Как найти погрешность по физике 7 класс

Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе.

Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована (эталоны). 

Обрати внимание!

Процесс измерения физической величины состоит из:

1) поиска её значения с помощью опытов и средств измерения;

2) вычисления достоверности (точности измерений) полученного значения. 

Точность измерений зависит от многих причин:

  • расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;
  • деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;
  • несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;
  • физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой.

линейка.svg

Рис. (1). Линейка и брусок

Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет (1) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между (9) и (10) метками.

У нас есть два варианта определения длины этого бруска.

(1). Если мы заявим, что длина бруска — (9) сантиметров, то недостаток длины от истинной составит более половины сантиметра ((0,5) см (= 5) мм).

(2). Если мы заявим, что длина бруска — (10) сантиметров, то избыток длины от истинной составит менее половины сантиметра ((0,5) см (= 5) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного.

Погрешность измерительного прибора равна цене деления прибора.

Для первой линейки цена деления составляет (1) сантиметр. Значит, погрешность этой линейки (1) см.

Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. В этом случае цена деления будет равна (1) мм, а длина бруска — (9,8) см.

images.jpg

Рис. (2). Деревянная линейка

Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления (0,1) мм и (0,05) мм.

lin.png

Рис. (3). Штангенциркуль

На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений.

Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

Результаты измерения записывают в виде

A=a±Δa

, где (A) — измеряемая величина, (a) — средний результат полученных измерений,

Δa

  — абсолютная погрешность измерений.

Источники:

Рис. 1. Линейка и брусок. © ЯКласс.

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Как определять погрешности измерений

Измерение – нахождение значения физической величины
опытным путем с                   помощью средств измерений.

Прямое
измерение

– определение значения физической
величины непосредственно средствами измерения.

Косвенное
измерение

– определение значения физической
величины по формуле, связывающей ее с другими физическими величинами, определяемыми
прямыми измерениями.

          А,  В, С, — физические величины.

          Апр. – приближенное значение физической величины.

         А – абсолютная погрешность измерения физической
величины.

          — относительная погрешность измерения
физической величины.

          иА
– абсолютная
инструментальная погрешность, определяемая конструкцией прибора.

          оА – абсолютная погрешность отсчета, она равна в
большинстве случаев

                     половине цены деления; при
измерении времени – цене деления секундомера или часов.

          Абсолютную погрешность измерения
обычно округляют до одной значащей цифры:

         

          Численное значение результата
измерений округляют так, чтобы его последняя цифра оказалась в том же разряде,
что и цифра погрешности:

          

          
Результат
измерения записывается так:

       %

                                                    

      
Определение погрешности методом среднего арифметического

          При многократных
измерениях величины погрешность можно оценить следующим образом:

1.    
Определить среднее
значение величины
А:

 (при трех
измерениях).

2.Определить отклонение каждого значения от среднего:

       

     3.Определить среднее значение отклонения,
его и принимают за абсолютную погрешность:

   4.Определить
относительную погрешность и выразить ее в процентах:

№ опыта

1

2

3

          Многократные измерения
предпочтительнее, так как при их проведении возможна компенсация случайных
факторов, влияющих на результат. Обычно многократные измерения проводят, слегка
изменяя условия опыта, но предполагая, что значение величины А не изменяются

Определение
погрешности косвенных измерений

          При косвенных измерениях значение
физической величины находится путем    расчетов по формуле.

      Относительную погрешность
определяют так, как показано в таблице:

Формула величины

Формула
относительной погрешности

1.

2.

3.

4.

     Абсолютную погрешность определяют
по формуле:

(  выражается десятичной дробью)

    Пример:  пусть измеряется сопротивление проводника. .

   Результаты прямых измерений:     

    Тогда ;                                                                                                    
,    ;                                                                
,       ;                                             
,     ,   .

Графическое
представление результатов эксперимента

                                   Правила  построения
 графиков

Ÿ  выберите соответствующую бумагу;

Ÿ  выберите масштаб по осям координат;

Ÿ  напишите обозначения измеряемых физических величин;

Ÿ  нанесите на график данные;

Ÿ  нанесите на график доверительные интервалы;

Ÿ  проведите кривую через нанесенные точки;

Ÿ  составьте заголовок графика.

          Для построения графиков выпускают
специальную бумагу-миллиметровку.

          При выборе масштабов по осям
координат следует руководствоваться следующими правилами:

         — значение независимой переменной
откладывают вдоль оси абсцисс, функции – вдоль оси ординат;

         — цена наименьшего деления масштабной
сетки должна быть сравнимой с величиной погрешности измерения;

         — точка пересечения оси абсцисс и оси
ординат не обязательно должна иметь координаты (0,0).

          При построении графиков следует
иметь в виду, что по результатам опытов мы получаем не точку, а прямоугольник
со сторонами  и.

  

                    
В

 

 

                                                                                             
 

                                                                                           

                                                                                           

                       0                                                                        
А

          При выполнении простых лабораторных
работ достаточно обвести экспериментальную точку кружком или пометить
крестиком, не указывая доверительных интервалов.

          Этот кружок или крестик будут
обозначать, что данная точка получена с каким-то приближением и истинное
значение измеряемой величины лежит где-то в ее окрестности. 

Правила
приближенных вычислений

 1. Основное
правило округления.

Если первая
отброшенная цифра равна 5 или больше, то последнюю из сохраняемых цифр
увеличивают на единицу; если первая отброшенная цифра меньше 5, то последнюю из
сохраняемых цифр оставляют без изменения, например:

                              

 2. При сложении и
вычитании
приближенных чисел
в полученном результате сохраняют столько десятичных знаков, сколько их в числе
с наименьшим количеством десятичных знаков, например:

      

 3. При умножении
и делении
приближенных чисел
в полученном результате нужно сохранить столько значащих цифр, сколько их имеет
приближенное число с наименьшим количеством значащих цифр, например:

                        

 4. При возведении
в квадрат
приближенного числа
нужно в результате сохранять столько значащих цифр, сколько их имеет возводимое
в степень число, например:

                   

 5. При извлечении
квадратного корня
в результате
нужно сохранять столько значащих цифр, сколько их имеет подкоренное число,
например:

                   

 6. При вычислении
промежуточных результатов
в
них следует сохранять на одну цифру больше, чем требуют правила 2-5. Причем при
подсчете значащих цифр запасные цифры не учитываются. В окончательном
результате
запасная цифра отбрасывается   по основному правилу округления.

 7. При нахождении
углов или тригонометрических функций
значение соответствующего угла записывают с точностью до градуса, если
значение тригонометрической функции имеет две значащие цифры; если угол задан с
точностью до градусов, то в значении тригонометрической функции сохраняют две
значащие цифры, например:

                   

Смелое заявление: в экспериментальной науке неукоснительная точность измерений не достижима. Ну, с одной стороны, это действительно так. С другой стороны, точность все-таки — понятие относительное. Если учитывать погрешность измерений, то, оказывается, «приручаются» даже самые разбросанные величины. Научимся же приручать. Сегодня о том, что такое погрешность. Как найти погрешность, как выглядит формула погрешности — рассказываем и показываем.

Откуда берется погрешность измерений?

Одна из самых быстрых машин, которую можно встретить на городской дороге — BMW M8 Competition. Согласно тестированиям автопроизводителя способна разгоняться до 100 км/ч за впечатляющие 2.5 с. Иными словами, вы успеете моргнуть лишь единожды. Прежде, чем спидометр стильного немецкого купе выдаст отметку «100» и, озорно светя задними габаритными огнями, улетит в закат.

Рисунок 1. Панель приборов автомобиля. Спидометр располагается справа

Физические величины различного рода и их измерения так или иначе окружают нас везде. К примеру, та же вышеупомянутая динамика разгона. Время, за которое транспортное средство разгоняется до определенной скорости, является важным параметром для любого автомобилиста, приобретающего новенький спорткар в салоне.

В жару мы то и дело поглядываем на отметку термометра. И ужасаемся, когда температура на отметке безжалостно приближается к 40 °C. Если опаздываем, то обязательно держим под рукой часы и проверяем время по минутам.

Когда худеем, каждое утро начинаем со взвешивания и фиксируем массу своего тела в килограммах. Расстраиваемся, если набрали пару сотен лишних граммов.

Это — физические величины. Правда несмотря на то, что физика относится к наукам точным, как бы удивительно ни было, ни одна ее величина — ни время, ни длина, ни скорость, ни что-либо еще —  не может быть выражена с предельной точностью.

Ведь вряд ли вы весите, скажем, ровно 60 килограмм без единого лишнего миллиграмма. Или имеете рост ровно 170 сантиметров. Ровно так же, как и BMW M8 Competition не разгоняется до 100 км/ч абсолютно ровно за две с половиной секунды.

Что такое точность измерений?

Точность измерений характеризует близость результата измерения к фактическому значению измеряемой величины. Строго говоря, ни одна физическая величина не может быть измерена с абсолютной точностью. То есть так, чтобы данные измерительного прибора отображали истинное значение.

Мир и его явления, на самом деле, практически всегда имеют отношение к иррациональным числам. Таким, как, к примеру, результат деления десяти на три. Наберите, кстати, данную операцию на калькуляторе и посмотрите на то, как неэстетично в реальности выглядят данные — с кучей знаков после запятой, за которыми не угнаться.

Однако иррациональность чисел не удивляет, да и слишком абстрактна, дабы уловить суть. Что есть деление? Тогда, для конкретности, стоит покуситься на святое — на время. Казалось бы, что может быть точнее времени, показываемого самыми точными на свете часами — атомными часами?

И тем не менее, даже если вы зайдете на онлайн-ресурс, официально регистрирующий международное атомное время с точностью до миллисекунд, действительного точного измерения времени там вы не найдете.

Всегда есть условности: задержка передачи данных между сетевыми элементами; ваш мозг, регистрирующий и обрабатывающий информацию, поступающую через органы чувств и т. д. Все это отдаляет нас, хоть и несущественно, от фактического значения величины времени.

Именно поэтому в физике одним из важнейших понятий является понятие погрешность измерений.

Цена деления и точность измерений

Представьте, что вас отправили в магазин купить сахар, но вот незадача: фасованный в пачках как раз закончился и остался только на развес. Что делать, вы просите продавца тогда отмерить вам ровно килограмм. Продавец взял лопатку, наполнил пакет, положил его на весы, и они выдают значение — 1.000 кг.

Как удачно положили.

Вы рассчитываетесь и счастливым возвращаетесь домой. А теперь представим, что по необыкновенной случайности у вас дома имеются весы. Они показывают массу с точностью до миллиграмма. Вы решаете интереса ради перевесить пакет, чтобы посмотреть, действительно ли его масса равна строго килограмму.

И какого же удивление, когда более точные весы показывают массу не в 1.000 кг, а в 0.999990 кг. Иными словами, вас обсчитали. Обсчитали, между прочим, на десять миллиграмм!

Чем меньше цена деления прибора, тем точнее измерение.

Ваши весы с учетом массы до миллиграмма оказались точнее магазинных «граммовых» весов. Однако и это не предел, ведь существуют фармакологические весы, определяющие массу до микрограмма — одной миллиардной килограмма. Так можно продолжать до бесконечности, пока у нас не закончатся технологические возможности сконструировать еще более точные весы.

Однако все измерительные приборы, пусть и самые точные, несовершенны. Несовершенно даже само то, как мы видим, слышим и ощущаем мир вокруг. Это, наряду с прочими факторами, приводит к тому, что при измерении величины получается ее приближенное значение, не истинное.

Что такое погрешность измерений?

Мы готовы дать определение тому, что такое погрешность:

Погрешность — это разница между приближенным и истинным значениями.

В физике погрешность — обыденное явление, присутствующее внутри практически каждой величины, и мало что имеет общего с ошибкой в привычном понимании слова.

Все величины, которые, к примеру, вы видите в типовых физических задачах на вычисление, так или иначе содержат погрешность. Ее не обозначают для удобства. Поэтому помните о невозможности проводить эксперименты в идеальных условиях и о том, что ни один прибор чаще всего не сможет показать результат таким, каков он есть на самом деле.

Важно. Погрешность не равно ошибке. В обычном, бытовом языке мы привыкли к тому, что слово «погрешность» у нас ассоциируется с просчетом или упущением.

Как правило, при однократном проведении измерения определить значение погрешности крайне затруднительно: для ее выявления обычно проводят серию равноточных измерений — измерений, произведенных в одинаковых условиях.

После результаты сличаются, то есть сравниваются между собой и, при необходимости, сопоставляются с различными экспериментальными величинами. На основе данных, полученных в результате измерений и сличения, вычисляется погрешность.

Как найти погрешность: эксперимент с линейкой

Обнаружить явление погрешности можно самостоятельно вне строгой лабораторной обстановки: достаточно провести простой эксперимент измерения длины с обычной школьной линейкой. В качестве примера, возьмем карандаш и выполним с ним замеры.

Рисунок 2. Замер линейкой с ценой деления 1 см.

Во-первых, необходимо зафиксировать цену деления измерительного прибора. Цена деления определяется разностью двух ближайших отметок. В нашем случае она равна 1 см.

Примечание. На разметке измерительного прибора всегда указываются единицы измерения. К примеру, на стандартной линейке можно увидеть пометку «см», сантиметры.

Довольно часто используемые для измерений приборы не работают с основными единицами СИ — единицы величин либо являются производными, как сантиметр, либо, как миллиметр ртутного столба, являются внесистемными.

Когда вас просят привести ответ в СИ, не забывайте о переводе значений, если измерительный прибор работает с внесистемными или производными единицами. В случае с сантиметровой линейкой, при подобном требовании, обязательно выражение результата в метрах и т. п.  

Далее совмещаем конец карандаша с нулевой отметкой. Видим, что второй конец располагается между отметками 12 и 13.

Какой из этих результатов следует принять за длину нашего карандаша?

Очевидно, что тот, который будет ближе к истинному значению — 12 см. Если бы мы провели аналогичный опыт, использовав более точную линейку с ценой деления в миллиметр, мы получили бы значение 12.2 см.

Рисунок 3. Замер линейкой с ценой деления 1 мм

А какой из этих результатов лучше будет засчитать теперь? Какой правильный?

Оба результата фактически являются верными, их разница заключается лишь в том, что получены они были с разной точностью измерения: длина карандаша во втором варианте была дана с точностью до миллиметра, в первом — до сантиметра. Можно было бы воспользоваться микро́метром, еще более точным измерительными прибором, и получить результат с точностью до микроме́тра. Однако в случае с карандашом точности до миллиметра будет достаточно.

Наш ответ: 12.2 см.

Вычисление погрешности

Но что делать, если бы мы захотели учесть погрешность? Как ее вычислить и обозначить математически?

На самом деле, точно определить погрешность не так просто. Для этого необходимо владение методами математической статистики, для чего требуется уже знание высшей математики. Плюс немаловажно определение комплексных параметров вроде класса точности измерительного прибора.

Поэтому для простоты измерений с погрешностью считается, что обычно она равна половине цены деления прибора. В нашем эксперименте при цене деления линейки в сантиметр погрешность составила 0.5 см. При цене деления в миллиметр — 0.05 см.

Еще раз, внимание:

За погрешность измерений берется половина цены деления прибора.

Так, полученные замеры, где $l$ — длина карандаша, можно было бы записать в следующем виде:

$l$ = 12 ± 0.5 cм — в случае, когда цена деления составляла сантиметр;

$l$ =  12.2 ± 0.05 см — в случае, когда цена деления составляла миллиметр.

Математический символ плюс-минус (±) используется для обозначения интервала значений и расшифровывается следующим образом: истинное значение величины заключено в диапазоне «от-до». 

Формула погрешности

Таким образом, общая формула для записи величин с погрешностью выглядит следующим образом:

$X = x pm Delta x,$

где $X$ — измеряемая величина, $x$ — результат измерений, $Delta x$ — погрешность. 

Выходит, что истинное значение длины карандаша располагается в диапазоне значений от 11.5 см до 12.5 см.

При более точных замерах до миллиметра: от 12.15 см до 12.25 см.

Однако остается один последний интересный момент. Несмотря на то, что мы провели замеры и определили длину, философски говоря, вопрос остается вопросом: так какую же точную длину имеет карандаш?

Таковы погрешности. Где-то от, где-то до. 

А точно — никак.

Физические
величины. Точность и погрешность измерений

Измерять
– значит, познавать

Данная
тема посвящена физическим величина и их измерениям. В физике часто приходится
измерять те или иные величины. Измерить можно высоту дома или длину улицы.

Можно
измерить объём воды в колбе или массу воды в стакане.

Но
что означают эти измерения?
Измерить какую-либо величину – значит
сравнить её с однородной величиной, принятой за единицу.
Из приведённых
выше примеров, можно заметить, что, например, единицей объёма является литр,
а единицей массы является грамм.
Для удобства была введена международная
система единиц, которая называется СИ.

В
этой системе длина измеряется в метрах, масса в килограммах, объём — в
кубических метрах, время – в секундах и так далее.
В процессе
изучения физики будут вводиться новые величины и соответствующие им единицы
измерения. Иногда физические величины можно не измерять, а вычислять по
формуле.
Например, для того, чтобы вычислить среднюю скорость нужно
пройденное расстояние разделить на время. То есть, данная формула помогает
вычислить такую физическую величину, как средняя скорость.

Известно
что, иногда применяются единицы измерения, которые в десятки, сотни, тысячи и
так далее раз больше принятых единиц измерения. Такие единицы измерения
называются кратными.

Каждая
приставка соответствует тому или иному множителю. Например, «Дека»
означает в 10 раз больше, «гекто» — в сто раз больше, «кило» —
в тысячу раз больше
, «мега» — в миллион раз больше и так далее. Необходимо
отметить, что в физике принято записывать такие множители в виде степени числа
10. Например, вместо миллиона записывается 106. Также, могут быть
использованы единицы, которые в десятки, сотни, тысячи и так далее раз меньше
принятых единиц измерения. Такие единицы измерения называются дольными.

Каждая
приставка соответствует тому или иному множителю. Например, «Деци»
означает в 10 раз меньше, «санти» — в сто раз меньше, «милли»
— в тысячу раз меньше
, «микро» — в миллион раз меньше и так далее.
Эти приставки также записываются в виде степени числа 10. Например, вместо
записи числа 0,000001 записывается 10–6.

У
каждого ученика имеется линейка, длина которой измеряется в сантиметрах, то
есть в единицах, которые в сто раз меньше метра. Поэтому, если длина линейки
составляет 15 сантиметров, мы можем сказать, что её длина 0,15 метра.

Линейка
– это прибор для измерения длины
. Конечно, линейка относится к
самым простым измерительным приборам. Существуют значительно более сложные
приборы: например, термометр, который применяется для измерения температуры,
гигрометр, который используется для измерения влажности или амперметр, который
используется для измерения силы электрического тока.

Важно
знать, как пользоваться измерительными приборами и насколько могут быть точны
те или иные измерения.
У каждого ученика есть линейка и карандаш.
Можно попытаться измерить длину карандаша. В первую очередь нужно определить,
какова цена деления измерительного прибора. Для этого необходимо найти
два ближайших штриха шкалы, возле которых указаны значения величины (например, 1 см и 2 см). Далее нужно сосчитать число делений, заключенных между цифрами 1 и 2. При подсчёте
получается, что количество этих делений равно 10. Таким образом, между
отметками 1 см и 2 см заключено десять делений. Вычитаем из большего числа
меньшее и делим на количество делений между ними. В результате вычислений
получаем, что цена деления линейки составляет 0,1 см или 1 мм. Данный пример объясняет, как определить цену деления любого
измерительного прибора
.

Как
видно из рисунка, длина карандаша чуть меньше десяти сантиметров. Если бы на
этой линейке не было миллиметровых делений, то можно было сказать, что длина
карандаша равна десяти сантиметрам. Но это было бы не совсем точное
измерение
. Такую неточность называют погрешностью измерения. В представленном
случае, на линейке есть миллиметровые деления, поэтому можно измерить длину
карандаша с более высокой точностью – 9,8 см. Это говорит о том, что чем меньше цена деления, тем больше точность измерения. Ну а большая точность
измерения означает меньшую погрешность
. Однако абсолютно точных
измерений не существует
. Если дать один и тот же карандаш каждому
ученику из класса и попросить измерить длину карандаша, не у всех получится
одинаковый результат. Тем не менее, погрешность измерения не может быть
больше цены деления.
Например, если видно, что длина карандаша не точно 9,8 см, а чуточку больше, то понятно, что длина карандаша находится в промежутке от 9,8 см до 9,9 см.

Погрешность
измерений принято считать равной половине цены деления измерительного прибора.
То
есть, в рассмотренном случае, погрешность измерений составляет 0,5 мм.
Поэтому, после того, как измерили карандаш и записали, что его длина равна 9,8 см, следует записать погрешность.

Знак
«±» означает, что указанная длина может быть на полмиллиметра больше или на
полмиллиметра меньше. Таким образом, истинное значение длины карандаша
находится в промежутке от 9,75 см до 9,85 см.

В
общем случае запись измеряемых величин с учетом погрешности имеет следующий
вид:

где А
– измеряемая величина;

а
результат измерения;

Da
погрешность измерений.

Необходимо
отметить, что при сложении или вычитании величин с погрешностью, погрешность
результата равна сумме погрешностей каждой величины
. В этом легко убедиться
на примере. На рисунке показаны два отрезка AB
и
CD, длины которых измерены с определенной погрешностью.

Рассчитаем
сумму длин этих отрезков. Из рисунка видно, что отрезок AB равен 1 м ± 1 см.
Истинная длина этого отрезка находится в промежутке 99 см ≤ АВ ≤ 101 см.
Отрезок CD равен 12 см ± 0,5 см.
Истинная длина этого отрезка находится в промежутке от 11,5 см ≤ CD ≤ 12,5 см.
Поэтому, сумма длин этих отрезков будет иметь еще большую погрешность. Прежде
чем производить вычисления, необходимо перевести обе длины в одинаковые единицы
измерения.

Таким
образом, получаем, что сумма длин отрезков AB
и
CD равна

Важно
отметить, что этот же промежуток мы бы получили, если бы сложили наименьшие и
наибольшие длины отрезков AB и CD. Следовательно,
при сложении или вычитании величин, измеренных с погрешностями, погрешность
результата равна сумме погрешностей каждой из величин.

Упражнения.

Упражнение
1
.
Заполните таблицу, указав, что из перечисленных слов является физическим телом,
единицей измерения, физической величиной или физическим явлением: ветер,
Луна, килограмм, дерево, длина, скорость, испарение.

Решение:

Упражнение
2
.
Родители измерили рост братьев Димы и Васи с помощью рулетки, цена деления
которой 1 см. Подсчитайте, насколько см Дима выше, чем Вася.

Решение:

Упражнение
3
.
Найдите суммарную массу животных с погрешностью.

Решение:

Основные
выводы:


Для описания физических тел или физических явлений вводится физическая
величина
, которую можно измерить с помощью измерительных приборов или
вычислить по формуле.


Измерение величины – это сравнение её с однородной величиной, принятой
за единицу.


Кратные приставки – это приставки означающие увеличение в десятки,
сотни, тысячи и так далее раз.


Дольные приставки – это приставки, означающие
уменьшение в десятки, сотни, тысячи и так далее раз.


Погрешность измерений – неточность допускаемая при измерении. За
погрешность измерений данного прибора принимают половину цены деления этого
прибора.


При сложении или вычитании величин с погрешностями, погрешность результата
вычислений равна сумме погрешностей каждой величины.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как правильно составить договор купли продажи квартиры если 2 собственника
  • Как правильно составить сосуд желаний
  • Как найти повторяющиеся книги
  • Как называется составить счет
  • Как найти координату точки на карте яндекс

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии