Как найти показатель частоты


Загрузить PDF


Загрузить PDF

С абсолютной частотой все довольно просто: она определяет, сколько раз конкретное число содержится в имеющемся наборе данных (объектов или значений). А вот относительная частота характеризует отношение количества конкретного числа в наборе данных. Другими словами, относительная частота – это отношение количества определенного числа к общему количеству чисел в наборе данных. Имейте в виду, что вычислить относительную частоту достаточно легко.

  1. Изображение с названием Calculate Relative Frequency Step 1

    1

    Соберите данные. Если вы решаете математическую задачу, в ее условии должен быть дан набор данных (чисел). В противном случае проведите эксперимент или исследование и соберите необходимые данные. Подумайте, в какой форме записать исходные данные.

    • Например, нужно собрать данные о возрасте людей, которые посмотрели определенный фильм. Конечно, можно записать точный возраст каждого человека, но в этом случае вы получите довольно большой набор данных с 60-70 числами в пределах от 10 до 70 или 80. Поэтому лучше сгруппировать данные по категориям, таким как «Моложе 20», «20-29», «30-39» «40-49», «50-59» и «Старше 60». Получится упорядоченный набор данных с шестью группами чисел.
    • Другой пример: врач собирает данные о температуре пациентов в определенный день. Если записать округленные числа, например, 37, 38, 39, то результат будет не слишком точным, поэтому здесь данные нужно представить в виде десятичных дробей.
  2. Изображение с названием Calculate Relative Frequency Step 2

    2

    Упорядочьте данные. Когда вы соберете данные, у вас, скорее всего, получится хаотичный набор чисел, например, такой: 1, 2, 5, 4, 6, 4, 3, 7, 1, 5, 6, 5, 3, 4, 5, 1. Такая запись кажется практически бессмысленной и с ней сложно работать. Поэтому упорядочьте числа по возрастанию (от меньшего к большему), например, так: 1,1,1,2,3,3,4,4,4,5,5,5,5,6,6,7.[1]

    • Упорядочивая данные, будьте внимательны, чтобы не пропустить ни одного числа. Посчитайте общее количество чисел в наборе данных, чтобы убедиться, что вы записали все числа.
  3. Изображение с названием Calculate Relative Frequency Step 3

    3

    Создайте таблицу с данными. Собранные данные можно организовать в виде таблицы. Такая таблица будет включать три столбца и использоваться для вычисления относительной частоты. Столбцы обозначьте следующим образом:[2]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 5

    1

    Найдите количество чисел в наборе данных. Относительная частота характеризует, сколько раз конкретное число содержится в имеющемся наборе данных по отношению к общему количеству чисел. Чтобы найти относительную частоту, нужно посчитать общее количество чисел в наборе данных. Общее количество чисел станет знаменателем дроби, с помощью которой будет вычислена относительная частота.[3]

    • В нашем примере набор данных содержит 16 чисел.
  2. Изображение с названием Calculate Relative Frequency Step 5

    2

    Найдите количество определенного числа. То есть посчитайте, сколько раз конкретное число встречается в наборе данных. Это можно сделать как для одного числа, так и для всех чисел из набора данных.[4]

    • Например, в нашем примере число 4 встречается в наборе данных три раза.
  3. Изображение с названием Calculate Relative Frequency Step 6

    3

    Разделите количество конкретного числа на общее количество чисел. Так вы найдете относительную частоту для определенного числа. Вычисление можно представить в виде дроби или воспользоваться калькулятором или электронной таблицей, чтобы разделить два числа.[5]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 7

    1

    Результаты вычислений запишите в созданную ранее таблицу. Она позволит представить результаты в наглядной форме. По мере вычисления относительной частоты результаты записывайте в таблицу напротив соответствующего числа. Как правило, значение относительной частоты можно округлить до второго знака после десятичной запятой, но это на ваше усмотрение (в зависимости от требований задачи или исследования). Помните, что округленный результат не равен точному ответу.[6]

    • В нашем примере таблица относительных частот будет выглядеть следующим образом:
    • x : n(x) : P(x)
    • 1 : 3 : 0,19
    • 2 : 1 : 0,06
    • 3 : 2 : 0,13
    • 4 : 3 : 0,19
    • 5 : 4 : 0,25
    • 6 : 2 : 0,13
    • 7 : 1 : 0,06
    • Итого : 16 : 1,01
  2. Изображение с названием Calculate Relative Frequency Step 8

    2

    Представьте числа (элементы), которых нет в наборе данных. Иногда представление чисел с нулевой частотой так же важно, как и представление чисел с ненулевой частотой. Обратите внимание на собранные данные; если между данными имеются пробелы, их нужно заполнить нулями.

    • В нашем примере набор данных включает все числа от 1 до 7. Но предположим, что числа 3 нет в наборе. Возможно, это немаловажный факт, поэтому нужно записать, что относительная частота числа 3 равна 0.
  3. Изображение с названием Calculate Relative Frequency Step 9

    3

    Выразите результаты в процентах. Иногда результаты вычислений нужно преобразовать из десятичных дробей в проценты. Это общепринятая практика, потому что относительная частота характеризует процент случаев появления определенного числа в наборе данных. Чтобы преобразовать десятичную дробь в проценты, нужно десятичную запятую передвинуть на две позиции вправо и приписать символ процента.

    • Например, десятичная дробь 0,13 равна 13%.
    • Десятичная дробь 0,06 равна 6% (обратите внимание, что перед 6 стоит 0).

    Реклама

Советы

  • Относительная частота характеризует наличие или возникновение определенного события в наборе событий.
  • Если сложить относительные частоты всех чисел из набора данных, вы получите единицу. Помните, что при сложении округленных результатов сумма не будет равна 1,0.
  • Если набор данных слишком большой, чтобы обработать его вручную, воспользуйтесь программой MS Excel или MATLAB; это позволит избежать ошибок в процессе вычисления.

Реклама

Источники

Об этой статье

Эту страницу просматривали 145 917 раз.

Была ли эта статья полезной?

Частота

У этого термина существуют и другие значения, см. Частота (значения). Размерность Единицы измерения СИ

Частота
ν = n t {displaystyle nu ={frac {n}{t}}}

T−1

Гц

Частота́ — физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени. Рассчитывается, как отношение количества повторений или возникновения событий (процессов) к промежутку времени, за которое они совершены[1]. Стандартные обозначения в формулах — ν, f или F.

Единицей измерения частоты в Международной системе единиц (СИ) является герц (русское обозначение: Гц; международное: Hz), названный в честь немецкого физика Генриха Герца.

Частота обратно пропорциональна периоду колебаний: ν = 1/T.

Частота Период

1 мГц (10−3 Гц) 1 Гц (100 Гц) 1 кГц (103 Гц) 1 МГц (106 Гц) 1 ГГц (109 Гц) 1 ТГц (1012 Гц)
1 кс (103 с) 1 с (100 с) 1 мс (10−3 с) 1 мкс (10−6 с) 1 нс (10−9 с) 1 пс (10−12 с)

Частота, как и время, является одной из наиболее точно измеряемых физических величин: до относительной точности 10−17[2].

В природе известны периодические процессы с частотами от ~10−16 Гц (частота обращения Солнца вокруг центра Галактики) до ~1035 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

В квантовой механике частота колебаний волновой функции квантовомеханического состояния имеет физический смысл энергии этого состояния, в связи с чем система единиц часто выбирается таким образом, что частота и энергия выражаются в одних и тех же единицах (иными словами, переводный коэффициент между частотой и энергией — постоянная Планка в формуле E = hν — выбирается равным 1).

Глаз человека чувствителен к электромагнитным волнам с частотами от 4·1014 до 8·1014 Гц (видимый свет); частота колебаний определяет цвет наблюдаемого света. Слуховой анализатор человека воспринимает акустические волны с частотами от 20 Гц до 20 кГц. У различных животных частотные диапазоны чувствительности к оптическим и акустическим колебаниям различны.

Отношения частот звуковых колебаний выражаются с помощью музыкальных интервалов, таких как октава, квинта, терция и т. п. Интервал в одну октаву между частотами звуков означает, что эти частоты отличаются в 2 раза, интервал в чистую квинту означает отношение частот 3⁄2. Кроме того, для описания частотных интервалов используется декада — интервал между частотами, отличающимися в 10 раз. Так, диапазон звуковой чувствительности человека составляет 3 декады (20 Гц — 20 000 Гц). Для измерения отношения очень близких звуковых частот используются такие единицы, как цент (отношение частот, равное 21/1200) и миллиоктава (отношение частот 21/1000).

Мгновенная частота и частоты спектральных составляющих

Периодический сигнал характеризуется мгновенной частотой, являющейся (с точностью до коэффициента) скоростью изменения фазы, но тот же сигнал можно представить в виде суммы гармонических спектральных составляющих, имеющих свои (постоянные) частоты. Свойства мгновенной частоты и частоты́ спектральной составляющей различны[3].

Синусоидальные волны различных частот, нижние волны имеют более высокие частоты, чем верхние. Горизонтальная ось представляет время Изменение частоты

Циклическая частота

Основная статья: Угловая частота

В теории электромагнетизма, теоретической физике, а также в некоторых прикладных электрорадиотехнических расчётах удобно использовать дополнительную величину — циклическую (круговую, радиальную, угловую) частоту (обычно обозначается ω). Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота) — скалярная физическая величина. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В системах СИ и СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны). Угловая частота в радианах в секунду выражается через частоту ν (выражаемую в оборотах в секунду или колебаниях в секунду), как ω = 2πν[4].

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей: ω = 360°ν.

Численно циклическая частота равна числу циклов (колебаний, оборотов) за 2π секунд. Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ω L C = 1 / L C , {displaystyle omega _{LC}=1/{sqrt {LC}},} тогда как обычная резонансная частота ν L C = 1 / ( 2 π L C ) . {displaystyle nu _{LC}=1/(2pi {sqrt {LC}}).} В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

В механике при рассмотрении вращательного движения аналогом циклической частоты служит угловая скорость.

Частота дискретных событий

Частота дискретных событий (частота импульсов) — физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий — секунда в минус первой степени (русское обозначение: с−1; международное: s−1). Частота 1 с−1 равна такой частоте дискретных событий, при которой за время 1 с происходит одно событие[5][6].

Частота вращения

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения — секунда в минус первой степени (с−1, s−1), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

  • Ширина полосы частот — ν m a x − ν m i n {displaystyle nu _{max}-nu _{min}}
  • Частотный интервал — log ⁡ ( ν m a x / ν m i n ) {displaystyle log(nu _{max}/nu _{min})}
  • Девиация частоты — Δ ν / 2 {displaystyle Delta nu /2}
  • Период — 1 / ν {displaystyle 1/nu }
  • Длина волны — v / ν {displaystyle {v}/nu }
  • Угловая скорость (скорость вращения) — d ϕ / d t ; 2 π F B P . {displaystyle dphi /dt;2pi F_{BP.}}

Единицы измерения

В системе СИ единицей измерения является герц. Единица была первоначально введена в 1930 году Международной электротехнической комиссией[7], а в 1960 году принята для общего употребления 11-й Генеральной конференцией по мерам и весам, как единица СИ. До этого в качестве единицы частоты использовался цикл в секунду (1 цикл в секунду = 1 Гц) и производные (килоцикл в секунду, мегацикл в секунду, киломегацикл в секунду, равные соответственно килогерцу, мегагерцу и гигагерцу).

Метрологические аспекты

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра. Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность), синтезаторы частот, генераторы сигналов и др. Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Эталоны

Для поверки средств измерения частоты используются национальные эталоны частоты. В России к национальным эталонам частоты относятся:

  • Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 — находится во ВНИИФТРИ.
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 — находится в СНИИМ (Новосибирск).

Вычисления

Вычисление частоты повторяющегося события осуществляется посредством учета количества появлений этого события в течение заданного периода времени. Полученное количество разделяется на продолжительность соответствующего временного отрезка. К примеру, если на протяжении 15 секунд произошло 71 однородное событие, то частота составит

ν = 71 15 s ≈ 4.7 Hz {displaystyle nu ={frac {71}{15,{mbox{s}}}}approx 4.7,{mbox{Hz}}}

Если полученное количество отсчетов невелико, то более точным приемом является измерение временного интервала для заданного числа появлений рассматриваемого события, а не нахождение количества событий в пределах заданного промежутка времени[8]. Использование последнего метода вводит между нулевым и первым отсчетом случайную ошибку, составляющую в среднем половину отсчета; это может приводить к появлению средней ошибки в вычисляемой частоте Δν = 1/(2 Tm), или же относительной погрешности Δν/ν = 1/(2vTm), где Tm — временной интервал, а ν — измеряемая частота. Ошибка убывает по мере возрастания частоты, поэтому данная проблема является наиболее существенной для низких частот, где количество отсчетов N мало.

Методы измерения

Стробоскопический метод

Использование специального прибора — стробоскопа — является одним из исторически ранних методов измерения частоты вращения или вибрации различных объектов. В процессе измерения задействуется стробоскопический источник света (как правило, яркая лампа, периодически дающая короткие световые вспышки), частота работы которого подстраивается при помощи предварительно откалиброванной хронирующей цепи. Источник света направляется на вращающийся объект, а затем частота вспышек постепенно изменяется. Когда частота вспышек уравнивается с частотой вращения или вибрации объекта, последний успевает совершить полный колебательный цикл и вернуться в изначальное положение в промежутке между двумя вспышками, так что при освещении стробоскопической лампой этот объект будет казаться неподвижным. У данного метода, впрочем, есть недостаток: если частота вращения объекта (x) не равна частоте строба (y), но пропорциональна ей с целочисленным коэффициентом (2x, 3x и т. п.), то объект при освещении все равно будет выглядеть неподвижным.

Стробоскопический метод используется также для точной настройки частоты вращения (колебаний). В этом случае частота вспышек фиксирована, а изменяется частота периодического движения объекта до тех пор, пока он не начинает казаться неподвижным.

Метод биений

Биения.

Близким к стробоскопическому методу является метод биений. Он основан на том, что при смешивании колебаний двух частот (опорной ν и измеряемой ν’1) в нелинейной цепи в спектре колебаний появляется также разностная частота Δν = |ν ν’1|, называемая частотой биений (при линейном сложении колебаний эта частота является частотой огибающей суммарного колебания). Метод применим, когда более предпочтительным является измерение низкочастотных колебаний с частотой Δf. В радиотехнике этот метод также известен под названием гетеродинного метода измерения частоты. В частности, метод биений используется для точной настройки музыкальных инструментов. В этом случае звуковые колебания фиксированной частоты (например, от камертона), прослушиваемые одновременно со звуком настраиваемого инструмента, создают периодическое усиление и ослабление суммарного звучания. При точной настройке инструмента частота этих биений стремится к нулю.

Применение частотомера

Высокие частоты обычно измеряются при помощи частотомера. Это электронный прибор, который оценивает частоту определенного повторяющегося сигнала и отображает результат на цифровом дисплее или аналоговом индикаторе. Дискретные логические элементы цифрового частотомера позволяют учитывать количество периодов колебаний сигнала в пределах заданного промежутка времени, отсчитываемого по эталонным кварцевым часам. Периодические процессы, которые не являются по своей природе электрическими (такие, к примеру, как вращение оси, механические вибрации или звуковые волны), могут быть переведены в периодический электрический сигнал при помощи измерительного преобразователя и в таком виде поданы на вход частотомера. В настоящее время приборы этого типа способны охватывать диапазон вплоть до 100 ГГц; этот показатель представляет собой практический потолок для методов прямого подсчёта. Более высокие частоты измеряются уже непрямыми методами.

Непрямые методы измерения

Вне пределов диапазона, доступного частотомерам, частоты электромагнитных сигналов нередко оцениваются опосредованно, с помощью гетеродинов (то есть частотных преобразователей). Опорный сигнал заранее известной частоты объединяется в нелинейном смесителе (таком, к примеру, как диод) с сигналом, частоту которого необходимо установить; в результате формируется гетеродинный сигнал, или — альтернативно — биения, порождаемые частотными различиями двух исходных сигналов. Если последние достаточно близки друг к другу по своим частотным характеристикам, то гетеродинный сигнал оказывается достаточно мал, чтобы его можно было измерить тем же частотомером. Соответственно, в результате этого процесса оценивается лишь отличие неизвестной частоты от опорной, каковую следует определять уже иными методами. Для охвата ещё более высоких частот могут быть задействованы несколько стадий смешивания. В настоящее время ведутся исследования, нацеленные на расширение этого метода в направлении инфракрасных и видимо-световых частот (т. н. оптическое гетеродинное детектирование).

Примеры

Электромагнитное излучение

Основная статья: Электромагнитный спектр Основная статья: Частотные интервалы Полный спектр электромагнитного излучения с выделенной видимой частью

Видимый свет представляет собой электромагнитные волны, состоящие из осциллирующих электрических и магнитных полей, перемещающихся в пространстве. Частота волны определяет её цвет: 4×1014 Гц — красный цвет, 8×1014 Гц — фиолетовый цвет; между ними в диапазоне (4…8)×1014 Гц лежат все остальные цвета радуги. Электромагнитные волны, имеющие частоту менее 4×1014 Гц, невидимы для человеческого глаза, такие волны называются инфракрасным (ИК) излучением. Ниже по спектру лежит микроволновое излучение и радиоволны. Свет с частотой выше, чем 8×1014 Гц, также невидим для человеческого глаза; такие электромагнитные волны называются ультрафиолетовым (УФ) излучением. При увеличении частоты электромагнитная волна переходит в область спектра, где расположено рентгеновское излучение, а при ещё более высоких частотах — в область гамма-излучения.

Все эти волны, от самых низких частот радиоволн и до высоких частот гамма-лучей, принципиально одинаковы, и все они называются электромагнитным излучением. Все они распространяются в вакууме со скоростью света.

Другой характеристикой электромагнитных волн является длина волны. Длина волны обратно пропорциональна частоте, так что электромагнитные волны с более высокой частотой имеет более короткую длину волны, и наоборот. В вакууме длина волны

λ = c / ν , {displaystyle lambda =c/nu ,}

где с — скорость света в вакууме. В среде, в которой фазовая скорость распространения электромагнитной волны c′ отличается от скорости света в вакууме (c′ = c/n, где n — показатель преломления), связь между длиной волны и частотой будет следующей:

λ = c n ν . {displaystyle lambda ={frac {c}{nnu }}.}

Ещё одна часто использующаяся характеристика волны — волновое число (пространственная частота), равное количеству волн, укладывающихся на единицу длины: k = 1/λ. Иногда эта величина используется с коэффициентом 2π, по аналогии с обычной и круговой частотой ks = 2π/λ. В случае электромагнитной волны в среде

k = 1 / λ = n ν c . {displaystyle k=1/lambda ={frac {nnu }{c}}.} k s = 2 π / λ = 2 π n ν c = n ω c . {displaystyle k_{s}=2pi /lambda ={frac {2pi nnu }{c}}={frac {nomega }{c}}.}

Звук

Основная статья: Звук

Свойства звука (механических упругих колебаний среды) зависят от частоты. Человек может слышать колебания с частотой от 20 Гц до 20 кГц (с возрастом верхняя граница частоты слышимого звука снижается). Звук с частотой более низкой, чем 20 Гц (соответствует ноте ми субконтроктавы), называется инфразвуком[9]. Инфразвуковые колебания, хотя и не слышны, могут ощущаться осязательно. Звук с частотой выше 20 кГц называется ультразвуком, а с частотой выше 1 ГГц — гиперзвуком.

В музыке обычно используются звуки, высота (основная частота) которых лежит от субконтроктавы до 5-й октавы. Так, звуки стандартной 88-клавишной клавиатуры фортепиано укладываются в диапазон от ноты ля субконтроктавы (27,5 Гц) до ноты до 5-й октавы (4186,0 Гц). Однако музыкальный звук обычно состоит не только из чистого звука основной частоты, но и из примешанных к нему обертонов, или гармоник (звуков с частотами, кратными основной частоте); относительная амплитуда гармоник определяет тембр звука. Обертоны музыкальных звуков лежат во всём доступном для слуха диапазоне частот.

Частота переменного тока

Напряжение и частота:      220-240 В/60 Гц      220-240 В/50 Гц      100-127 В/60 Гц      100-127 В/50 Гц Рабочее место бортрадиста самолёта Ан-26. В верхнем правом углу виден частотомер на 400 Гц

В Европе (в том числе в России и всех странах бывшего СССР), большей части Азии, Океании (кроме Микронезии), Африке и в части Южной Америки промышленная частота переменного тока в силовой сети составляет 50 Гц. В Северной Америке (США, Канада, Мексика), Центральной и в некоторых странах северной части Южной Америки (Бразилия, Венесуэла, Колумбия, Перу), а также в некоторых странах Азии (в юго-западной части Японии, в Южной Корее, Саудовской Аравии, на Филиппинах и на Тайване) используется частота 60 Гц. См. Стандарты разъёмов, напряжений и частот электросети в разных странах. Почти все бытовые электроприборы одинаково хорошо работают в сетях с частотой 50 и 60 Гц при условии одинакового напряжения сети. В конце XIX — первой половине XX века, до стандартизации, в различных изолированных сетях использовались частоты от 162⁄3 до 1331⁄3 Гц. Первая до сих пор используется на некоторых железнодорожных линиях мира напряжением 15 кВ, где была принята для использования электровозов без выпрямителей — тяговые двигатели постоянного тока питались напрямую от трансформатора.

В бортовых сетях самолётов, подводных лодок и т. д. используется частота 400 Гц. Более высокая частота силовой сети позволяет уменьшить массу и габариты трансформаторов и получить высокие частоты вращения асинхронных двигателей, хотя увеличивает потери при передаче на большие расстояния — из-за ёмкостных потерь, роста индуктивного сопротивления линии и потерь на излучение.

ru.wikipedia.org

ЧАСТОТА это:

ЧАСТОТА ЧАСТОТА, показатель, выражающий собой число повторений или возникновения событий (процессов). В статистике частота — это цифра, показывающая, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины. В физике — количество колебаний (или волн), наблюдающихся в определенной точке в течение секунды (измеряется в ГЕРЦАХ), в том числе, волны звука, света и радиоволны, раскачивания МАЯТНИКА и колебания пружин. Произведение частоты и длины волны — величина постоянная и равна скорости волны.

Научно-технический энциклопедический словарь.

dic.academic.ru

Частота вращения это:

Частота вращения Угловая скорость (синяя стрелка) в одну единицу по часовой стрелке Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки

Углова́я ско́рость — векторная величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:

omega_z=frac{dphi}{dt},

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в системах СИ и СГС) — радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, — физически безразмерен, поэтому физическая размерность угловой скорости — просто [1/секунда]). В технике также используются обороты в секунду, намного реже — градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту — это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли, просто «вручную» подсчитывая число оборотов за единицу времени.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью vec omega определяется формулой:

 vec v = [ vec omega, vec r ],

где vec r — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) r от оси вращения можно считать так: v = rω. Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

  • В случае плоского вращения, то есть когда все векторы скоростей точек тела лежат (всегда) в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути — если плоскость вращения заведомо известна — может быть заменена скаляром — проекцией на ось, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается, однако в общем случае угловая скорость может менять со временем направление в трехмерном пространстве, и такая упрощенная картина не работает.
  • Производная угловой скорости по времени есть угловое ускорение.
  • Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю).
  • Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчета, однако в разных инерциальных системах отсчета может различаться ось или центр вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).
  • В случае движения одной единственной точки в трехмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:

 vecomega = frac{vec r times vec v}{(vec r,vec r )} , где vec r — радиус-вектор точки (из начала координат), vec v — скорость этой точки. vec r times vec v — векторное произведение, (vec r,vec r ) — скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы vec omega, подходящие по определению, по другому — произвольно — выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) — эта формула не верна для угловой скорости всего тела (так как дает разные vec omega для каждой точки, а при вращении абсолютно твёрдого тела по определению угловая скорость его вращения — единственный вектор). При всём при этом, в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.

  • В случае равномерного вращательного движения (то есть движения с постоянным вектором угловой скорости) декартовы координаты точек вращающегося так тела совершают гармонические колебания с угловой (циклической) частотой, равной модулю вектора угловой скорости.
  • При измерении угловой скорости в оборотах в секунду (об/с), модуль угловой скорости равномерного вращательного движения совпадает с частотой вращения f, измеренной в герцах (Гц) (то есть в таких единицах ~~omega = {f}).
  • В случае использования обычной физической единицы угловой скорости — радианов в секунду — модуль угловой скорости связан с частотой вращения так: ~~omega = {2pi f}.
  • Наконец, при использовании градусов в секунду связь с частотой вращения будет: ~~omega = {360 f}.

См. также

  • Угловая частота
  • Угловое ускорение
  • Момент импульса

Wikimedia Foundation. 2010.

dic.academic.ru

/ ОПРЕДЕЛЕНИЕ ЦИКЛИЧЕСКОЙ ЧАСТОТЫ

ОПРЕДЕЛЕНИЕ ЦИКЛИЧЕСКОЙ ЧАСТОТЫКОЛЕБАНИЯ ТЕЛА НА ПРУЖИНЕ

Цель работы: опытная проверка расчета частоты колебания тела на пружине.

Принадлежности: штатив с масштабной линейкой, пружина, чашечка, разновески, секундомер.

Вопросы, знание которых обязательно для допуска к выполнению работы

  1. Какие колебания называются гармоническими? Напишите уравнение гармонических колебаний. Поясните.

  2. Что называется амплитудой, частотой, периодом, фазой и начальной фазой гармонического колебания?

  3. Как связаны между собой период, частота, циклическая частота?

  4. Две колеблющиеся материальные точки имеют одинаковые (разные) фазы. Что это означает?

  5. Под действием каких сил происходит колебание тела на пружине в вертикальном направлении?

  6. Напишите закон Гука.

  7. Что называется коэффициентом жесткости пружины?

  8. От каких параметров пружины зависит коэффициент жесткости?

  9. Как выражаются скорость и ускорение при гармоническом колебании?

  10. Что называется квазиупругой силой? Приведите примеры.

  11. От чего и как зависит частота колебания тела на пружине?

  12. Расскажите порядок выполнения работы.

ВВЕДЕНИЕ

Тело, подвешенное на пружине и выведенное из положения равновесия, совершает гармонические колебания.

Гармоническими называются колебания, при которых колеблющаяся величина изменяется со временем по закону синуса и косинуса.

Для механических колебаний это означает, что смещение тела х от положения равновесия происходит по закону:

х = х0×sin (ωt +φ), (1)

где х0— амплитуда (максимальное отклонение от положения равновесия);

ω= 2πν = — циклическая частота (ν — частота колебания; Т — период);

t — время, в течение которого совершается колебательный процесс;

φ — начальная фаза;

(ωt +φ) — фаза колебания, определяющая состояние системы в момент времени t.

Рассмотрим пружинный маятник (рис. 1), состоящий из легкой пружины, имеющей достаточно большое число витков, и тела массой m. Если оттянуть тело маятника строго вертикально вниз на небольшое расстояние и отпустить, то маятник начнет совершать колебания только вдоль вертикальной линии (колебания с одной степенью свободы). Колебание тела на пружине в вертикальном направлении происходит под действием двух сил: силы тяжести и упругой силы пружины. При отклонении маятника из положения равновесия будет возникать внутренняя возвращающая сила упругости, направленная к точке равновесия. Если величина отклонения маятника мала (много меньше первоначальной длины маятника), можно воспользоваться законом Гука:

F = – kx , (2)

где k — коэффициент жесткости пружины, зависящий от ее геометрических размеров и материала, из которого она изготовлена.

По второму закону Ньютона:

F = ma = – kx;

.

Тогда уравнение гармонических колебаний получим в виде:

. (3)

Общее решение этого уравнения имеет вид:

. (4)

Действительно:

, (5)

. (6)

Подставляя в левую часть уравнения (3) выражение (6), а в правую — значение х из (4), приходим к тождеству, что означает правильность выбора решения в виде уравнения (4).

Из уравнений (4) и (1) следует, что циклическая частота колебаний зависит от коэффициента жесткости пружины и массы колеблющегося тела:

. (7)

Значение начальной фазы определяется в каждом конкретном случае из начальных условий.

Обобщая вывод, сделанный выше, можно утверждать, что гармонические колебания будут совершаться и при действии на тело силы любой природы, лишь бы она подчинялась уравнению (2). Силы или результирующие силы, хотя и неупругие, но подчиняющиеся уравнению (2), называются квазиупругими. Примером такой силы является результирующая двух сил (силы тяжести и силы натяжения нити), возникающая при отклонении пружинного маятника из положения равновесия.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для расчета частоты колебаний груза на пружине необходимо изменяя массу груза m определить коэффициент жесткости пружины k. Кроме того, нужно быть уверенным, что коэффициент k будет постоянным в достаточно широком диапазоне нагрузок и деформации пружины.

1. Определим k через приращение силы ΔF и приращение смещения Δx:

k =ΔF/Δx.

Для этого на чашечку, подвешенную к пружине, следует класть гирьки так, чтобы нагрузка увеличивалась каждый раз на 20 г, и, соответственно, производить отсчет xi положений чашечки и пружины.

Р

43

астяжение пружины отмечают с помощью указателя (горизонтального кусочка проволоки, укрепленного в нижней части пружины). Для избежания ошибок из-за параллакса используют зеркальную шкалу. Для правильного отсчета показаний глаз следует расположить на такой высоте, чтобы указатель совпал со своим изображением в зеркале, укрепленном рядом со шкалой. Затем, не изменяя положения головы, производят отсчет по шкале.

По разности xi до и после нагрузки определяют Δx для соответствующей нагрузки: ΔF = Δmg.

Δxi=|xi— xi-1|

Чтобы убедиться, что не произошло неупругих деформаций пружины, необходимо произвести отсчеты и при уменьшающейся нагрузке. Если при разных нагрузках значения коэффициента k в пределах погрешности получаются одинаковыми, то закон Гука выполняется во всем диапазоне нагрузок. В этом случае можно определить среднее значение k.

2. По формуле (7) рассчитать циклическую частоту ω (при расчете обратите внимание на систему единиц). Результаты измерений занесите в таблицу, определите относительную и абсолютную погрешности .

Таблица

п/п

m, кг

xi, м

Δxi, м

k, H/м

, рад/c

¢, рад/c

1

0

2

0.02

3

0.04

4

0.06

5

0.08

6

0.10

7

0.12

8

0.10

9

0.08

10

0.06

11

0.04

12

0.02

13

0

Среднее значение

3. Необходимо экспериментально проверить рассчитанную циклическую частоту ω¢. Для этого с помощью секундомера определяют время t числа N полных колебаний, откуда

Опыт выполняется следующим образом.

На чашечке устанавливают груз m=0,1 кг, для которого по формуле (7) был произведен расчет .

Слегка оттянув чашечку (строго вертикально вниз), приводят груз в колебание.

Измерение времени не рекомендуется начинать с момента запуска. После нескольких качаний, усвоив темп счета, запускают секундомер в момент, когда груз занимает крайнее нижнее положение (либо крайнее верхнее). В момент запуска секундомера начинают счет колебаний с цифры «ноль» (а не «один»). Для одного и того же числа полных колебаний N (N ³ 20) определяют время колебаний t не менее трех раз. При этом не обязательно каждый раз останавливать чашечку с грузом, а затем снова ее запускать.

Расхождение в измеренных промежутках времени не должно сильно превышать погрешность секундомера (Dt = 0.2 с). Кроме того, если обнаружится расхождение во времени t больше, чем t /N , это означает, что при подсчете числа колебаний допущен просчет.

По измеренным t найти tср. Используя tсp и число полных колебаний N, определите Т и ω¢.

6. Сравните результаты для  и ’ с учетом их абсолютных погрешностей для m=0,1 кг.

7. Рассчитайте массу чашечки. Поясните, как вы это сделали.

45

Рекомендуемая литература

1. Савельев И.В. Курс общей физики. T. I. — Киев: Наука, 1977. § 14, 49, 50, 53, 54.

2. Архангельский М.В. Курс физики: механика. — М.: Просвеще­ние, 1975. С. 62-72, 224-237, 297-305.

3. Грабовский Р.И. Курс физики. — М.: Высшая школа, 1970. § 10, 27, 29.

4. Ландсберг Г.С. Элементарный учебник физики. T. I. — М.: Наука, 1967. § 58, 59, 60, 61. С. 277-287.

5. Мэрион Дж.Б. Общая физика с биологическими примерами. — М.: Высшая школа, 1986.

6. Кац Ц.Б. Биофизика на уроках физики. — М.: Просвещение, 1988.

Для получения зачета необходимо

1. Продемонстрировать умение экспериментально определять час­тоту колебаний тела на пружине.

2. Представить отчет по установленной форме.

3. Уметь отвечать на вопросы типа:

а

46

) К пружине с жесткостью k подвешено тело массой m. Затем пружина перерезается пополам и к одной из ее половин снова подвешивается то же тело. Будет ли частота колебаний пружины одинакова в первом и во втором случаях? Если нет, то как будут относиться друг к другу обе частоты? Рассмотрите три случая:mпр >> m , mпр пр @ m.

б) Поясните, как можно сравнить между собой массы тел, измеряя частоты колебаний этих масс, подвешенных к пружине.

в) Поясните качественно, как изменится период колебаний пружины, если учесть ее массу m?

г) Железная и медная проволоки одинаковых размеров висят в вертикальной плоскости. Нижние концы проволок прикреплены к горизонтальному стержню. Сохранится ли горизонтальность стержня, если к его середине прикрепить груз?

д) Что такое колебание? Какие колебательные движения вы знаете? При каких условиях возникают гармонические колебания?

е) Во сколько раз изменится частота колебаний автомобиля на рессорах после принятия груза, равного массе порожнего автомобиля?

ж

48

) В ряде измерительных приборов имеются успокоители — демпферы, которые служат для ускорения затухания колебаний подвижной части прибора, например стрелки.

На рис. 2 приведены кривые зависимости измерения амплитуды от времени движения стрелки измерительного прибора.

Укажите:

а) кривую, соответствующую периодическому колебанию стрелки без успокоителя;

б

47

) кривую, характеризующую затухающие колебания;

в) кривую апериодического движения при сильном успокоении.

Рис. 2

з

Рис. 3

) Чем отличаются колебательные движения, графики которых представлены на рис. 3? Рассчитайте параметры колебательного процесса (задания возьмите у преподавателя).

StudFiles.ru

Что такое частота

Василий.

Ссылка

Частота — число периодов за одну секунду. Измеряется в герцах (Гц) или циклах в секунду. Звуковой сигнал частотой 1000 Гц (1 кГц) означает 1000 периодов синусоидального сигнала в секунду.

Чaстота́ — физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени.
Единицей частоты в Международной системе единиц (СИ) в общем случае является Герц (Гц, Hz).
Величина, обратная частоте, называется периодом.
Измерения
Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра.
Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность) , синтезаторы частот, генераторы сигналов и др.
Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Nikolя ®

ЧАСТОТА, это число повторений одинаковых движений, колебаний в какую-л. единицу времени.
В статистике частота — это цифра, показывающая, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.
В физике — количество колебаний (или волн) , наблюдающихся в определенной точке в течение секунды (измеряется в ГЕРЦАХ) , в том числе, волны звука, света и радиоволны, раскачивания МАЯТНИКА и колебания пружин. Произведение частоты и длины волны — величина постоянная и равна скорости волны.

Читайте также


Download Article

Preparing, calculating, and reporting your data


Download Article

Absolute frequency is a simple concept to grasp: it refers to the number of times a particular value appears in a specific data set (a collection of objects or values). However, relative frequency can be a little trickier. It refers to the proportion of times a particular value appears in a specific data set. In other words, relative frequency is, in essence, how many times a given event occurs divided by the total number of outcomes. If you organize your data, calculating and presenting relative frequency can become a simple task.

  1. Image titled Calculate Relative Frequency Step 1

    1

    Collect your data. Unless you are just completing a math homework assignment, calculating relative frequency generally implies that you have some form of data. Conduct your experiment or study and collect the data. Decide how precisely you wish to report your results.[1]

    • For example, suppose you are collecting data on the ages of people who attend a particular movie. You could decide to collect and report the exact age of everyone who attends. But this is likely to give you 60 or 70 different results, being every number from about 10 through 70 or 80. You may instead wish to collect data in groups, like “Under 20,” “20-29,” “30-39,” “40-49,” “50-59,” and “60 plus.” This would be a more manageable set of six data groups.
    • As another example, a doctor might collect body temperatures of patients on a given day. In this case, just collecting whole numbers, like 97, 98, 99, might not be precise enough. It might be necessary to report data in decimals in this case.
  2. Image titled Calculate Relative Frequency Step 2

    2

    Sort the data. After you complete your study or experiment, you are likely to have a collection of data values that could look like 1, 2, 5, 4, 6, 4, 3, 7, 1, 5, 6, 5, 3, 4, 5, 1. In this form, the data appear almost meaningless and difficult to use. It is more helpful to sort the data in order from lowest to highest. This would result in the list 1,1,1,2,3,3,4,4,4,5,5,5,5,6,6,7.

    • When you are sorting and rewriting your collection of data, be careful to include every point correctly. Count the data set to make sure you do not leave off any values.

    Advertisement

  3. Image titled Calculate Relative Frequency Step 3

    3

    Use a data table. You can summarize the results of your data collection by creating a simple data frequency table. This is a chart with three columns that you will use for your relative frequency calculations. Label the columns as follows:[2]

    • x. This column will be filled with each value that appears in your data set. Do not repeat items. For example, if the value 4 appears several times in the list, just put 4 under the x column once.
    • n, n(x) or fr(x). In statistics, the variable n is conventionally used to represent the count of a particular value. You may also write n(x), which is read as “n of x,” and means the count of each x-value. A final alternative is fr(x), which means the “frequency of x.” In this column, you will put the number of times that the value appears. For example, if the number 4 appears three times, you will place a 3 next to the number 4.
    • Relative Frequency or P(x). This final column is where you will record the relative frequency of each data item or grouping. The label P(x), which is read “P of x,” could mean the probability of x or the percentage of x. The calculation of relative frequency appears below. This column will be used after you complete that calculation for each value of x.
  4. Advertisement

  1. Image titled Calculate Relative Frequency Step 4

    1

    Count your full data set. Relative frequency is a measure of the number of times a particular value results, as a fraction of the full set. In order to calculate relative frequency, you need to know how many data points you have in your full data set. The will become the denominator in the fraction that you use for calculating.[3]

    • In the sample data set provided above, counting each item results in 16 total data points.
  2. Image titled Calculate Relative Frequency Step 5

    2

    Count each result. You need to determine the number of times that each data point appears in your results. You may want to calculate the relative frequency of one particular item, or you may be summarizing the overall data for the full data set.[4]

    • For example, in the data set provided above, consider the value 4. This value appears three times in the list.
  3. Image titled Calculate Relative Frequency Step 6

    3

    Divide each result by the total size of the set. This is the final calculation to determine the relative frequency of each item. You can set it up as a fraction or use a calculator or spreadsheet to perform the division.[5]

  4. Advertisement

  1. Image titled Calculate Relative Frequency Step 7

    1

    Present your results in a frequency table. The frequency table that you began above can be used to present the results in a format that is easy to review. As you perform each of the calculations, fill in the results in the corresponding places in the table. It is common to round your answers to two decimal places, although you will need to decide this for yourself based on the needs of your study. Because of rounding the end result may total something close to , but not exactly 1.0.[6]

    • For example, using the data set above, the relative frequency table would appear as follows:
    • x : n(x) : P(x)
    • 1 : 3 : 0.19
    • 2 : 1 : 0.06
    • 3 : 2 : 0.13
    • 4 : 3 : 0.19
    • 5 : 4 : 0.25
    • 6 : 2 : 0.13
    • 7 : 1 : 0.06
    • total : 16 : 1.01
  2. Image titled Calculate Relative Frequency Step 8

    2

    Report items that do not appear. It may be just as meaningful to report items whose frequency is 0 as to report those items that do appear in your data set. Look at the kind of data you are collecting, and if you notice any gaps in your sorted data, you may need to report them as 0s.

    • For example, the sample data set you have been working with includes all values from 1 to 7. But suppose that the number 3 never appeared. That could be important, and you would report the relative frequency of the value 3 as 0.
  3. Image titled Calculate Relative Frequency Step 9

    3

    Show your results as percentages. You may wish to turn your decimal results into percentages. This is a common practice, as relative frequency is often used as a predictor of the percentage of times that some value will occur. To convert a decimal number to a percentage, simply shift the decimal point two spaces to the right, and add a percent symbol.[7]

    • For example, the decimal result of 0.13 is equal to 13%.
    • The decimal result of 0.06 is equal to 6%. (Don’t just skip over the 0.)
  4. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    What is frequency of the event?

    Donagan

    It’s a measurement of how often the event occurs in a given time period.

  • Question

    How can you calculate frequency from relative frequency?

    Community Answer

    The word «frequency» alone is not very clear. In statistics, there are absolute frequency (the number of times a data point appears), relative frequency (usually presented as a percentage), or cumulative frequency. Cumulative frequency begins at 0 and adds up the frequencies as you move through your list. If you are just asked for «frequency,» from the relative frequency, it probably means the absolute frequency. Take your relative frequency, and multiply it by the total number of items in the full data set, and you will have the absolute frequency.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Physically speaking, the relative frequency tells you the presence or occurrence of a particular event in a set of events.

  • If you add up the relative frequencies of all items in a data set, you should get a sum of 1. If you round off your values, the sum may not be exactly 1.0.

  • If your data set is too large for simple counting, you may need to use a software package like MS-Excel or MATLAB to avoid mistakes.

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To stop face sweating, try applying an astringent containing tannic acid, like witch hazel, to your face twice a day using a cotton ball. Additionally, apply an antiperspirant spray to your scalp, temples, and upper forehead to temporarily block your sweat glands. Alternatively, try using a dry shampoo to manage scalp sweating by holding it 8 inches from your head, then spraying it in 2 inch sections of your hair at a time. After that, massage the dry shampoo into your scalp for even distribution. For more tips, like how to show your results as percentages, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 103,402 times.

Did this article help you?

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Обновлено: 26.05.2023

ЧАСТОТА, показатель, выражающий собой число повторений или возникновения событий (процессов). В статистике частота — это цифра, показывающая, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины. В физике — количество колебаний (или волн), наблюдающихся в определенной точке в течение секунды (измеряется в ГЕРЦАХ), в том числе, волны звука, света и радиоволны, раскачивания МАЯТНИКА и колебания пружин. Произведение частоты и длины волны — величина постоянная и равна скорости волны.

Научно-технический энциклопедический словарь .

Смотреть что такое «ЧАСТОТА» в других словарях:

ЧАСТОТА — (1) количество повторений периодического явления за единицу времени; (2) Ч. боковая частота, большая или меньшая несущей частоты высокочастотного генератора, возникающая при (см.); (3) Ч. вращения величина, равная отношению числа оборотов… … Большая политехническая энциклопедия

Частота — ионная плазменная частота – частота электростатических колебаний, которые можно наблюдать в плазме, электронная температура которой значительно превышает температуру ионов; эта частота зависит от концентрации, заряда и массы ионов плазмы.… … Термины атомной энергетики

ЧАСТОТА — ЧАСТОТА, частоты, мн. (спец.) частоты, частот, жен. (книжн.). 1. только ед. отвлеч. сущ. к частый. Частота случаев. Частота ритма. Повышение частоты пульса. Частота тока. 2. Величина, выражающая ту или иную степень какого нибудь частого движения … Толковый словарь Ушакова

частота — ы; частоты; ж. 1. к Частый (1 зн.). Следить за частотой повторения ходов. Необходимая ч. посадки картофеля. Обратить внимание на частоту пульса. 2. Число повторений одинаковых движений, колебаний в какую л. единицу времени. Ч. вращения колеса. Ч … Энциклопедический словарь

ЧАСТОТА — (Frequency) число периодов в одну секунду. Частота величина, обратная периоду колебаний; напр. если частота переменного тока f = 50 колебаниям в сек. (50 Н), то период Т = 1/50 сек. Частота измеряется в герцах. При характеристике излучения… … Морской словарь

частота — гармоника, колебание Словарь русских синонимов. частота сущ. • густота • плотность (о растительности)) Словарь русских синонимов. Контекст 5.0 Информатик. 2012 … Словарь синонимов

частота — появления случайного события – это отношение m/n числа m появлений этого события в данной последовательности испытаний (его встречаемость) к общему числу n испытаний. Термин частота используется также в значении встречаемость. В старинной книжке… … Словарь социологической статистики

Частота — колебаний, количество полных периодов (циклов) колебательного процесса, протекающих в единицу времени. Единицей частоты является герц (Гц), соответствующий одному полному циклу в 1 с. Частота f=1/T, где T период колебаний, однако часто… … Иллюстрированный энциклопедический словарь

ЧАСТОТА — ЧАСТОТА, ы, мн. оты, от, жен. 1. см. частый. 1. Величина, выражающая число повторений чего н. в единицу времени (спец.). Ч. электромагнитных волн. Ч. колебаний маятника. | прил. частотный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю.… … Толковый словарь Ожегова

частота — Величина, обратная периоду электрического тока. Примечание — Аналогично определяют частоты электрического напряжения, электродвижущей силы, магнитного потока и т. д. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия Синонимы… … Справочник технического переводчика

Статистика занимается изучением количественной стороны массовых общественных явлений и процессов в числовой форме, выявляя особые закономерности.

На сегодняшний день статистика применяется практически во всех сферах общественной жизни, начиная от моды, кулинарии, садоводства и заканчивая астрономией, экономикой, медициной.

Перво-наперво, при знакомстве со статистикой необходимо изучить основные статистические характеристики, применяемые для анализа данных.

Ну вот, с этого и начнем!

Математическая статистика — коротко о главном

Определения математической статистики:

Статистическая выборка – выбранное из всего числа объектов конкретное число объектов для исследования.

Объем выборки – количество элементов ( _>,_>, …, _>), попавших в выборку.

Размах выборки – разность между максимальным и минимальным значениями элементов выборки.

Среднее арифметическое ряда чисел – это частное от деления суммы этих чисел на их количество (объем выборки).

Среднее арифметическое ряда чисел ( left( _> right)) – это частное от деления суммы этих чисел ( left( _>+_>+…+_> right)) на их количество ( left( n right))

Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду.

Медиана упорядоченного ряда чисел с нечетным числом членов – число, которое окажется посередине.

Медиана упорядоченного ряда чисел с четным числом членов –среднее арифметическое двух чисел, записанных посередине.

Частота представляет собой число повторений, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.

Частота – число повторений определенного значения параметра в выборке.

Относительная частота – это отношение частоты к общему числу данных в ряду.

Для наглядности удобно представлять данные в виде соответствующих диаграмм/графиков.

Статистические характеристики

К основным статистическим характеристикам выборки данных…

Дальше на примерах будет все понятно.

Так вот к основным статистическим характеристикам выборки данных относятся:

  • объем выборки,
  • размах выборки,
  • среднее арифметическое,
  • мода,
  • медиана,
  • частота,
  • относительная частота.

Стоп-стоп-стоп! Сколько новых слов! Давай обо всем по порядку.

Объем и размах выборки

Выборка состоит из элементов ( _>,_>, …, _>), попавших в нее. Количество этих элементов ( left( n right)) называется объемом выборки.

Например, в таблице ниже приведен рост игроков сборной по футболу:

Данная выборка представлена ( displaystyle 11) элементами ( displaystyle left( _>=183; _>=194; _>=187; …; _>=181 right)).

Таким образом, объем выборки ( displaystyle left( n right)) равен ( displaystyle 11).

Разность между максимальным и минимальным значениями элементов выборки называется размахом выборки.

Размах представленной выборки составляет ( _<max >>-_<min >>=194-176=18) см.

Среднее арифметическое выборки

Среднее арифметическое ряда чисел ( left( _> right)) – это частное от деления суммы этих чисел ( left( _>+_>+…+_> right)) на их количество ( left( n right)).

Не очень понятно? Давай смотреть на наш пример.

Определите средний рост игроков.

Ну что, приступим? Мы уже разбирались, что ( displaystyle _>=183; _>=194; _>=187; …; _>=181); ( displaystyle n=11).

Можем сразу смело все подставлять в нашу формулу:

Таким образом, средний рост игрока сборной составляет ( displaystyle 183,8) см.

Ну или вот такой пример:

Ученикам 9 класса на неделю было задано решить как можно больше примеров из задачника. Количество примеров, решенных учениками за неделю, приведены ниже:

Найдите среднее количество решенных задач.

Итак, в таблице нам представлены данные по ( displaystyle 20) ученикам. Таким образом, ( displaystyle n=20). ( displaystyle _>=88; _>=90; _>=51; …; _>=47.)

Ну что ж, найдем для начала сумму (общее количество) всех решенных задач двадцатью учениками:

Теперь можем смело приступать к расчету среднего арифметического решенных задач, зная, что ( displaystyle _>+_>+…+_>=1560), а ( displaystyle n=20):

Таким образом, в среднем ученики 9 класса решили по ( displaystyle 78) задач.

Еще один пример:

На рынке помидоры реализуются ( displaystyle 7) продавцами, причем цены за ( displaystyle 1) кг распределены следующим образом (в руб.): ( displaystyle 60,text< >55,text< >54,text< >70,text< >65,text< >67,text< >63).

Какова средняя цена килограмма помидоров на рынке?

Решение.

Итак, чему в данном примере равно ( displaystyle n)? Все верно: семь продавцов предлагают семь цен, значит, ( displaystyle n=7)! ( displaystyle _>=60; _>=55; …; _>=63).

Ну вот, со всеми составляющими разобрались, теперь можем приступить к расчету средней цены:

Ну что, разобрался?

Тогда посчитай самостоятельно среднее арифметическое в следующих выборках:

  • ( displaystyle 34; 46; 67; 37; 45;text< >60)
  • ( displaystyle 5; 4; 7; 9; 10; 12; 17; 8)
  • ( displaystyle 156; 180; 164; 172)

Ответы: ( displaystyle 48,17;text< >9; 168).

Решил? Можем двигаться дальше.

Мода и медиана

Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду.

Обратимся снова к нашему примеру со сборной по футболу:

Чему в данном примере равна мода? Какое число наиболее часто встречается в этой выборке?

Все верно, это число ( displaystyle 181), так как два игрока имеют рост ( displaystyle 181) см; рост же остальных игроков не повторяется.

Тут все должно быть ясно и понятно, да и слово знакомое, правда?

Ключевое слово – СЕРЕДИНА. Если ты знал это определение, то тебе легко будет запомнить, что такое медиана в статистике.

Медианой ряда чисел с нечетным числом членов называется число, которое окажется посередине, если этот ряд упорядочить (проранжировать, т.е. расположить значения в порядке убывания или возрастания).

Медианой ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине, если этот ряд упорядочить.

Ну что, вернемся к нашей выборке футболистов?

Для того, чтобы в ряду чисел был порядок, можно расположить значения роста футболистов как в порядке убывания, так и в порядке возрастания. Мне удобней выстроить этот ряд в порядке возрастания (от самого маленького к самому большому).

Вот, что у меня получилось:

Так, ряд упорядочили, какой еще есть важный момент в определении медианы? Правильно, четное и нечетное количество членов в выборке.

Заметил, что для четного и нечетного количества даже определения отличаются? Да, ты прав, не заметить – сложно. А раз так, то нам надо определиться, четное у нас количество игроков в нашей выборке или нечетное?

Все верно – игроков ( displaystyle 11), значит, количество нечетное! Теперь можем применять к нашей выборке менее заковыристое определение медианы для нечетного количества членов в выборке.

Ищем число, которое оказалось посередине в нашем упорядоченном ряду:

Ну вот, чисел у нас ( displaystyle 11), значит, по краям остается по пять чисел, а рост ( displaystyle 183) см будет медианой в нашей выборке.

Не так уж и сложно, правда?

А теперь разберем пример с нашими отчаянными ребятами из 9 класса, которые решали примеры в течение недели:

Готов искать в этом ряду моду и медиану?

Для начала, упорядочим этот ряд чисел (расположим от самого маленького числа к самому большому). Получился вот такой вот ряд:

Теперь можно смело определить моду в данной выборке. Какое число встречается чаще других? Все верно, ( displaystyle 77)!

Таким образом, мода в данной выборке равна ( displaystyle 77).

Моду нашли, теперь можем приступать к нахождению медианы. Но прежде, ответь мне: каков объем рассматриваемой выборки? Посчитал? Все верно, объем выборки равен ( displaystyle 20).

А ( displaystyle 20) – это четное число. Таким образом, применяем определение медианы для ряда чисел с четным количеством элементов.

То есть нам надо в нашем упорядоченном ряду найти среднее арифметическое двух чисел, записанных посередине. Какие два числа располагаются посередине?

Все верно, ( displaystyle 80) и ( displaystyle 81)!

Таким образом, медианой этого ряда будет среднее арифметическое чисел ( displaystyle 80) и ( displaystyle 81):

( 80,5)— медиана рассматриваемой выборки.

Частота и относительная частота

Частота представляет собой число повторений, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.

То есть частота определяет то, как часто повторяется та или иная величина в выборке.

Разберемся на нашем примере с футболистами. Перед нами вот такой вот упорядоченный ряд:

Частота – это число повторений какой-либо величины параметра. В нашем случае, это можно считать вот так. Сколько игроков имеет рост ( 176)?

Все верно, один игрок. Таким образом, частота встречи игрока с ростом ( 176) в нашей выборке равна ( 1).

Сколько игроков имеет рост ( 178)? Да, опять же один игрок. Частота встречи игрока с ростом ( 178) в нашей выборке равна ( 1).

Задавая такие вопросы и отвечая на них, можно составить вот такую табличку:

Ну вот, все довольно просто. Помни, что сумма частот должна равняться количеству элементов в выборке (объему выборки).

То есть в нашем примере: ( 1+1+1+2+1+1+1+1+1+1=11)

Перейдем к следующей характеристике – относительная частота.

Относительная частота – это отношение частоты к общему числу данных в ряду. Как правило, относительная частота выражается в процентах.

Обратимся опять к нашему примеру с футболистами. Частоты для каждого значения мы рассчитали, общее количество данных в ряду мы тоже знаем ( left( n=11 right)) .

Рассчитываем относительную частоту для каждого значения роста и получаем вот такую табличку:

А теперь сам составь таблицы частот и относительных частот для примера с 9-классниками, решающими задачи.

Учебное пособие. М.: МЗ-Пресс, 2004.

5. Основные проблемы прикладной статистики — описание данных, оценивание и проверка гипотез

Из приведенного выше определения математической статистики следует, что описание статистических данных дается с помощью частот. Частота – это отношение числа Х наблюдаемых единиц, которые принимают заданное значение или лежат в заданном интервале, к общему числу наблюдений n, т.е. частота – это Х/n. (В более старой литературе иногда Х/n называется относительной частотой, а под частотой имеется в виду Х. В старой терминологии можно сказать, что относительная частота – это отношение частоты к общему числу наблюдений.)

Число Х имеет биномиальное распределение, задаваемое вероятностью р того, что случайная величина, с помощью которой моделируются результаты наблюдений, принимает заданное значение или лежит в заданном интервале, и общим числом наблюдений n. Из закона больших чисел (теорема Бернулли) следует, что

при n→∞ (сходимость по вероятности), т.е. частота сходится к вероятности. Теорема Муавра-Лапласа позволяет уточнить скорость сходимости в этом предельном соотношении.

Чaстота́ — физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени.
Единицей частоты в Международной системе единиц (СИ) в общем случае является Герц (Гц, Hz).
Величина, обратная частоте, называется периодом.

Измерения
Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра.
Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность) , синтезаторы частот, генераторы сигналов и др.
Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

ЧАСТОТА, это число повторений одинаковых движений, колебаний в какую-л. единицу времени.
В статистике частота — это цифра, показывающая, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.
В физике — количество колебаний (или волн) , наблюдающихся в определенной точке в течение секунды (измеряется в ГЕРЦАХ) , в том числе, волны звука, света и радиоволны, раскачивания МАЯТНИКА и колебания пружин. Произведение частоты и длины волны — величина постоянная и равна скорости волны.

Читайте также:

      

  • Личность и затрудненное общение кратко
  •   

  • Сведения из биографии философичность гармоничность и мелодичность лирики фета и тютчева кратко
  •   

  • Святилище афины в пергаме кратко
  •   

  • Статистический показатель и его виды кратко
  •   

  • История танка ис 2 кратко

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти привета соседа
  • Как составить свой рацион вегетарианца
  • Как найти поставщика для дропшиппинга в россии
  • Как составить рекомендации для сотрудника
  • Как составить дневник для тренировок

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии