В зависимости от величин углов треугольника выделяют:
-
остроугольные треугольники
(все углы острые, как на рисунке выше);
-
прямоугольные треугольники
(один угол прямой —
∡P=90°
);
-
тупоугольные треугольники
Площадь треугольника
Прямоугольный треугольник легко представить как половину прямоугольника.
Если площадь прямоугольника равна произведению длин сторон, то для определения площади треугольника необходимо это произведение разделить на (2).
Допустим, (RP) (=) (a), (TP) (=) (b);
Если треугольник не имеет прямого угла, можно построить два прямоугольника, как показано на рисунке.
Допустим, (MA = BD = NC) (=) (h), (AC) (=) (a).
.
Как видно, достаточно в треугольнике от одной вершины провести отрезок под прямым углом к противолежащей стороне и использовать длины отрезка для определения площади треугольника.
Отрезок называют высотой треугольника.
Как найти площадь треугольника
О чем эта статья:
8 класс, 9 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.
Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.
Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
Популярные единицы измерения площади:
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Формула площади треугольника
Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.
Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.
Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!
Общая формула
1. Площадь треугольника через основание и высоту
, где — основание, — высота.
2. Площадь треугольника через две стороны и угол между ними
, где , — стороны, — угол между ними.
3. Площадь треугольника через описанную окружность и стороны
, где , , — стороны, — радиус описанной окружности.
4. Площадь треугольника через вписанную окружность и стороны
, где , , — стороны, — радиус вписанной окружности.
Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:
5. Площадь треугольника по стороне и двум прилежащим углам
, где — сторона, и — прилежащие углы.
6. Формула Герона для вычисления площади треугольника
Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.
, где , , — стороны, — полупериметр, который можно найти по формуле:
Для прямоугольного треугольника
Площадь треугольника с углом 90° по двум сторонам
Площадь треугольника по гипотенузе и острому углу
, где — гипотенуза, — любой из прилегающих острых углов.
Гипотенузой принято называть сторону, которая лежит напротив прямого угла.
Площадь прямоугольного треугольника по катету и прилежащему углу
, где — катет, — прилежащий угол.
Катетом принято называть одну из двух сторон, образующих прямой угол.
Площадь треугольника через гипотенузу и радиус вписанной окружности
, где — гипотенуза, — радиус вписанной окружности.
Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
, где , — части гипотенузы.
Площадь прямоугольного треугольника по формуле Герона
, где , — катеты, — полупериметр, который можно найти по формуле:
Для равнобедренного треугольника
Вычисление площади через основание и высоту
, где — основание, — высота, проведенная к основанию.
Поиск площади через боковые стороны и угол между ними
, где — боковая сторона, — угол между боковыми сторонами.
Площадь равностороннего треугольника через радиус описанной окружности
, где — радиус описанной окружности.
Площадь равностороннего треугольника через радиус вписанной окружности
, где — радиус вписанной окружности.
Площадь равностороннего треугольника через сторону
Площадь равностороннего треугольника через высоту
Таблица формул нахождения площади треугольника
У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.
Как найти площадь треугольника – все способы от самых простых до самых сложных
Зависит от того, какой треугольник.
Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.
Если треугольник прямоугольный
То есть один из его углов равен 90 градусам.
Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.
Если он равнобедренный
То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.
Если он равносторонний
То есть все три стороны равны. Ваши действия такие:
- Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
- Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
- Поделите все на 4.
Если известна сторона и высота
Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.
Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.
Если известны две стороны и градус угла между ними
Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:
Если известны длины трех сторон
- Найдите периметр. Для этого сложите все три стороны.
- Найдите полупериметр – разделите периметр на два. Запомните значение.
- Отнимите от полупериметра длину первой стороны. Запомните.
- Отнимите от полупериметра длину второй стороны. Тоже запомните.
- Отнимите от полупериметра длину третьей стороны. И ее запомните.
- Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
- Найдите квадратный корень.
Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.
Если известны три стороны и радиус описанной окружности
Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.
Если известны три стороны и радиус вписанной окружности
Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.
Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.
Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.
Площади фигур. Площадь треугольника.
Площадь плоской фигуры — аддитивная числовая характеристика фигуры, полностью принадлежащей
одной плоскости. Если фигуру можно разбить на конечное множество единичных квадратов, то площадь
будет равна числу этих квадратов.
Треугольник образуется соединением отрезками трех точек, не лежащих на одной прямой. Точки
называются вершинами треугольника, а отрезки — его сторонами.
Воспользуйтесь нашим калькулятором для расчета площади треугольника.
Для расчета площади других фигур воспользуйтесь этим калькулятором: площади фигур.
Ниже приведены основные формулы, по которым можно найти площадь треугольника:
1. Площадь треугольника равна половине произведения длины стороны треугольника на длину
проведенной к этой стороне высоты.
2. Формула площади треугольника по трем сторонам. Формула Герона.
3. Формула площади треугольника по двум сторонам и углу между ними.
Площадь треугольника равна половине произведения двух его сторон, умноженного на синус угла между
4. Формула площади треугольника по трем сторонам и радиусу описанной окружности.
5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности. Площадь
треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
a, b, c — длины сторон треугольника,
где S — площадь треугольника,
h — высота треугольника,
γ — угол между сторонами a и b,
http://vsvoemdome.ru/obrazovanie/kak-nayti-ploschad-treugolnika
http://www.calc.ru/Ploshchadi-Figur-Ploshchad-Treugolnika.html
Как найти площадь треугольника – все способы от самых простых до самых сложных
Зависит от того, какой треугольник.
33 170
Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.
Если треугольник прямоугольный
То есть один из его углов равен 90 градусам.
Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.
Если он равнобедренный
То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.
Если он равносторонний
То есть все три стороны равны. Ваши действия такие:
- Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
- Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
- Поделите все на 4.
Если известна сторона и высота
Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.
Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.
Если известны две стороны и градус угла между ними
Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:
Если известны длины трех сторон
Делайте так:
- Найдите периметр. Для этого сложите все три стороны.
- Найдите полупериметр – разделите периметр на два. Запомните значение.
- Отнимите от полупериметра длину первой стороны. Запомните.
- Отнимите от полупериметра длину второй стороны. Тоже запомните.
- Отнимите от полупериметра длину третьей стороны. И ее запомните.
- Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
- Найдите квадратный корень.
Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.
Если известны три стороны и радиус описанной окружности
Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.
Если известны три стороны и радиус вписанной окружности
Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.
Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.
Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.
( 32 оценки, среднее 4.44 из 5 )
Оцените статью
ЕЖЕНЕДЕЛЬНАЯ РАССЫЛКА
Получайте самые интересные статьи по почте и подписывайтесь на наши социальные сети
ПОДПИСАТЬСЯ
Как найти площадь любого треугольника
Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.
Как найти площадь любого треугольника
Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.
Зная сторону и высоту
- Умножьте сторону треугольника на высоту, проведённую к этой стороне.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a — сторона треугольника.
- h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.
Зная две стороны и угол между ними
- Посчитайте произведение двух известных сторон треугольника.
- Найдите синус угла между выбранными сторонами.
- Перемножьте полученные числа.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a и b — стороны треугольника.
- α — угол между сторонами a и b.
Зная три стороны (формула Герона)
- Посчитайте разности полупериметра треугольника и каждой из его сторон.
- Найдите произведение полученных чисел.
- Умножьте результат на полупериметр.
- Найдите корень из полученного числа.
- S — искомая площадь треугольника.
- a, b, c — стороны треугольника.
- p — полупериметр (равен половине от суммы всех сторон треугольника).
Зная три стороны и радиус описанной окружности
- Найдите произведение всех сторон треугольника.
- Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
- S — искомая площадь треугольника.
- R — радиус описанной окружности.
- a, b, c — стороны треугольника.
Зная радиус вписанной окружности и полупериметр
Умножьте радиус окружности, вписанной в треугольник, на полупериметр.
- S — искомая площадь треугольника.
- r — радиус вписанной окружности.
- p — полупериметр треугольника (равен половине от суммы всех сторон).
Как найти площадь прямоугольного треугольника
- Посчитайте произведение катетов треугольника.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.
Как найти площадь равнобедренного треугольника
- Умножьте основание на высоту треугольника.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
- h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.
Как найти площадь равностороннего треугольника
- Умножьте квадрат стороны треугольника на корень из трёх.
- Поделите результат на четыре.
- S — искомая площадь треугольника.
- a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.
Читайте также 🧠👨🏻🎓✍🏻
- 7 причин полюбить математику
- ТЕСТ: Помните ли вы геометрию?
- 10 хитрых головоломок со спичками для тренировки воображения
- Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
- ТЕСТ: Сможете ли вы решить простые математические примеры?
Площадь треугольника
Конспект урока в 5 классе по учеб Мордковича и Зубарева Выполнила учитель МОУ «ВаськинскаяООШ»Юмакова Л.А.
Цели урока:
Образовательные
- Ввести правило нахождения площади треугольника;
- Сформировать умение находить площадь различных треугольников
- Воспроизведение и коррекция необходимых знаний и умений по данной теме.
- Анализ заданий и способов их выполнения.
- Рационализация способа выполнения заданий.
- Самостоятельное выполнение заданий для проверки знаний, умений, навыков.
Развивающие
1. Развитие приёмов умственной и исследовательской деятельности.
Воспитательные
- Воспитывать у учащихся навыки учебного труда.
- Воспитывать культуру устной и письменной математической речи.
- Прививать интерес к истории математики.
Оборудование:
- Математика: учебник для 5 кл. общеобразоват. учреждений/ И.И Зубарева, А.Г.Мордковича, М.: «Мнемозина», 2008г.
- Презентация в PowerPoint.
- Конверты у каждого из учащихся с набором различных фигур для практической работы
- Тест у каждого из учащихся для проверки знаний, умений и навыков.
- Чертёжные инструменты.
Тип урока: урок изучения нового материала
План урока:
|
1мин. 10мин 3мин 5мин |
Ход урока
1. Организационный момент.
Инструктаж учащихся с организацией работы на уроке
2. Устный счёт.( карточки)
Объяснение условий дидактической игры.
-Решите устно пример. Найдите в таблице ответ и ему соответствующую букву, назовите букву. Если правильно решили пример, то в конце игры можно будет прочитать предложение.
- 48:4 =12
- 12+23=35
- 24•3=72
- 36-18 =18
- 8•0=0
- 18+13=31
- 76:2=38
- 99:9=11
- 70-35=35
- 2•19=38
- 18•1=18
- 47-9=38
- 16+58 =74
- 9•8= 72
- 64-33=31
- 55:1=55
- 84+15=99
- 0:31=0
к |
и |
н |
а |
г |
о |
с |
ш |
п |
ь |
м |
12 |
72 |
35 |
0 |
18 |
38 |
31 |
11 |
74 |
55 |
99 |
-Что такое «Книга сошного письма»? (Слайд 1)?
Это исконно русское руководство, которое излагало приёмы измерения площадей. Книга вышла в России в 1629 году. В ней описывались формулы для вычисления площадей прямоугольников и квадратов, которыми мы пользуемся до сих пор.
3. Постановка учебной проблемы
-Вспомним правило нахождения площади прямоугольника
(<Слайд 2-4>.)
— Вспомним формулу для нахождения площади прямоугольника.
— В каких единицах измеряется площадь фигуры?
-Найдите площади прямоугольника по готовому чертежу.(слайд 5,6)
— Проведите диагональ. Найдите площадь треугольника. Получится ли у вас выполнить данное задание?
4. Сообщение темы с мотивирующим приемом.
-Сформулируем тему урока. Поставьте цель урока<Слайд 7>
5. Поиск решения
(Работа с раздаточным материалом)
-Найдите площадь прямоугольника (фиолетового цвета). Разрежьте его по диагонали и найдите площадь треугольника.(30 и 15см2)
— Выведем формулу для нахождения площади прямоугольного треугольника. (слайд
— По готовому чертежу найдите площадь прямоугольного треугольника (слайд9,10)
— Теперь возьмите треугольник (розового цвета) и попробуйте найти его площадь.
Обведите его в тетрадь и получите подсказку (рис 113)
Посмотрите на рисунок и ответьте на вопросы:
- Что нам дано?
- Что требуется найти?
- Как будем находить?
- Отрезок ВД является высотой. Определение высоты.
- Найдите площадь треугольника (розового цвета)
— Сформулируйте правило для нахождения площади произвольного треугольника.( Слайд 11)
— Попробуйте записать формулу площади для произвольного треугольника.(слайд 12)
7. Физкультурная пауза (Игра “истинно — ложно”)
Если высказывание верно, то учащиеся делают наклоны вправо-влево и хлопают в ладоши(на счет 4). Если высказывание неверно, то учащиеся приседают и тянутся руками вверх.
- Делить на нуль нельзя.
- 32 = 6
- Квадрат — это прямоугольник.
- У квадрата все стороны равны
- У любого треугольника 3 вершины, 3 угла, 2 стороны.
- сегодня 22 декабря
- 2*2=5
6. Выражение решения
— Итак,повторяем формулы для нахождения площади прямоугольного и произвольного треугольников (слайд 13) Записать в тетради
— Сформулируем правило: для нахождения площади прямоугольного треугольника нужно стороны, прилегающие к прямому углу перемножить и разделить на 2.
В виде формулы S=(ab) :2
-Для нахождения площади произвольного треугольника нужно сторону умножить на высоту, опущенную на эту сторону и разделить на 2.
В виде формулы S=(ah):2 (слайд 13)
8.Реализация продукта. Самостоятельная работа. Выполнение упражнения
-Выполните упражнение из учебника под № 569, стр.156
Ответы: а)3*15=45 мм2, б)2*22=44мм2, в)25*18=450мм2, г)21*22=462мм2.
9.Решение проверочного теста
— Для каждого треугольника подберите подходящую формулу
1. 2.
a)S= (AB* BC) : 2
б) S=(MO*AD): 2
в) S= AB* BC
г) S=(MD*AD): 2
10. Домашнее задание:
Построить тупоугольный, остроугольный и прямоугольный треугольник на альбомном листе и найти их площади разными способами, выполняя построения с помощью угольника.
11. Рефлексия(слайд 14)
12. Итог урока