Как найти произведение чисел примеры

Содержание:

  • Определение произведения чисел
  • Свойства произведения чисел

Определение произведения чисел

Произведение $p$ чисел
$a_{1}, a_{2}, dots, a_{n}$ есть результат умножения этих чисел: $p=a_{1} cdot a_{2} cdot ldots cdot a_{n}$ .
В частности, если умножаются два числа $a$ и $b$, то

Пример

Задание. Найти произведение чисел:

1)  1.2$cdot 3$   ;   2)  4$cdot 5 cdot 13$ 

Ответ.  

$1,2 cdot 3=3,6$

$4 cdot 5 cdot 13=260$

Свойства произведения чисел

  1. Коммутативность: $n cdot m=m cdot n$
  2. Ассоциативность: $(n cdot m) cdot k=n cdot(m cdot k)$

    На основании этих свойств можем заключить, что при перестановке множителей значение произведения не меняется.

  3. Дистрибутивность: $(n+m) cdot k=n cdot k+m cdot k$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти произведение чисел удобным способом:

1)  5$cdot 17 cdot 2$   ;   2)  7$cdot 2 cdot 15 cdot 5$ 

Решение. По свойства умножения имеем:

$$5 cdot 17 cdot 2=(5 cdot 2) cdot 17=10 cdot 17=170$$

$$7 cdot 2 cdot 15 cdot 5=(7 cdot(2 cdot 15)) cdot 5=(7 cdot 30) cdot 5=210 cdot 5=1050$$

Ответ.  

$5 cdot 17 cdot 2=170$

$7 cdot 2 cdot 15 cdot 5=1050$

Если устное умножение чисел затруднительно используют умножение в столбик. В столбик можно умножать большие
натуральные числа или
десятичные дроби.

Пример

Задание. Найти произведение чисел

1)  156$cdot 32$   ;   2)  $4,71 cdot 3,1$ 

Решение. Запишем умножаемые числа в столбик. Далее умножим сначала единицы второго числа на первое,
полученное произведение запишем под чертой. Затем аналогично умножим десятки второго числа на первое. Результат запишем
под первым произведением только на один разряд левее. В конце найдем сумму полученных произведений по правилу сложения в
столбик

Умножение десятичных дробей во втором примере производится следующим образом: не обращая внимания на запятые, дроби
перемножаются как целые числа; в получившемся произведении отделяют справа число знаков, равное сумме чисел знаков после
запятой у сомножителей. В нашем случае в первом сомножителе два знака после запятой, во втором — один, значит, в ответе
нужно отделить справа три знака:

Ответ.  

$156 cdot 32=4992$

$4,71 cdot 3,1=14,601$

Читать дальше: что такое простое число.

Определение

Произведением чисел в математике называется результат их умножения.

Пример: Найдите произведение чисел.

14×15=210

Здесь 14 и 15 называются — множители.

Свойства

1. Коммутативность.

Пример: Вычислить произведение чисел.

17×12=204 и 12×17=204

Переместительный закон: При перестановке множителей результат не меняется.

2. Ассоциативность.

Пример: 

11×19×32=6688

(11×19)×32=6688

11×(19×32)=6688

Сочетательный закон: Если группу множителей заменить их произведением, результат не изменится.

3. Дистрибутивность.

Пример:

(15+12)×9=243 и 15×9+12×9=243

Распределительный закон: Умножая сумму на число, можно на это число каждое слагаемое умножить и результаты сложить. 

Большие числа, а также десятичные дроби умножают в столбик.

Нет времени решать самому?

Наши эксперты помогут!

Произведение цифр числа

Пример: найти произведение цифр числа 428

4×2×8=64

Произведение суммы и разности чисел

(23+14)×(23-14)=37×9=333

Наименьшее произведение чисел

При умножении любого числа на 0, получится ноль. Наименьшее произведение чисел равно нулю.

Сумма двух произведений чисел

(7×8)+(9×3)=56+27=83

Ответ: 83

Пример: Найди сумму и произведение чисел 14 и 72

Решение:

14+72=86 — сумма

14×72=1008 — произведение

Математика

6 класс

Урок № 26

Произведение целых чисел. Часть 2

Перечень рассматриваемых вопросов:

  1. На уроке мы научимся формулировать и узнавать свойства умножения.
  2. Находить квадраты и кубы целых чисел.
  3. Вычислять значения числовых выражений, содержащих разные действия.
  4. Выполнять числовые подстановки в буквенные выражения и находить соответствующие им значения.

Тезаурус

Произведение любого целого числа a и нуля равно нулю.

Чтобы найти произведение нескольких чисел, нужно найти произведение двух первых чисел, умножить на третье число и так далее.

Степенью целого числа a с натуральным показателем n (n > 1) называется произведение n множителей, каждый из которых равен a.

Список литературы

Обязательная литература:

1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

1. Чулков П. В. Математика: тематические тесты. 5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Мы уже изучали правила умножения целых чисел.

Сегодня рассмотрим свойства произведения целых чисел.

Умножение целых чисел на 0.

Произведение любого целого числа a и нуля равно нулю.

a ∙ 0 = 0

Рассмотрим примеры.

Найдите произведение целого положительного числа 209 и нуля.

Решение:

203 ∙ 0 = 0

Найдите произведение нуля и целого отрицательного числа (– 29).

Решение:

0 ∙ (– 29) = 0

Умножение целого числа на 1

Произведение целого числа и 1 равно cамому числу.

a ∙ 1 = a

Рассмотрим примеры.

Вычислите произведение положительного целого числа 64 и единицы.

Решение:

64 ∙ 1 = 64

Вычислите произведение единицы и отрицательного целого числа (– 475).

Решение:

1 ∙ (– 475) = – 475

Найдите произведение нуля и единицы.

Решение:

0 ∙ 1 = 0

Умножение на (– 1)

При умножении числа на (– 1) меняется только знак, то есть получается число, противоположное a.

a ∙ (– 1) = – a

Законы умножения

Переместительный и сочетательный законы умножения верны для любых целых чисел, и их можно применять для упрощения числовых выражений.

Переместительный закон умножения:

a b = b ∙ a

Сочетательный закон умножения:

a (b c) = (a b) c

Умножение или произведение нескольких целых чисел

Чтобы найти произведение нескольких чисел, нужно найти произведение двух первых чисел, умножить на третье число и так далее.

Вычислим произведение нескольких целых чисел:

9 ∙ (– 14) ∙ 5 ∙ (– 1)

Решение:

9 ∙ (– 14) ∙ 5 ∙ (– 1) = (9 ∙ (– 14)) ∙ 5 ∙ (– 1) = (– 126) ∙ 5 ∙ (– 1) = ((– 126) ∙ 5) ∙ (– 1) = (– 630) ∙ (– 1) = 630

Ответ: 630.

При перемножении целых чисел, результат всегда будет целым числом.

Выводы

1. Если в произведении нечётное количество отрицательных множителей, то произведение будет отрицательным.

2. Если в произведении чётное количество отрицательных множителей, то произведение будет положительным.

Степень целого числа a с натуральным показателем n

Определение: степенью целого числа a с натуральным показателем n (n > 1) называется произведение n множителей, каждый из которых равен a.

a ∙ a ∙ a ∙ a ·…∙ a = an

n множителей

Рассмотрим примеры.

1. Первая степень любого числа равна самому числу.

a1 = a

2. Вторая степень любого числа называется квадратом.

a2 = a ∙ a

3. Третья степень любого целого числа называется кубом.

a3 = a ∙ a ∙ a

Например,

24 = 2 ∙ 2 ∙ 2 ∙ 2 = 16

(– 5)3 = (– 5) ∙ (– 5) ∙ (– 5) = – 125

Итак, мы научились выполнять сложение, вычитание и умножение целых чисел. Рассмотрим, как найти значение выражения, которое содержит такие действия.

42 – 15 ∙ (– 6)

Решение

42 – 15 ∙ (– 6) = 42 – (15 ∙ (– 6)) = 42 – (– 90) = 42 + 90 = 132

Ответ: 132.

Дополнительный материал

Мы изучили правила и свойства умножения целых чисел.

Используя их, решим две задачи.

Задача №1

Чему равно произведение последовательных целых чисел, начинающихся числом (– 200) и оканчивающихся числом 200?

Решение

Между числами (– 200) и 200 находится 0, а любое число, умноженное на 0 равно 0. Поэтому произведение последовательных целых чисел от (– 200) до 200 равно 0.

Ответ: 0.

Задача №2

Чему равно произведение всех целых чисел?

Решение

Целые числа состоят из целых положительных, отрицательных чисел, а также нуля. При умножении любого числа на ноль будет 0. Поэтому произведение всех целых чисел равно 0.

Ответ: 0.

Разбор заданий тренировочного модуля

Тип 1. Разместите нужные подписи под изображениями.

Какие законы представлены в формулах?

Законы умножения

  1. a b = b ∙ а
  2. а (b с) = b) с

Варианты ответов:

Сочетательный закон умножения

Переместительный закон умножения

Свойство 0

Для ответа на вопрос задания обратимся к теоретическому материалу сегодняшнего урока.

Правильный ответ:

1. Переместительный закон умножения

2. Сочетательный закон умножения

Тип 2. Вставьте в текст нужные слова.

Чтобы найти … нескольких чисел, нужно найти произведение … чисел, … на третье число и так далее.

Варианты слов для вставки:

произведение

трёх

первого

двух первых

умножить

разделить

сложить

вычесть

Для ответа на вопрос задания обратимся к теоретическому материалу сегодняшнего урока.

Правильный ответ:

Чтобы найти произведение нескольких чисел, нужно найти произведение двух первых чисел, умножить на третье число и так далее.

Произведение вы уже проходили в теме умножения натуральных чисел. Отличия произведения натуральных от целых чисел в том, что появляются целые отрицательные числа. Сейчас этой теме мы рассмотрим тему умножение целых чисел подробнее.

Основные понятия, обозначение и смысл произведения целых чисел.

Вспомним, что такое умножение или произведение.
Числа, которые мы умножаем называются множителями, а результат умножения называется произведением.

Обозначается умножение символом таким:
a∙b=c  или a*b=c или a×b=c

Произведение в буквенном написании обозначается как a∙b или c.

Так же вспомним смысл произведения.
Произведение 2∙11=22 можно записать в виде суммы мы сложим 11 раз число 2, это будет выглядеть так:

умножение

Правило произведения целых чисел.

Определение:
Произведением двух целых чисел не равных нулю называют произведение их модулей и результат будет со знаком плюс, если эти числа одинаковых знаков, и со знаком минус, если они разных знаков.

Самое главное в произведении целых чисел это правильно посчитать знак ответа. Например, оба множителя могут быть положительными или оба отрицательными числами, или один множитель положительный, а другой отрицательный.

Нужно запомнить:

Плюс на плюс дает плюс.
“+ ∙ + = +”

Минус на минус дает плюс.
“– ∙ – =+”

Минус на плюс дает минус.
“– ∙ + = –”

Плюс на минус дает минус.
“+ ∙ – = –”

Каждый случай ниже разберем подробно.

Умножение или произведение положительных целых чисел.

В данном случае мы умножаем два числа положительных знаков, поэтому тут все просто “ плюс на плюс дает плюс”. Произведение положительных целых чисел дает в результате положительное целое число. Рассмотрим пример:

Для наглядности разберем умножение со знаками.
(+5)∙(+8)=(+40)
В умножении не принято писать знак “+”, поэтому его можно опустить. Если перед число не стоит ни какого знака, то считается то перед этим числом стоит знак “+”.
5∙8=40

Умножение отрицательных целых чисел.

Правило умножения двух целых отрицательных чисел:
При умножении двух отрицательных целых чисел, будет равно произведению модулей этих чисел.

|-a|=a и |-b|=b
-a∙(-b)=a∙b

Или другими словами “минус на минус дает плюс”. При произведении двух отрицательных чисел, ответ будет равен положительному целому числу.

Пример:
Вычислите произведение целых чисел -12∙(-3).

Решение:
Два минуса при умножении дают в результате плюс. В ответе число будет с плюсом.
-12∙(-3)=36

Ответ: 36

Произведение целых чисел с разными знаками.

Не важен порядок множителей положительное число умножаем на отрицательное или отрицательное число умножаем на положительное, в результате всегда будет отрицательное целое число.

Правило умножения двух целых чисел с разными знаками:
При умножении двух целых чисел с разными знаками, их произведение будет равно целому отрицательному числу.

Если упростить определение то, обычно говорят:
“Минус на плюс дает минус”.
“Плюс на минус дает минус”.

Разберем пример:
Вычислить произведение целых чисел.
-4∙6=-24

А теперь докажем правильность этого решения.
-4+(-4)+(-4)+(-4)+(-4)+(-4)=-4∙6=-24
Шесть раз сложили число (-4).

Такой же ответ будет, если поменять местами числа.
6∙(-4)=-24

Пример:
-34∙2=-68

Умножение целого числа на нуль.

Правило умножения целых чисел на нуль.
Если любое целое число умножить на нуль, ответ будет равен нулю.
a∙0=0  или 0∙a=0

Пример:
Найдите произведение целого положительного числа 209 на нуль.

Решение:
209∙0=0

Пример:
Найдите произведение целого отрицательного числа (-39) на нуль.

Решение:
0∙(-39)=0

Умножение целого числа на 1.

Правило умножения целого числа на единицу:
Произведение целого числа a и 1 равно a.
a∙1=a или 1∙a=a

Пример:
Вычислить произведение положительного целого числа 49 и единицы.

Решение:
49∙1=49

Пример:
Вычислить произведение отрицательного целого числа (-35 860) и единицы.

Решение:
1∙(-35 860)=-35 860

Пример:
Найдите произведение нуля и единицы.

Решение:
0∙1=0

Проверка результата умножения целых чисел.

Не всегда мы выполняем умножение простых чисел, бывают число объемные и сложные, поэтому нужно уметь проверять правильность выполненного умножения.
Как проверить результат умножения?

Умножение проверяется делением. Мы делим произведение на один из множителей.

Например:
Выполните умножение и сделайте проверку.
5∙12=60

5 – множитель;
12 – множитель;
60 – произведение.

Проверка:
60:12=5  или  60:5=12

Умножение или произведение нескольких целых чисел.

Чтобы посчитать произведение нескольких целых чисел, нужно умножать числа по парно или последовательно, например:
(-3) ∙5∙(-11) ∙(-9) ∙1=((-3) ∙5)((-11) ∙(-9)) ∙1=((-15) ∙99) ∙1=(-1485) ∙1=-1485

Сначала сгруппировали по два числа ((-3) ∙5) и ((-11) ∙(-9)), потом ((-15) ∙99) и нашли ответ.

При перемножении целых чисел, результат всегда будет целым числом.

Вопросы по теме:
Как влияет при умножении на целое число (-1)?
Ответ: так как (-1) отрицательное число, при умножении на целое число происходит смена знака числа.
Пример: (-1) ∙3=-3 . Число 3 было со знаком “+”, а стало со знаком “–”.
Еще пример: (-1) ∙(-5)=5 . Число (-5) было со знаком “–”, а стало со знаком “+”.

Пример №1:
Найти произведение двух целых чисел: а) (-2) ∙235 б) (-34) ∙(-17) в) 1∙(-12) г) 0∙4983

Решение:
а) (-2) ∙235=-470
б) (-34) ∙(-17)=578
в) 1∙(-12)=-12
г) 0∙4983=0

Пример №2:
Чему равно произведение последовательных целых чисел, начинающихся числом -100 и оканчивающихся числом 100?

Решение:
Между числами -100 и 100 находится нуль, а любое число, умноженное на 0 равно 0. Поэтому произведение последовательных целых чисел от -100 до 100 равно 0.
Ответ: 0.

Пример №3:
Чему равно произведение всех целых чисел?

Решение:
Целые числа состоят из целых положительных и отрицательных чисел, а также нуля. При умножении любого числа на нуль будет 0. Поэтому произведение всех целых чисел равно 0.
Ответ: 0.

The product of number is the result you get when you multiply two or more numbers. A product is an expression that identifies factors to be multiplied. There are different types of products in maths they are products of natural numbers, decimals, fractions, integers, etc. Know more about the product of the number with solved problems from here. There are certain rules to find the product of the number. Let us discuss in detail the product of the number from this article.

Also, Refer:

  • Estimating Products
  • Multiplication
  • Word Problems on Multiplication

Product Rules

  • Any number multiplied by 0 will be always 0.
  • Any number multiplied by 1 will be the same number.
  • If the number is multiplied with the opposite sign then the product will be negative.
  • If the number is multiplied with the same sign then the product will be positive.

Product of The Whole Numbers

The result of the multiplication of two or more numbers is called a product of the number. Let us see some examples on the product of 2-digit number, 3-digit number and 4-digit number

Product of 2-digit Number
The product of two numbers is the result you get when you multiply them together. For example, let us take two 2-digit numbers 20 and 12 you get the product as 240.
Example:
Product of the number img_3

Product of 3-digit Number
The product of two 3-digit numbers is similar to the product of 2-digit number.
Example:
Product the number 365 and 123

Solution:

Product of 4-digit Number
Example:

Product of two numbers 1234 and 1234 is

Solution:
The product of two 3-digit numbers is the result you get when you multiply them together.

product of the number img_4

Do Check:

  • Expansion Method of Multiplication
  • Column Method of Multiplication

Product of Decimal Number

Multiplying decimals is similar to that multiplying whole numbers except for the placement of the decimal point in the answer. When you multiply decimals, the decimal point is placed in the product so that the number of decimal places in the product is the sum of the decimal places in the factors.
Example:
Product of two decimal numbers 0.23 and 0.12
Solution:
There are 4 total decimal places in both numbers.
Ignore the decimal places and complete the multiplication as if operating on two integers.
Rewrite the product with 4 total decimal places.
Therefore 0.23 × 0.12 = 0.0276
Product of the number img_1

Solved Problems on Product of the Number

Example 1.
What is the product of 2 and 8?

Solution:
Product of the number img_8

Example 2.
What is the product of 43 and 15?

Solution:
Product of the number img_6

Example 3.
What is the product of 921 and 53?

Solution:
Product of the number img_5

Example 4.
Find the product of 1265 and 0?

Solution:
Any number multiplied by 0 will be always 0.
So, the product of 1265 and 0 results in 0.
Therefore, 1265 × 0 = 0

Example 5. 
Find the product of 0.15 and 1.23?

Solution:
There are 4 total decimal places in both numbers.
Ignore the decimal places and complete the multiplication as if operating on two integers.
Rewrite the product with 4 total decimal places.
Product of the number img_7
Therefore 0.15 × 1.23 = 0.1845

FAQs on Product of the Number

1. What is a product?

The product is the answer to a multiplication problem.

2. What is the product of any number and 1?

The product of any number and 1 is equal to that number. The number 1 is often called the multiplicative identity.

3. What is the product of any number and zero?

Any number multiplied by 0 will be always 0.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти сопротивление каждой лампочки
  • Как найти работу программисту в беларуси
  • Как найти песню по короткому отрывку
  • Индуцированный заряд как найти
  • Как найти оплату труда рабочих

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии