Пример 4

Найдем производную функции

Правило дифференцирования сложной функции


или в других обозначениях:

Пример 5

Найдем производную функции 

Пример 6

Найдем производную функции

Логарифмическая производная


Логарифмической производной функции

 называется производная от логарифма этой
функции, то есть:

Применение предварительного логарифмирования функции иногда
упрощает нахождение ее производной.

Пример 7

Найдем производную функции 

Прологарифмируем заданную
функцию:

Искомая производная:

Производная обратной функции


Если для функции

 производная

,
то производная обратной функции

 есть

или в других обозначениях:

Пример 8

Найдем производную

,
если

Имеем:

Следовательно:

Производная функции, заданной параметрически


Если зависимость функции

 и аргумента

 задана посредством параметра

то

или в других обозначениях:

Пример 9

Найдем производную функции 

Воспользуемся формулой:

Производная неявной функции

Если зависимость между

 и

 задана в неявной форме

    (*)

то для нахождения производной

 в простейших случаях достаточно:

1) вычислить производную по

 от левой части равенства (*), считая

 функцией от

;

2) приравнять эту производную к нулю, то есть положить:

3) решить полученное уравнение относительно

.

Пример 10

Найдем производную  функции   

Вычисляем производную от
левой части равенства:

Решаем уравнение
относительно

:

Искомая производная:

Алгебра и начала математического анализа, 11 класс

Урок №11. Правила дифференцирования.

Перечень вопросов, рассматриваемых в теме:

  • разбор основных правил дифференцирования функций;
  • примеры вычисления производной линейной функции;
  • правила вычисления производных произведения и частного.

Глоссарий по теме

Производная суммы равна сумме производных.

Производная суммы нескольких функции равна сумме производных этих функции.

Производная разности равна разности производных.

Производная произведения равна произведению первого множителя на второй плюс первый множитель, умноженный на производную второго.

Производная частного равна производной числителя умноженного на знаменатель минус числитель умноженный на производную знаменателя и все это деленное на квадрат знаменателя.

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

При вычислении производной используются следующие правила дифференцирования. Правило дифференцирования суммы двух функций.

Производная суммы равна сумме производных: (f(x) + g(x))’ = f ‘(x) + g'(x).

Подробно это свойство производной формулируется так: Если каждая из функции f(x) и g(x) имеет производную, то их сумма также имеет производную и справедлива формула.

Производная суммы нескольких функции равна сумме производных этих функции:

(f(x) +…+ g(x))’ = f ‘(x) +…+ g'(x).

Производная разности равна разности производных: (f(x) — g(x))’ = f ‘(x) — g'(x).

А теперь рассмотрим пример применения данного правила дифференцирования.

Рассмотрим второе правило дифференцирования:

Постоянный множитель можно вынести за знак производной:

(cf(x))’=cf ‘ (x)

Переходим к третьему правилу дифференцирования. Производная произведения равна произведению первого множителя на второй плюс первый множитель, умноженный на производную второго. (f(x)·g(x)) ‘=f’ (x)·g(x)+f(x)·g’ (x)

Четвертое правило дифференцирования: производная частного равна производной числителя умноженного на знаменатель минус числитель умноженный на производную знаменателя и все это деленное на квадрат знаменателя.

Сложная функция

Производная сложной функции находится по формуле:

(f(g(x))) ‘=f ‘(g(x))·g’ (x)

Примеры и разборы решения заданий тренировочного модуля

Пример 1.

Найдем производную функции:

Решение:

производная суммы равна сумме производных. Найдем производную каждого слагаемого

Ответ:

Пример 2.

Найти производную функции f(x)=8x3+3x2-x.

Решение:

f(x)=8x3+3x2-x

f’(x)=(8x3)’+(3x2)’-x’

Рассмотрим каждый член многочлена по отдельности

(8x3) ‘=8(x3) ‘=8·3x2=24x2

(3x2) ‘=3(x2) ‘=3·x=6x

(-x) ‘=-(x) = -1

f’ (x)=(8x3) ‘+(3x2) ‘-x’=24x2+6x-1.

Ответ: f’ (x)=24x2+6x-1.

Пример 3.

Найти производную функции f(x)=(3x-4)(4-5x).

Решение:

Воспользуемся формулой производной произведения:

f’ (x)=(3х-4) ‘ (4-5х) + (3х-4)(4-5х) ‘=3(4-5х)-5(3х-4)=12-15х-15х+20= 32

Ответ: f’ (x)=32

Пример 4.

Найти производную функции

Решение:

Воспользуемся формулой производной частного:

Ответ:

Пример 5.

Найти производную функции F(x)=(2x-1)2

Решение:

По правилу нахождения производной от сложной функции, получаем:

F’ (x)=((2x-1)²) ‘·(2x-1)=2(2x-1)·2=4(2x-1)=8x-4.

Ответ: F’ (x)=8x-4.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Мышь компьютерная работает наоборот как исправить
  • Составить рассказ на тему как я однажды удил рыбу
  • Как найти сколько квадратных метров комната
  • Как найти длину окружности зная диаметр формулы
  • Как правильно написать слово найти или найди

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии