Как найти производную игрек в квадрате

урок 3. Математика ЕГЭ

Как найти производную от функции

Как считать производные?

Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?

Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.

Формулы производной

Выпишем теперь все формулы производной функции и порешаем примеры.

Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$

Пример 1
$$(5)^{/}=0;$$

Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$

Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$

Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$

Производная от синуса
$$sin(x)^{/}=cos(x);$$

Производная от косинуса
$$cos(x)^{/}=-sin(x);$$

Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$

Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$

Производная от экспоненты
$$(e^x)^{/}=e^x;$$

Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$

Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$

Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$

Свойства производной

Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.

Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$

Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$

Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$

Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$

Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$

Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$

Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$

Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$

Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$

Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$

Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$

Примеры нахождения производной

Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.

Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$

Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$

Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$

Производная сложной функции

Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:

  • $$ln(3x^4);$$
    Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)).
  • $$cos(ln(x));$$
    Внешняя функция: косинус; Внутренняя функция: ((ln(x))).
  • $$e^{2x^2+3};$$
    Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)).
  • $$(sin(x))^3;$$
    Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
  • Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
    $$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
    Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.

    Пример 14
    $$((cos(x))^4)^{/}=?$$
    Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
    $$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
    $$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$

    Пример 15
    $$(e^{2x^3+5})^{/}=?$$
    Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
    $$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$

    Пример 16
    $$(ln((2x^2+3)^6))^{/}=?$$
    Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
    $$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
    $$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
    $$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$

Вывод формул производной функции

Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).

И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).

Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:

$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$

Определение производной

Рис.1. График произвольной функции

И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$

За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.

Нам это пригодится при выводе формул производной.

Производная квадратичной функции

Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$

Производная от третьей степени

Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.

Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.


Что такое производная функции простыми словами? Для чего нужна производная? Определение производной


Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции


Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.


Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.


Таблица производных, правила нахождения производных

  • Таблица производных основных функций
  • Основные правила нахождения производной
  • Правило дифференцирования сложной функции
  • Логарифмическая производная
  • Производная обратной функции
  • Производная функции, заданной параметрически
  • Производная неявной функции

Таблица производных основных функций


Основные правила нахождения производной


Если

 – постоянная и

,

 – функции, имеющие производные, то

1) Производная от постоянного числа равна нулю. 

2) Производная от переменной равна единице

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

3) Производная суммы равна сумме производных

Пример 1

Найдем производную функции

4) Производная произведения постоянной на
некоторую функцию равна произведению этой постоянной на производную от заданной
функции.

Пример 2

Найдем производную функции

5) Производная
произведения функций

Пример 3

Найдем производную функции

6) Производная
частного:

Пример 4

Найдем производную функции

Правило дифференцирования сложной функции


или в других обозначениях:

Пример 5

Найдем производную функции 

Пример 6

Найдем производную функции

Логарифмическая производная


Логарифмической производной функции

 называется производная от логарифма этой
функции, то есть:

Применение предварительного логарифмирования функции иногда
упрощает нахождение ее производной.

Пример 7

Найдем производную функции 

Прологарифмируем заданную
функцию:

Искомая производная:

Производная обратной функции


Если для функции

 производная

,
то производная обратной функции

 есть

или в других обозначениях:

Пример 8

Найдем производную

,
если

Имеем:

Следовательно:

Производная функции, заданной параметрически


Если зависимость функции

 и аргумента

 задана посредством параметра

то

или в других обозначениях:

Пример 9

Найдем производную функции 

Воспользуемся формулой:

Производная неявной функции

Если зависимость между

 и

 задана в неявной форме

    (*)

то для нахождения производной

 в простейших случаях достаточно:

1) вычислить производную по

 от левой части равенства (*), считая

 функцией от

;

2) приравнять эту производную к нулю, то есть положить:

3) решить полученное уравнение относительно

.

Пример 10

Найдем производную  функции   

Вычисляем производную от
левой части равенства:

Решаем уравнение
относительно

:

Искомая производная:

Таблица производных в алгебре нужна для решения целого ряда различных прикладных задач. Поскольку смысл производной иначе интерпретируется как “скорость изменения”, то, каждый раз, беря производную, мы находим величину на ступеньку более “быструю”, чем та, от которой мы берем производную. Например, беря производную от y(x) по x, мы фактически находим скорость изменения координаты y в зависимости от изменения координаты x, а беря производную от скорости изменения координаты y в зависимости от координаты x, мы находим ускорение.

Что такое производная функции

Например, при использовании производной в физике, мы знаем, что производная расстояния s по времени – это скорость. Потому что скорость – это величина, характеризующая быстроту изменения расстояния в зависимости от времени. А производная скорости – ничто иное как ускорение, так как ускорение – это величина, характеризующая быстроту изменения скорости.
Поскольку производная находится по формуле: displaystyle f^prime(x) =lim_{Delta xto0}frac{f(x+Delta x)-f(x)}{Delta x}, то бесконечное количество различных функций усложняют задачу дифференцирования, так как удобно функцию, которую можно представить из различных элементарных функций, дифференцировать основываясь на уже выведенных выражениях для производных этих элементарных функций.

Характеристика производной и ее смысл

Производная характеризует быстроту изменения функции в зависимости от изменения аргумента.

Таблица производных

Таким образом, чтобы работать с производными, необходима таблица производных элементарных функций. Руководствуясь этой таблицей, можно взять производную от какой угодно функции. Но прежде чем работать с таблицей – нужно знать как брать производную функции, есть определенные правила дифференцирования, которые представим в таблице.

Правила дифференцирования

№ правила Название правила Правило дифференцирования
1 Производная постоянной величины C^prime= 0, С-постоянная
2 Производная суммы (u+v-w)^prime= u ^prime +v ^prime -w^prime.
3 Производная произведения постоянной на функцию (C cdot u)' = C cdot u', С – постоянная
4 Производная переменной x (x)' = 1
5 Производная произведения двух функций (uv)' = u'v+uv'
6 Производная деления двух функций displaystyle (frac{u}{v})' = frac{u'v-v'u}{v^2}
7 Производная сложной функции y{}'_x = y{}'_u cdot u{}'_x

Таблица производных простых и сложных функций

Теперь таблица производных для элементарных и для сложных функций.

Номер формулы Название производной Основные элементарные функции Сложные функции
1 Производная натурального логарифма по x (ln (x))' = frac{1}{x} (ln(u))' = frac{1}{u}u'
2 Производная логарифмической функции по основанию a displaystyle (log(x)_a)' = frac{1}{x cdot ln a} displaystyle (log(u)_a)' = frac{1}{u cdot ln a}u'
3 Производная по x в степени n (x^n)' = n x^{n-1} (u^n)' = n u^{n-1}u'
4 Производная квадратного корня (sqrt {x})' = frac{1}{2 sqrt{x}} (sqrt {u})' = frac{1}{2 sqrt{u}}u'
5 Производная a в степени x displaystyle (a^x)' = a^x cdot ln a displaystyle (a^u)' = a^u cdot ln u cdot u'
6 Производная e в степени x (e^x)' = e^x (e^u)' = e^u cdot u'
7 Производная синуса (sin {x})' = cos{x} (sin {u})' = cos{u} cdot u'
8 Производная косинуса (cos {x})' = -sin{x} (cos {u})' = -sin{u} cdot u'
9 Производная тангенса (tan {x})' = frac{1}{cos^2{x}} (tan {u})' = frac{1}{cos^2{u}} cdot u'
10 Производная котангенса (ctg {x})' = -frac{1}{sin^2{x}} (ctg {u})' = -frac{1}{sin^2{u}} cdot u'
11 Производная арксинуса (arcsin {x})' = frac{1}{sqr{1-x^2}} (arcsin {u})' = frac{u'}{sqr{1-u^2}}
12 Производная арккосинуса (arccos {x})' = -frac{1}{sqr{1-x^2}} (arccos {u})' = -frac{u'}{sqr{1-u^2}}
13 Производная арктангенса (arctg {x})' = frac{1}{1+x^2} (arctg {u})' = frac{u'}{1+u^2}
14 Производная арккотангенса (arcctg {x})' = -frac{1}{1+x^2} (arcctg {u})' = -frac{u'}{1+u^2}

Примеры нахождения производных

Пример 1

Пользуясь формулами и правилами дифференцирования, найти производную функции: y=x^2-5x+4.

Решение: y'=(x^2-5x+4)'=(x^2)'-(5x)'+(4)'

Мы использовали правило 2 дифференцирования суммы. Теперь найдем производную каждого слагаемого:

(x^2)'=2x По формуле 3 “производная по x в степени n” (у нас в степени 2).

(5x)'=5 По правилам дифференцирования 3 и 4.

(4)'=0 По первому правилу дифференцирования “производная постоянной равна нулю”

Итак, получим: y'=2x-5.

Пример 2

Найти производную функции y=frac{2x}{3x+5}

Решение:

Находим производную, пользуясь правилам дифференцирования 6.

    [y'=frac{(2x)'(3x+5)-2x(3x+5)'}{(3x+5)^2}]

    [y'=frac{2(3x+5)-2x cdot 3}{(3x+5)^2}]

    [y'=frac{6x+10-6x}{(3x+5)^2}]

    [y'=frac{10}{(3x+5)^2}]

Ответ:

    [y'=frac{10}{(3x+5)^2}]

Пример 3

Найти производную функции y=cosx

Решение: здесь все просто, мы возьмем производную из таблицы производных.

y'=-sin x

Ответ: y'=-sin x

Пример 4

Найдите производную функции y=cos(5x+7)

Решение: Здесь мы уже имеем не простую функцию, а сложную функцию и брать производную мы будем по формуле 8 таблицы производных для сложных функций.

    [y'=cos'(5x+7) cdot (5x+7)']

    [y'=-sin(5x+7) cdot 5=-5sin(5x+7)]

Ответ:

    [y'=-5sin(5x+7)]

Пример 5

Пользуясь правилами дифференцирования и таблицей производных, найдите производную функции y=sqrt{2x^2+5x+4}

Решение: У нас сложная функция, так как под корнем стоит не просто x, а квадратная функция.

То есть мы имеем функцию вида y=sqrt{u(x)}.

Возьмем производную этой функции:

    [y'=frac{(2x^2+5x+4)'}{2 sqrt{2x^2+5x+4}}]

    [y'=frac{4x+5}{2 sqrt{2x^2+5x+4}}]

Ответ:

    [y'=frac{4x+5}{2 sqrt{2x^2+5x+4}}]

Пример 6

Найдите скорость тела, если траектория его движения задана уравнением x(t)=3t+4 м

Решение: скорость тела – это первая производная траектории по времени: v(t)=x'(t). м/с.

Находим скорость тела:

    [v(t)=(3t+4)']

    [v(t)=3]

Ответ: 3 м/с.

Итак, таблица производных и правила дифференцирования дают возможность легко брать производные и простых, и сложных функций.

Таблица производных и правила дифференцирования

О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.

Для решения задач на исследование функции в вариантах ЕГЭ необходима таблица производных и правила дифференцирования, а также знания о том, как связана производная с поведением функции.

Смотри также, как решаются задачи ЕГЭ на применение производной: задача 7 и задача 11.

Прокомментируем несколько строк из таблицы производных.

1. Производная постоянной величины, то есть константы, равна ей самой. Так и должно быть. Ведь константа не меняется. Это постоянная величина, она всегда принимает одинаковые значения.

А производная функции, как мы знаем, – это скорость изменения функции. Подробнее об этом здесь:
Производная функции.
И поэтому производная константы равна нулю.

2. Производная функции у=х равна 1. Вспомним, что производная функции в точке – это тангенс угла наклона касательной, проведенной к графику функции в этой точке. График функции у=х образует угол 45 градусов с положительным направлением оси Х. А тангенс 45 градусов равен 1.

3. Производная функции y=e^{x} равна самой этой функции. И действительно, чем больше значение х, тем больше значение функции y=e^{x}… и тем круче вверх идет график по отношению к оси Х. Вот такая это функция, экспонента. Чем дальше, тем быстрее она растет.

4. Производная синуса и косинуса – тоже тригонометрические функции. Например, производная синуса – это косинус. Как это отражается в физике? Если координата тела меняется по закону синуса, то производная координаты, скорость, будет меняться по закону косинуса. Это описание гармонических колебаний: и координата, и скорость, и ускорение тела меняются по законам синуса и косинуса.

5. Производная логарифма в точке x_{0} обратно пропорциональна x_{0}. Чем дальше, тем медленнее растет логарифмическая функция.

Вспомним, как связаны производная и поведение функции.

Если производная {f}  положительна, то функция  f(x) возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

f(x) возрастает точка максимума убывает точка минимума возрастает
{f} + 0 0 +

Разберем задачи ЕГЭ по теме «Таблица производных, нахождение наибольших и наименьших значений функции, нахождение точек максимума и минимума». Во всех этих примерах мы пользуемся формулами из таблицы производных.

Задача 1. Найдите точки максимумам функции displaystyle y=-frac{x^{2}+25}{x}.

Решение:

Область определения функции: xin (-infty; 0)cup (0;+infty ).

Найдем производную функции, пользуясь формулой производной частного из таблицы.

displaystyle {y}

{y} если x=pm 5.

Точки х = 5 и х = -5, а также точка ноль, разбивают числовую прямую на интервалы, на каждом из которых производная сохраняет свой знак. Это метод интервалов.

Найдем знаки производной на каждом интервале.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». Это точка 5 на рисунке.

Ответ: 5.

Задача 2. Найдите точки минимума функции  y=e^{x+10}(8x-3).

Решение:

Применим формулу производной произведения.

{y}

Приравняем производную к нулю:

{y}, если 8x+5=0, displaystyle x=frac{-5}{8}=-0,625.

Если  xtextless -0,625, то {y}  функция убывает.

Если xtextgreater -0,625, то {y} функция возрастает, значит,  x=-0,625 – точка минимума функции y(x).

В этой точке производная равна нулю и меняет знак с «минуса» на «плюс».

Ответ: -0,625.

Задача 3. Найдите значение функции f(x)=x^{4}-4x^{3}-2x^{2}+12x+9 в точке максимума.

Решение:

Найдем производную функции: f

Мы применили формулы производной степени.

Решим уравнение: f

3x^{3}-12x^{2}-4x+12=0Leftrightarrow 3x^{3}(x-3)-4(x-3)=0Leftrightarrow
Leftrightarrow (x-3)cdot 4cdot (x-1)cdot (x+1)=0Leftrightarrow left[begin{array}{c}x=3\x=1\x=-1\end{array}right. .

Получили критические точки, в которых производная равна нулю. Отметим их на оси Х и найдём знаки производной.

x=1 – точка максимума.

Найдём значение функции в этой точке: f(1)=1-4-2+12+9=16.

Ответ: 16.

Рассмотрим задачи ЕГЭ на нахождение наибольших и наименьших значений функций.

Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке:

Это значит, что у нас есть алгоритм для нахождения наибольших и наименьших значений функции на интервале.

Пусть функция f(x) определена на некотором интервале. Чтобы найти ее наибольшее или наименьшее значение, действуем следующим образом:

  1. Находим производную функции.
  2. Приравниваем производную к нулю, находим точки, в которых она равна нулю.
  3. Если производная меняет знак с «плюса» на «минус» в точке x_{0}, то x_{0} – точка максимума функции.
  4. Если производная меняет знак с «минуса» на «плюс» в точке x_{0}, то x_{0} – точка минимума функции.
  5. Чтобы найти наибольшее значение функции на отрезке, сравниваем значения в точке максимума и концах отрезка.
    Чтобы найти наименьшее значение функции на отрезке, сравниваем значения в точке минимума и концах отрезка.

Задача 4. Найдите наибольшее значение функции y=2sqrt{2}(sinx+cosx) на отрезке [0;pi ].

Решение:

y=2sqrt{2}(sinx+cosx), xin [0;pi ].

Найдем производную: y

Приравняем производную к нулю:

displaystyle 2sqrt{2}(cosx-sinx)=0Leftrightarrow cosx=sinxLeftrightarrow tgx=1Leftrightarrow

displaystyle Leftrightarrow x=frac{pi }{4}+pi n, nin Z.

Если xin [0;pi ], то displaystyle x=frac{pi }{4}.

Так как y

Точка displaystyle x=frac{pi }{4} – точка максимума функции displaystyle y(x); y_{max}(x)=yleft (frac{pi }{4}right )=4.

В этой точке функция принимает наибольшее значение на указанном отрезке.

Ответ: 4.

Задача 5. Найдите наименьшее значение функции y=(x-21)e^{x-20} на отрезке [19; 21].

Решение:

Найдем производную функции:

y

y при x=20.

Найдем знаки производной слева и справа от точки x=20.

Если  xtextless 20, то {y}

Если xtextgreater 20 то {y}

Значит, x=20 – точка минимума. Наименьшее значение функции на отрезке  достигается при x=20.

Это значение равно y(20)=-1.

Ответ: -1.

Задача 6. Найдите наибольшее значение функции y=3x^{2}-13x+7ln+5 на отрезке displaystyle left [ frac{13}{14};frac{15}{14} right ].

Решение:

Область  определения  функции: xtextgreater 0.

Найдем производную функции и приравняем ее к нулю:

displaystyle y

displaystyle =frac{6(x-1)left ( x-frac{7}{6} right )}{x}.

y если 6x^{2}-13x+7=0.

D=169-168=1; x=1 или displaystyle x=frac{7}{6}. Второй корень не принадлежит отрезку displaystyle left [ frac{13}{14};frac{15}{14} right ].

Найдем знаки производной на отрезке:

В точке x=1 производная равна нулю и меняет знак с «плюса» на «минус». Значит, это точка максимума, и  наибольшее значение функции на отрезке displaystyle left [ frac{13}{14};frac{15}{14} right ] достигается при  x=1.

Найдем значение функции  при x=1:

y(1)=3-13+7ln1+5=-5.

Ответ: -5.

В следующих задачах наименьшее значение функции достигается на конце отрезка.

Задача 7. Найдите наименьшее значение функции y=3cosx-pi x+pi ^{2} на отрезке [-2pi ; pi ].

Решение:

Найдем производную функции и приравняем ее к нулю.

y

displaystyle y

У этого уравнения нет решений, так как displaystyle-frac{pi }{3}textless -1.

Это значит, что y при любых x, то есть y а это означает, что y(x) – убывает, наименьшее значение функции достигается в правом конце отрезка [-2pi ; pi ].

y_{min}=y(pi )=-3.

Ответ: -3.

Задача 8. Найдите наибольшее значение функции y=7x-6sinx+8 на отрезке displaystyle left [ -frac{pi }{2}; 0 right ].

Решение:

Найдем производную функции: y

displaystyle y Производная функции не равна нулю ни при каком x.

Мы знаем, что -1leq cosxleq 1. Тогда -6leq -6cosxleq 6.

Прибавим  7 ко всем частям неравенства:

1leq 7-6cosxleq 13Rightarrow y для всех x.

Значит, производная положительна при любом значении переменной, функция монотонно возрастает. Наибольшее значение функции будет достигаться в правом конце отрезка, то есть при x=0.

y_{naim}=y(0)=7cdot 0-6sin0+8=8.

Ответ: 8.

Задача 9. Найдите наименьшее значение функции displaystyle y=13+frac{sqrt{3}pi }{3}-2sqrt{3}cdot x-4sqrt{3}cdot cosx на отрезке displaystyleleft [ 0; frac{pi }{2} right ].

Решение:

Найдем производную функции и приравняем ее к нулю:

displaystyle y
=2sqrt{3}(2sinx-1).

y тогда displaystyle sinx=frac{1}{2}.

На указанном отрезке это уравнение имеет единственное решение displaystyle x=frac{pi }{6}.

Слева от этой точки Если  2sinx-1textless 0, производная отрицательна.

Справа от этой точки 2sinx-1textgreater 0, производная положительна.

Значит, displaystyle x=frac{pi }{6} – точка минимума функции,  и наименьшее значение функции на отрезке достигается в этой точке.

Найдем значения функции в этой точке:

displaystyle yleft ( frac{pi }{6} right )=13+frac{sqrt{3}pi }{3}-2sqrt{3}cdot frac{pi }{6}-4sqrt{3}cdot cosfrac{pi }{6}=

displaystyle =13+frac{sqrt{3}pi }{3}-frac{sqrt{3}pi }{3}-4sqrt{3}cdot frac{sqrt{3}}{2}=13-6=7.

Ответ: 7.

В задачах ЕГЭ встречаются сложные функции. И найти нужно их точки максимума или минимума, наибольшие или наименьшие значения. Но производную сложной функции в школьной программе по-настоящему не проходят. Как же быть? Покажем полезные приемы, помогающие решить такие задания ЕГЭ.

Задача 10. Найдите наименьшее значение функции y=log_{2}(x^{2}+x+0,5).

Решение:

Рассмотрим функцию y=log_{2}t.

Так как функция y=log_{2}t монотонно возрастает, точка  минимума функции y=log_{2}(x^{2}+x+0,5) будет при том же значении  x, что и точка минимума функции t(x)=x^{2}+x+0,5. А ее найти легко:

t

t при displaystyle x=-frac{1}{2}.

В точке displaystyle x=-frac{1}{2} производная t меняет знак с «минуса» на «плюс». Значит, displaystyle x=-frac{1}{2} – единственная точка минимума функции t(x) и функции y=log_{2}(x^{2}+x+0,5).

displaystyle y_{min}=yleft ( -frac{1}{2} right )=log_{2}left ( frac{1}{4}-frac{1}{2}+0,5 right )=log_{2}frac{1}{4}=-2.

Ответ: -2.

Задача 11. Найдите наибольшее значение функции  y=sqrt{x^{2}-4x+13} на отрезке [-0,5; 6].

Решение:

y=sqrt{x^{2}-4x+13}, xin [-0,5; 6].

Так как функция y=sqrt{t} монотонно возрастает при tgeq 0, точка минимума функции y=sqrt{x^{2}-4x+13} соответствует точке минимума подкоренного выражения t(x)={x^{2}-4x+13}.

Заметим, что подкоренное выражение всегда положительно.

Функция t(x)={x^{2}-4x+13}. задает квадратичную параболу с ветвями вверх и точкой минимума в вершине параболы, то есть при displaystyle x=frac{4}{2}=2.

Если xin [-0,5; 2], y=sqrt{x^{2}-4x+13} – монотонно убывает.

Если xin [2; 6], y=sqrt{x^{2}-4x+13} – монотонно возрастает.

Значит, наибольшее значение функции y=sqrt{x^{2}-4x+13} на отрезке [-0,5; 6] достигается в одном из концов этого отрезка.

Сравним y=(-0,5) и y=(6):

y(-0,5)=sqrt{0,25+13-2}=sqrt{11,25}.

y(6)=sqrt{25}=5.

y(-0,5)textless y(6).

y_{max}=6.

Ответ: 6.

Задача 12. Найдите точку максимума функции y=log_{2}(2+2x-x^{2})-2.

Решение:

Рассмотрим функцию t(x)=2+2x-x^{2}.

Ее график – парабола с ветвями вниз, и точка максимума будет в вершине параболы, при x=1. Функция y(t)=log_{2}t монотонно возрастает, и значит, большему значению t будет соответствовать большее значение y(t).

Точка максимума функции y=log_{2}(2+2x-x^{2})-2 будет такой же, как у функции t(x)=2+2x-x^{2}, то есть x=1.

Ответ: 1.

Читайте также: Задание 11 на ЕГЭ по математике.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Таблица производных и правила дифференцирования» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Пояснение:
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение:
В данном случае, при каждом изменении аргумента функции (х) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с.

Откуда следует, что
(cx + b)’ = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).

4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|’ = x / |x| при условии, что х ≠ 0
Пояснение:
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает  выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 — единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных — наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
( xc )’= cxc-1, при условии, что xc и сxc-1,определены а с ≠ 0
Пример:
(x2 )’ = 2x
(x3)’  = 3x2
Для запоминания формулы:
Снесите степень переменной «вниз» как множитель, а потом уменьшите саму степень на единицу. Например, для x2  — двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x3 — тройку «спускаем вниз», уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x2 . Немного «не научно», но очень просто запомнить.

6. Производная дроби 1/х
(1/х)’ = — 1 / x2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)’ = (x-1 )’ , тогда можно применить формулу из правила 5 таблицы производных
(x-1 )’ = -1x-2 = — 1 / х2

7. Производная дроби с переменной произвольной степени в знаменателе
( 1 / xc )’ = — c / xc+1
Пример:
( 1 / x2 )’ = — 2 / x3

8. Производная корня (производная переменной под квадратным корнем)  
( √x )’ = 1 / ( 2√x )   или 1/2 х-1/2
Пример:
( √x )’ = ( х1/2 )’   значит можно применить формулу из правила 5
( х1/2 )’ = 1/2 х-1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
( n√x )’ = 1 / ( n n√xn-1 )
.

Приведенная здесь таблица производных простых функций содержит только основные преобразования, которые (по большому счету) следует запомнить наизусть. Нахождение более сложных производных приведены в соответствующих таблицах других уроков:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти посылку по куар коду
  • Как найти ярмарка новолуния
  • Как составить десять предложений по картине
  • Как составить ультиматум правильно
  • Как исправить зрение в домашних условиях в даль

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии