Как найти потенциал точки электрического поля

Условие задачи:

Найти потенциал электрического поля в точке, лежащей посредине между двумя зарядами по 50 нКл, расположенными на расстоянии 1 м в вакууме.

Задача №6.3.9 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(q=50) нКл, (r=frac{l}{2}), (l=1) м, (varphi-?)

Решение задачи:

Схема к решению задачиТак как заряды одинаковы, и они находятся на одинаковом расстоянии (r) от точки A, в которой нужно определить потенциал, значит потенциалы электрических полей в точке A, создаваемых каждым зарядом, также одинаковы. Это видно из формулы:

[{varphi _0} = frac{{kq}}{r}]

Здесь (k) – коэффициент пропорциональности, равный 9·109 Н·м2/Кл2.

Учитывая, что точка A находится посредине между двумя зарядами ((r=frac{l}{2})), то:

[{varphi _0} = frac{{2kq}}{l}]

Искомый потенциал (varphi) равен сумме потенциалов электрических полей в точке A, создаваемых каждым зарядом, поскольку потенциал – величина скалярная. Учитывая вышесказанное, имеем:

[varphi = {varphi _0} + {varphi _0}]

[varphi = 2{varphi _0}]

В итоге решение задачи в общем виде выглядит так:

[varphi = frac{{4kq}}{l}]

Произведём вычисления:

[varphi = frac{{4 cdot 9 cdot {{10}^9} cdot 50 cdot {{10}^{ – 9}}}}{1} = 1800;В = 1,8;кВ]

Ответ: 1,8 кВ.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

6.3.8 На расстоянии 1 м от центра заряженного металлического шара радиусом 3 м
6.3.10 Сколько электронов следует передать металлическому шарику радиусом 7,2 см
6.3.11 Определить разность потенциалов (по модулю) между точками, отстоящими

Потенциал. Эквипотенциальные поверхности.

В механике взаимодействие тел характеризует силой или потенциальной энергией. Электрическое поле, которое обеспечивает взаимодействие между электрически заряженными телами, также характеризуют двумя величинами. Напряженность электрического поля — это силовая характеристика. Теперь введем энергетическую характеристику — потенциал. С помощью этой величины можно будет сравнивать между собой любые точки электрического поля. Таким образом, потенциал как характеристика поля должен зависеть от значения заряда, содержащегося в этих точках. Поделим обе части формулы A = W1 — W2 на заряд q, получим

Отношение W/q не зависит от значения заряда и принимается за энергетическую характеристику, которую называют потенциалом поля в данной точке. Обозначают потенциал буквой φ.

Потенциал электрического поля φскалярная энергетическая характеристика поля, которая определяется отношением потенциальной энергии W положительного заряда q в данной точке поля к величине этого заряда:

Единица потенциала — вольт:

Подобно потенциальной энергии значения потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Чаще всего в электродинамике за нулевой уровень берут потенциал точки, лежащей в бесконечности, а в электротехнике — на поверхности Земли.

С введением потенциала формулу для определения работы по перемещению заряда между точками 1 и 2 можно записать в виде

Поскольку при перемещении положительного заряда в направлении вектора напряженности электрическое поле выполняет положительную работу A = q (φ1 — φ2 )> 0, то потенциал φ1 больше чем потенциал φ2 . Таким образом, напряженность электрического поля направлена в сторону уменьшения потенциала.

Если заряд перемещать с определенной точки поля в бесконечность, то работа A = q (φ — φ ). Поскольку φ = 0, то A = qφ. Таким образом, величина потенциала φ определенной точки поля определяется работой, которую выполняет электрическое поле, перемещая единичный положительный заряд из этой точки в бесконечность,

Если электрическое поле создается точечным зарядом q, то в точке, лежащей на расстоянии r от него, потенциал вычисляют по формуле

По этой формуле рассчитывают и потенциал поля заряженного шара. В таком случае r — это расстояние от центра шара до выбранной точки поля. С этой формулы видно, что на одинаковых расстояниях от точечного заряда, который создает поле, потенциал одинаков. Все эти точки лежат на поверхности сферы, описанной радиусом r вокруг точечного заряда. Такую сферу называют эквипотенциальной поверхностью.

Эквипотенциальные поверхности — геометрическое место точек в электрическом поле, которые имеют одинаковый потенциал, — один из методов наглядного изображения электрических полей.

Эквипотенциальные поверхности электрических полей, созданных точечными зарядами разных знаков

Силовые линии всегда перпендикулярны эквипотенциальных поверхностей. Это означает, что работа сил поля по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае наложения электрических полей, созданных несколькими зарядами, потенциал электрического поля равен алгебраической сумме потенциалов полей, созданных отдельными зарядами, φ = φ1 + φ2 + φ3 . Эквипотенциальные поверхности таких систем имеют сложную форму. Например, для системы из двух одинаковых по значению одноименных зарядов эквипотенциальные поверхности имеют вид, изображенный на рисунке. Эквипотенциальные поверхности однородного поля явлются плоскостями.

Эквипотенциальные поверхности: а — поля двух одинаковых зарядов б — однородного поля

Разность потенциалов

Практическое значение имеет не сам потенциал в точке, а изменение (разница) потенциала φ1 — φ2 , которое не зависит от выбора нулевого уровня отсчета потенциала. Разность потенциалов φ1 — φ2 еще называют напряжением и обозначают латинской буквой U. Тогда формула для работы по перемещению заряда приобретает вид

Напряжение Uэто физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля,

Единица разности потенциалов (напряжения), как и потенциала, — вольт,

Поскольку работа сил поля по перемещению заряда зависит только от разности потенциалов, то в случае перемещения заряда с первой эквипотенциальной поверхности на другую (потенциалы которых соответственно φ1 и φ2 ) выполненная полем работа не зависит от траектории этого движения.

Связь напряженности электрического поля с напряжением

Из формул A = Eqd и A = qU можно установить связь между напряженностью и напряжением электрического поля: Ed = U. С этой формулы следует:

  • чем меньше меняется потенциал на расстоянии d, тем меньше есть напряженность электрического поля;
  • если потенциал не меняется, то напряженность равна нулю;
  • напряженность электрического поля направлена ​​в сторону уменьшения потенциала.

Поскольку

то именно из этой формулы и выводится еще одна единица напряженности — вольт на метр,

Как определить потенциал

Потенциал является энергетической характеристикой электрического поля. Для того чтобы найти его значение, нужно потенциальную энергию заряда в данной точке электрического поля поделить на сам заряд. Для различных типов полей используются разные формулы расчета потенциала.

Как определить потенциал

Вам понадобится

  • — линейка.

Инструкция

Если известна потенциальная энергия заряда тела в данной точке электрического поля (условно, это работа по перемещению заряда в бесконечность), то найдите потенциал, поделив эту потенциальную энергию в Джоулях на величину заряда в Кулонах: φ=Wp/q,где: φ — величина искомого потенциала,Wp — потенциальная энергия заряда тела,q — величина заряда.Потенциал измеряется в вольтах.

Если электрическое поле образовано точечным зарядом, то для определения потенциала его поля в любой точке, найдите расстояние от этой точки до заряда. Тогда потенциал поля в данной точке будет равен произведению коэффициента 9•10^9 на значение заряда поделенному на расстояние до заряда в метрах: φ=9•10^9•q/r,где:r — расстояние до заряда.

В том случае, когда поле образуется сферой, то рассматривайте два случая. Потенциал поля в точке, которая находится внутри сферы или на ее поверхности равен произведению коэффициента 9•10^9 на заряд сферы, поделенный на ее радиус:φ=9•10^9•Q/R, где:Q — заряд сферы,R — радиус сферы. Данная формула применяется независимо от того, в каком месте сферы находится точка пространства.

Если точка пространства находится вне сферы, то рассчитайте потенциал поля как произведение коэффициента 9•10^9 на значение заряда сферы поделенного на расстояние от точки пространства до центра сферы:φ=9•10^9•Q/R,в данном случае, R — расстояние от точки до центра сферы.

Для того чтобы определить потенциал поля, образованного другими заряженными поверхностями, с помощью теоремы Гаусса определите напряженность поля, образованного этими поверхностями. После этого найдите расстояние от поверхности до точки пространства, в которой определяется потенциал. Для этого из точки опустите перпендикуляр к поверхности. Чтобы найти потенциал, умножьте значение напряженности электрического поля в данной точке на измеренное расстояние:φ=Е•d, где:Е — значение напряженности электрического поля,d — расстояние от поверхности до точки.

Если между источником электрического поля находится некоторое вещество, то все результаты, которые получаются при расчете, нужно поделить на значение диэлектрической проницаемости среды, которая находится между точкой поля и его источником.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду: Потенциал электростатического поля

 — энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Потенциал электростатического поля

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически)

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически)

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах: В СИ потенциал измеряется в вольтах

Разность потенциалов

Разность потенциалов

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.         

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Напряжение

Единица разности потенциалов

Единица разности потенциалов  

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Единица разности потенциалов

Связь между напряженностью и напряжением.

Из доказанного выше:  Связь между напряженностью и напряжением →    Связь между напряженностью и напряжением 

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Связь между напряженностью и напряжением

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: Единица напряженности    —   Напряженность поля равна 1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Вектор напряженности направлен в сторону уменьшения потенциала

Единица напряженности

Эквипотенциальные поверхности.

ЭПП — поверхности равного потенциала.

Свойства ЭПП:

— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Эквипотенциальные поверхностиЭПП - поверхности равного потенциала

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Измерение электрического напряжения (разности потенциалов)

Потенциальная энергия взаимодействия зарядов.

Потенциальная энергия взаимодействия зарядов

Потенциал поля точечного заряда

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (!!!) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Потенциал заряженного шара

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

Потенциал. Разность потенциалов.

Разность потенциалов (напряжение) между 2-мя точками поля равняется отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:

Потенциал Разность потенциалов

,

Так как работа по перемещению заряда в потенциальном поле не зависит от формы траектории, то, зная напряжение между двумя точками, мы определим работу, которая совершается полем по перемещению единичного заряда.

Если есть несколько точечных зарядов, значит, потенциал поля в некоторой точке пространс­тва определяется как алгебраическая сумма потенциалов электрических полей каждого заряда в данной точке:

Потенциал Разность потенциалов

.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, является поверхность, для любых точек которой разность потенциалов равна нулю. Это означяет, что работа по перемещению заряда по такой поверхности равна нулю, следовательно, линии напряженности электрического поля перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности однородного поля представляют собой плоскости, а точечного заряда — концентрические сферы.

Вектор напряженности Потенциал Разность потенциалов(как и сила Потенциал Разность потенциалов) перпендикулярен эквипотенциальным поверхнос­тям. Эквипотенциальной является поверхность любого проводника в электростатическом поле, так как силовые линии перпендикулярны поверхности проводника. Внутри проводника разность потенциалов между любыми его точками равна нулю.

Напряжение и напряженность однородного поля .

Потенциал Разность потенциалов

В однородном электрическом поле напряженность E в каждой точке одинакова, и работа A по перемещению заряда q параллельно на расстояние d между двумя точками с потенциалами φ1, и φ2 равна:

Потенциал Разность потенциалов

,

Потенциал Разность потенциалов

.

Т.о., напряженность поля пропорциональна разности потенциалов и направлена в сторону уменьшения потенциала. Поэтому положительный заряд будет двигаться в сторону уменьшения потенциала, а отрицательный — в сторону его увеличения.

Единицей напряжения (разности потенциалов) является вольт. Исходя из формулы Потенциал Разность потенциалов, Потенциал Разность потенциалов, разность потенциалов между двумя точками равна одному вольту, если при перемещении заряда в 1 Кл между этими точками поле совершает работу в 1 Дж.

Электрический потенциал простыми словами: формулы, единица измерения

Электрический потенциал – это скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля.

Если вы хотите расширить свои знания об электрическом потенциале или сначала узнать, что такое электрический потенциал, то вы пришли по адресу.

Простое объяснение

В классической механике рассмотрение проблемы с точки зрения энергии может значительно упростить ситуацию по сравнению с рассмотрением ее с точки зрения сил, действующих на систему. В частности, в этом контексте существенную роль играет тот факт, что энергия является сохраняющейся переменной.

Также в классической электродинамике рассмотрение на энергетическом уровне оказывается очень полезным. Поэтому электрический потенциал φ (также называемый электростатическим потенциалом) определяется как отношение потенциальной энергии Eпот пробного электрического заряда и его величины электрического заряда q: φ = Eпот / q .

Возможность определения такого электрического потенциала обусловлена тем, что электрическое поле E распределения заряда и результирующая электростатическая сила Fc на пробном электрическом заряде является консервативной силой, подобной гравитационной силе.

Электрический потенциал имеет единицу измерения вольт В или также джоуль на кулон Дж / Кл .

Формулы

В этом разделе мы познакомим вас с двумя важными формулами для электрического потенциала определенных распределений электрических зарядов. Мы также кратко обсудим аналогию между электрическим потенциалом и гравитацией.

Пластинчатый конденсатор

Мы рассматриваем ситуацию, когда две плоские пластины расположены параллельно на расстоянии d друг от друга. Кроме того, пусть одна из двух пластин заряжена положительно, а другая – отрицательно. Такая комбинация также называется пластинчатым конденсатором. Обозначим точку на положительной пластине через A, а точку на отрицательной пластине через B. Тогда для разности потенциалов между этими двумя точками получим:

Здесь E – величина электрического поля между двумя пластинами, которое предполагается однородным. Такая разность потенциалов также называется электрическим напряжением, которое существует между этими двумя точками.

Из этого уравнения видно, что электрический потенциал на положительно заряженной пластине (пластина A) выше, чем потенциал на отрицательно заряженной пластине (пластина B). Поэтому положительный заряд в пластинчатом конденсаторе перемещается к отрицательной пластине. В общем случае электрическое поле – а значит, и направление движения положительного заряда – направлено в ту сторону, в которой электрический потенциал убывает быстрее всего.

Пластинчатый конденсатор

Рис. 1. Пластинчатый конденсатор

Аналогия с гравитационным полем

Если умножить уравнение (приведенное выше в статье) на величину электрического заряда q пробного электрического заряда и предположить, что отрицательно заряженная пластина имеет электрический потенциал, равный нулю, то электрическая потенциальная энергия на расстоянии h от пластины равна:

Eпот. эл = q * φ = q * E * h

Здесь φ обозначает электрический потенциал в точке пробного электрического заряда.

Сравним это уравнение с потенциальной энергией в однородном гравитационном поле:

Eпот. гр = m * g * h .

Мы определяем, что количество заряда электрического q играет роль массы m, а величина электрического поля E играет роль гравитационного ускорения g. Масса, находящаяся на высоте h над землей, ускоряется по направлению к земле под действием земного притяжения.

Таким образом, масса движется в том направлении, в котором уменьшается ее потенциальная энергия. Аналогично, положительный электрический заряд движется в направлении, в котором его электрическая потенциальная энергия будет уменьшаться. Поскольку электрическая потенциальная энергия и электрический потенциал линейно связаны, это наблюдение аналогично тому, что положительно заряженная частица движется в направлении уменьшения электрического потенциала.

Аналогия с гравитационным полем

Рис. 2. Аналогия с гравитационным полем

Подобно потенциальной энергии, только разность потенциалов имеет физический смысл, поскольку при определении электрического потенциала необходимо произвольно определить точку отсчета, от которой затем можно обозначить другие точки в пространстве. В этом смысле электрический потенциал сам по себе не имеет реального физического смысла, поскольку для данной точки в пространстве его значение можно изменить, выбрав другую точку отсчета. Таким образом, электрический потенциал ведет себя подобно высоте, потому что вы не можете говорить о высоте, пока у вас нет точки отсчета.

На топографической карте – пути, вдоль которых высота не меняется, называются изолиниями. Аналогично, пути, вдоль которых электрический потенциал постоянен, называются эквипотенциальными линиями.

Заряженные частицы

Предположим, что частица с зарядом q находится в начале выбранной нами системы координат. Пусть положение другой точки равно r и пусть r – расстояние между двумя точками. Для электрического потенциала в точке r действует следующее соотношение:

φ (r) = q / 4 * π * ε0 * r ,

здесь ε0 – электрическая постоянная.

В этом уравнении предполагается, что под действием электрического поля положительный пробный электрический заряд переносится из бесконечности в положение r.

Примеры задач

Наконец, давайте вместе рассчитаем небольшой пример. Предположим, что электрон ускоряется от отрицательно заряженной пластины к положительно заряженной через разность потенциалов 2000 В. Как изменяется потенциальная энергия электрона?

Для разности электрических потенциалов между двумя пластинами: φB – φA = ΔEпот / q , преобразованной в искомое изменение потенциальной энергии, получаем:

Величина электрического заряда электрона равна qe = e = – 1,6 * 10 -19 Кл и поэтому получаем:

ΔEпот = e * ( φB – φA ) = – 1,6 * 10 -19 Кл * 2000 В = -3,2 * 10 -19 Дж.

Обратите внимание, что [ В ] = Дж / Кл. Кроме того, мы предположили, что пластина с точкой B заряжена положительно, поэтому перед 2000 В нет знака минус. Расчет показывает, что потенциальная энергия электрона уменьшается.

Найти потенциал электрического поля в точке, лежащей посредине между двумя

Найти потенциал электрического поля в точке, лежащей посредине между двумя зарядами по 50 нКл, расположенными на расстоянии 1 м в вакууме.

Задача №6.3.9 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

Схема к решению задачи

Так как заряды одинаковы, и они находятся на одинаковом расстоянии (r) от точки A, в которой нужно определить потенциал, значит потенциалы электрических полей в точке A, создаваемых каждым зарядом, также одинаковы. Это видно из формулы:

Здесь (k) – коэффициент пропорциональности, равный 9·10 9 Н·м 2 /Кл 2 .

Учитывая, что точка A находится посредине между двумя зарядами ((r=frac)), то:

Искомый потенциал (varphi) равен сумме потенциалов электрических полей в точке A, создаваемых каждым зарядом, поскольку потенциал – величина скалярная. Учитывая вышесказанное, имеем:

В итоге решение задачи в общем виде выглядит так:

Ответ: 1,8 кВ.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти чарт вк на компьютер
  • Как найти жижу для вейпа на вайлдберриз
  • Как найти импульс атома если известна частота
  • Как составить журнал ордер номер 1
  • Как нашли изумруды урала

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии