Как найти площадь половины клетки

Площадь фигуры (треугольник, четырёхугольник, трапеция и др.) по клеточкам (клеткам).

Какие есть формулы?

Есть способ, при котором надо воспользоваться формулой, основой которой будет понятие узла, узла внутреннего и узла внешнего. Узел это пересечение линий, образующих эти самые клеточки. Внешние узлы, это узлы, находящиеся на сторонах и вершинах геометрических фигур, площади которых нам надо найти. А внутренние узлы, это узлы внутри этих фигур. Клеточки у нас со сторонами равными одному сантиметру (1 см).

Формула, о которой идет речь, называется формула Пика.

Выглядит она вот так:

И по ней очень просто посчитать площадь фигуры S. В этой формуле M это количество внешних узлов, N — количество внутренних узлов.

Приведем пример, возьмем геометрическую фигуру параллелограмм:

Внутренние узлы — синие — N — их у нас 20.

Внешние узлы — красные — М — их у нас 18 и их количество нам надо поделить на два, получится 18/2 = 9 узлов.

Складываем 9 + 20 и вычитаем единицу: 20 + 9 — 1 = 28 см².

Еще один пример:

S = 14/2 + 43 — 1 = 49 см².

система выбрала этот ответ лучшим

Ксарф­акс
[156K]

6 лет назад 

Допустим, у нас есть произвольная фигура, построенная на листе в клетку. Необходимо вычислить её площадь.


Площадь фигуры по клеточкам

Для того, чтобы найти площадь любой фигуры по клеточкам, можно использовать формулу Пика.

Данная формула основана на подсчёте количества узлов, лежащих внутри фигуры и на её границе.

Узел — это точка, которая лежит на пересечении 2 линий данной сетки: вертикальных и горизонтальных.

Площадь фигуры по клеточкам находится по формуле:

как найти площадь фигуры по клеточкам

N — количество узлов, которые находятся внутри фигуры.

M — количество узлов, которые находятся на границах (на вершинах и сторонах).


Примеры нахождения площади по клеточкам

1) Найдём площадь треугольника. Будем считать, что одна клетка — это 1 см.

Отметим внутренние узлы и узлы, которые находятся на границах.

площадь фигуры по клеткам

N = 7 (внутренние).

M = 8 (узлы на границах).

Площадь треугольника S = 7 + 8/2 — 1 = 10 см².

2) Найдём площадь трапеции по клеточкам, одна клетка — это 1 см. Отметим все узлы и подсчитаем их количество.

площадь фигуры трапеции по клеточкам

N = 11 (внутренние).

M = 12 (узлы на границах).

Площадь трапеции S = 11 + 12/2 — 1 = 16 см².

3) Найдём площадь произвольного многоугольника. Одна клетка — это 1 см.

Отметим внутренние узлы и узлы, расположенные на границах фигуры. Подсчитаем их количество.

площадь фигуры многоугольника по клеткам

N = 6 (внутренние узлы).

M = 8 (узлы на границах).

Площадь многоугольника S = 6 + 10/2 — 1 = 10 см².

Марин­а Волог­да
[295K]

3 года назад 

Такие задачи очень часто встречаются, когда известен размер клеточки и дана фигура.

Вот пример таких задач:

Решение зависит от того, какая фигура дана и как именно она размещена относительно клеточек.

Возьмем простой пример, необходимо вычислить площадь вот такого треугольника:

Вспоминаем правило:

Теперь считаем, сколько клеточек треугольник в длину и сколько в высоту. У нас получается 2 в высоту и 6 в длину.

Подставляем к формуле:

S = 1/2 х 2 х 6 = 6 см2.

Считаем по клеточкам, подставляя формулу Пика:

Целых клеточек у нас 3.

Теперь считаем, сколько не целых: 6. Делим их на 2.

S = 3 + 6:2 = 6 см2.

А теперь высчитываем по формуле Пика: количество узлов сетки внутри — 2, количество узлов сетки, лежащих на границах — 10.

Подставляем к формуле и получаем — 2 + 10:2 — 1 = 6 см2.

Теперь давайте рассмотрим вот такой треугольник:

Чтобы найти площадь, вспоминаем правило:

Считаем клеточки и подставляем в формулу:

S = 1/2 х 2 х 6 = 6 см2.

А теперь находим по клеточкам: целых клеточек 2, не целых клеточек 8. Подставляем в формулу: 2 + 8:2 = 6 см2.

Пробуем сделать по формуле Пика: количество узлов сетки внутри — 3, количество узлов сетки, лежащих на границах — 8.

Подставляем к формуле и получаем — 3 + 8:2 — 1 = 6 см2.

Enot-Nina
[110K]

3 года назад 

Найти площадь геометрической фигуры можно самыми разными способами:

Самый простой вариант — это вручную посчитать клеточки — целые и половинки также поскладывать. Простой, хотя и не самый быстрый и может не самый точный способ, но он работает. Чтобы легче было считать, достаточно расчертить фигуру на более простые.

Есть еще один способ — это использовать давно разработанную формулу. Это так называемая формула Пика. Для нее нужно посчитать количество узлов — точек пересечения клеточек, что окружены фигурой (находятся внутри нее), а также подсчитать количество пограничных узлов — по контуру фигуры.

Вот на картинке наглядно показано, как ее можно применять, чтоб посчитать площадь любой фигуры по клеточкам:

Как посчитать площадь фигуры по клеточкам

Барха­тные лапки
[382K]

3 года назад 

Площадь любого многоугольника можно посчитать по клеточкам. Для этого применяем формулу Пика. На нашем рисунке В — количество узловых клеточек внутри фигуры, Г — количество узлов на границе . Узлы — пересечение двух линий. многоугольника. Площадь равна S = В + Г/2 — 1 Считаем точки на рисунке и подставляем в формулу. — 10 + 7/2 -1 = 12,5.

Таким образом можно посчитать площадь, если вершины фигуры лежат в узлах.

Ann Luka
[2.8K]

6 лет назад 

Чтобы найти площадь фигуры по клеточкам, нужно посчитать сколько в фигуре целых клеточек. Потом нужно посчитать сколько не целых и поделить их количество на 2. Добавить к получившемуся числу количество целых клеточек — это и будет правильный ответ.

Например. В треугольнике 3 целых клетки и 4 не целых. 3+4/2=5 пощадь треугольника 5 клеток.

Outli­ne
[18.3K]

3 года назад 

Для того, чтобы определить площадь фигуры на бумаге в клеточку есть универсальная формула Пика, позволяющая вычислить площадь изображения, но в только в том случае, если вершины искомой фигуры имеют целые (натуральные числа) координаты. Называется эта формула, в честь Георга Пика:

S=В + Г / 2 − 1

В этой формуле буквенные обозначения означают следующее:

В — количество целочисленных точек внутри многоугольника;

Г — количество целочисленных точек на границе (вершинах и сторонах) многоугольника;

S – площадь фигуры.

Здесь используется понятие «целочисленные» – это те, точки, которые расположены на пересечениях сетки (в ее узлах).

Для примера, найдем площадь треугольника:

Треугольник

Обозначим внутренние точки нашей фигуры красными кружками, а те, что на границах – синим цветом. Считаем красные и синие точки:

В=12, Г=4.

Исходя из подсчетов определяем площадь треугольника по формуле:

S=В+Г/2-1=12+2-1=13.

Можно убедиться в правильность проведенных выше расчетах. Рассчитываем площадь квадрата, обведенного красным, и вычитаем площади зеленого, синего и фиолетового треугольников:

Треугольник

S квадрата равна 36, площади треугольников: синего – 6, зеленого – 2, фиолетового – 15.

Исходя из полученных данных, S белого треугольника равна 13:

S=36-6-15-2=13.

Kriti­kSPb
[93.7K]

3 года назад 

Подсчет клеточек — дело полезное. С их помощью можно найти площадь геометрической фигуры.

Достаточно воспользоваться формулой, доказанной Георгом Пиком в 1899 году.

Подходит для расчета площади фигур с прямыми сторонами и целым количеством углов, чаще всего применяют для нахождения площади разносторонних треугольников и многоугольников с числом углов больше 4-х.

На теорему Пика есть задания в ЕГЭ.

12777­1
[273K]

3 года назад 

Сначала я подумал, что нужно будет фигуру, которая указана на рисунке в клеточку разбить по фигурам так, чтобы можно посчитать площадь каждой фигуры по-отдельности, но оказалось все намного проще. Существует для данной задачи специальная формула Пика, которая выглядит следующим образом:

Площадь = В + Г/2 — 1, где:

  • В — количество целочисленных точек внутри многоугольника.
  • Г — количество целочисленных точек на границе многоугольника.

Теперь разберемся на примере, у нас есть такой пример:

Перед нами трапеция. Допустим площадь одной клетки 1 кв.см. Теперь можно воспользоваться формулой:

11+12/2-1=16 кв.см.

Бекки Шарп
[71.2K]

3 года назад 

Найти площадь фигуры можно если вершины фигуры находятся в уголках клеточек, так называемые Целочисленные вершины или узловые точки. Решать задачу будем по формуле Пика, где

  • В — количество внутренних узловых точек,
  • Г — количество граничных узловых точек,

Вот такая фигура у нас —

Считаем точки и подставляем в формулу: S = 17 + 14/2 — 1 = 23

Ответ мы получаем в квадратных единицах, то есть клеточках.

Знаете ответ?

Чтобы уверенно решать задачи по геометрии — даже такие простые — необходимо выучить основные понятия и формулы.

Это формулы площадей фигур — треугольника (5 формул), параллелограмма, ромба, прямоугольника, произвольного четырехугольника, а также круга. Формулы для длины окружности, длины дуги и площади сектора. Для средней линии треугольника и средней линии трапеции.

Надо знать, что такое центральный и вписанный угол. Знать основные тригонометрические соотношения. В общем, учите основы планиметрии.

Больше полезных формул — в нашем ЕГЭ-Справочнике.

Смотри также материал: Как быстро выучить формулы

В этой статье — основные типы заданий №1 Базового ЕГЭ по математике. Задачи взяты из Банка заданий ФИПИ.

Вычисление длин отрезков, величин углов и площадей фигур по формулам 

1. На клетчатой бумаге с размером клетки  изображена трапеция. Найдите длину средней линии этой трапеции.

Средняя линия трапеции равна полусумме её оснований: frac{AD+BC}{2}=frac{4+2}{2}=3.

Ответ: 3.

2. Найдите величину угла ABC. Ответ дайте в градусах.

Величина вписанного угла alpha равна половине величины центрального угла, опирающегося на ту же дугу. Соединим точки А и С с центром окружности и проведем диаметры через точки А и С. Видим, что величина центрального угла АОС равна {90}^{circ}. Тогда angle alpha =frac{{90}^{circ}}{2}={45}^{circ}.

Ответ: 45.

3. Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на frac{sqrt{5}}{2}.

Решение:

Проведем из точки В перпендикуляр к прямой ОА. Из прямоугольного треугольника ОВС по теореме Пифагора:

OB=sqrt{16+4}=sqrt{20}=2sqrt{5}

{sin alpha }={sin angle AOB}=frac{4}{2sqrt{5}}=frac{2}{sqrt{5}}. Осталось умножить найденное значение синуса на frac{sqrt{5}}{2}.

frac{2}{sqrt{5}}cdot frac{sqrt{5}}{2}=1

Ответ: 1.

4. Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки  Ответ дайте в квадратных сантиметрах.

Самый простой способ — воспользоваться формулой площади ромба, выраженной через его диагонали:

 , где d_1 и d_2 — диагонали.

Получим: 

Ответ: 12.

5. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки  Ответ дайте в квадратных сантиметрах.

Площадь трапеции равна произведению полусуммы оснований на высоту:

Основания нашей трапеции равны 4 и 8, а высота равна боковой стороне (поскольку трапеция прямоугольная), то есть 3 см. Площадь трапеции

Ответ: 18.

Нахождение площадей многоугольников сложной формы

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ и на авторских задачах.

6. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным 5. Высоты этих треугольников равны 2 и 3. Тогда площадь четырёхугольника равна сумме площадей двух треугольников: S = 5 + 7,5 = 12,5.

Ответ: 12,5.

7. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной 5 и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: S=25-5-5-4,5=10,5.

Ответ: 10,5.

Многие репетиторы рекомендуют в таких задачах пользоваться формулой Пика. В ней нет необходимости, однако эта формула довольно интересна.

Согласно формуле Пика, площадь многоугольника равна В+Г/2-1

где В — количество узлов внутри многоугольника, а Г — количество узлов на границе многоугольника.

Узлами здесь названы точки, в которых пересекаются линии нашей клетчатой бумаги.

Посмотрим, как решается задача 7 с помощью формулы Пика:

Синим на рисунке отмечены узлы внутри треугольника. Зеленым — узлы на границе.

Аккуратно посчитав те и другие, получим, что В = 9, Г = 5, и площадь фигуры равна S = 9 + 5/2 — 1 = 10,5.

Выбирайте — какой способ вам больше нравится.

8. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки  

Такой четырехугольник получится, если от квадрата размером 4times 4 отрезать 2 прямоугольника и 4 треугольника. Найдите их на рисунке.

Площадь каждого из больших треугольников равна frac{1}{2}cdot 3cdot 2=3.

Площадь каждого из маленьких треугольников равна frac{1}{2}cdot 1cdot 2=1.

Тогда площадь четырехугольника S= 16 - 2 - 2 - 1 - 1 - 3 - 3 = 4.

9. Авторская задача.  Найдите площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 

Решение:

На рисунке изображен ромб с вырезанным из него квадратом.

Площадь ромба равна половине произведения его диагоналей.

Площадь вырезанного квадрата равна 4.

Площадь фигуры равна 36 — 4 = 32.

Ответ: 32.

Площадь круга, длина окружности, площадь части круга 

Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.

Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.

10. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.

На этом рисунке мы видим часть круга. Площадь всего круга равна pi R^2=pi, так как R=1. Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна 2pi R=2pi (так как R=1), а длина дуги данного сектора равна 2, следовательно, длина дуги в pi раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в pi раз меньше, чем полный круг (то есть 360 градусов). Значит, и площадь сектора будет в pi раз меньше, чем площадь всего круга.

Ответ: 1.

11. На клетчатой бумаге нарисован круг площадью 2,8. Найдите площадь закрашенного сектора.

На рисунке изображен сектор, то есть часть круга. Но какая же это часть? Это четверть круга и еще frac{1}{8} круга, то есть frac{3}{8} круга.

Значит, нам надо умножить площадь круга на frac{3}{8}. Получим:

frac{3}{8}cdot 2,8 =1,05

Ответ: 1,05.

12. На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь закрашенной фигуры.

Площадь фигуры равна разности площадей двух кругов, один из которых расположен внутри другого. По условию, площадь внутреннего круга равна 9. Радиус внешнего круга относится к радиусу внутреннего как 4 к 3. Площадь круга равна pi R^2, то есть пропорциональна квадрату радиуса. Значит, площадь внешнего круга в {frac{4}{3}}^2 = frac{16}{9} раза больше площади внутреннего и равна 16. Тогда площадь фигуры равна 16 — 9 = 7.

Ответ: 7.

Задачи на координатной плоскости 

13. Найдите площадь четырехугольника, вершины которого имеют координаты (4;2), (8;4), (6;8), (2;6).

Заметим, что этот четырехугольник — квадрат. Сторона квадрата a является гипотенузой прямоугольного треугольника с катетами, равными 2 и 4. Тогда a^2=S=20.

Ответ: 20

14. Найдите площадь четырехугольника, вершины которого имеют координаты left(1;7right),left(9;2right),left(9;4right),left(1;9right).

На рисунке изображен параллелограмм (четырехугольник, имеющий две пары параллельных сторон). Площадь параллелограмма равна произведению основания на высоту. Основание равно 2, высота 8, площадь равна 16.

Ответ: 16.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Геометрия. Применение формул. Задача 1 Базового ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Как считать клетки на огэ по математике

Задание 18 № 323750

Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке.

Найдём площадь данной фигуры по формуле Пика:

где В — число узлов сетки внутри фигуры, Г — число узлов сетки на границе фигуры, включая вершины. Получаем:

Приведём другое решение.

Площадь данной фигуры равна разности площади квадрата и двух треугольников:

Геометрия. Применение формул. Задача 5 Базового ЕГЭ по математике

Чтобы уверенно решать задачи по геометрии — даже такие простые — необходимо выучить основные понятия и формулы.

Это формулы площадей фигур — треугольника (5 формул), параллелограмма, ромба, прямоугольника, произвольного четырехугольника, а также круга. Формулы для длины окружности, длины дуги и площади сектора. Для средней линии треугольника и средней линии трапеции.

Надо знать, что такое центральный и вписанный угол. Знать основные тригонометрические соотношения. В общем, учите основы планиметрии.

Больше полезных формул — в нашем ЕГЭ-Справочнике.

В этой статье — основные типы заданий №5 Базового ЕГЭ по математике. Задачи взяты из Банка заданий ФИПИ.

Вычисление длин отрезков, величин углов и площадей фигур по формулам

1. На клетчатой бумаге с размером клетки изображена трапеция. Найдите длину средней линии этой трапеции.

Средняя линия трапеции равна полусумме её оснований:

2. Найдите величину угла ABC. Ответ дайте в градусах.

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Соединим точки А и С с центром окружности и проведем диаметры через точки А и С. Видим, что величина центрального угла АОС равна Тогда

3. Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на

Проведем из точки В перпендикуляр к прямой ОА. Из прямоугольного треугольника ОВС по теореме Пифагора:

Осталось умножить найденное значение синуса на

4. Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Самый простой способ — воспользоваться формулой площади ромба, выраженной через его диагонали:

, где и — диагонали.

5. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Площадь трапеции равна произведению полусуммы оснований на высоту:

Основания нашей трапеции равны 4 и 8, а высота равна боковой стороне (поскольку трапеция прямоугольная), то есть 3 см. Площадь трапеции

Нахождение площадей многоугольников сложной формы

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ и на авторских задачах.

6. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

7. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Многие репетиторы рекомендуют в таких задачах пользоваться формулой Пика. В ней нет необходимости, однако эта формула довольно интересна.

Согласно формуле Пика, площадь многоугольника равна В+Г/2-1

где В — количество узлов внутри многоугольника, а Г — количество узлов на границе многоугольника.

Узлами здесь названы точки, в которых пересекаются линии нашей клетчатой бумаги.

Посмотрим, как решается задача 7 с помощью формулы Пика:

Синим на рисунке отмечены узлы внутри треугольника. Зеленым — узлы на границе.

Аккуратно посчитав те и другие, получим, что В = 9, Г = 5, и площадь фигуры равна S = 9 + 5/2 — 1 = 10,5.

Выбирайте — какой способ вам больше нравится.

8. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки

Такой четырехугольник получится, если от квадрата размером отрезать 2 прямоугольника и 4 треугольника. Найдите их на рисунке.

Площадь каждого из больших треугольников равна

Площадь каждого из маленьких треугольников равна

Тогда площадь четырехугольника

9. Авторская задача. Найдите площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки

На рисунке изображен ромб с вырезанным из него квадратом.

Площадь ромба равна половине произведения его диагоналей.

Площадь вырезанного квадрата равна 4.

Площадь фигуры равна 36 — 4 = 32.

Площадь круга, длина окружности, площадь части круга

Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.

Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.

10. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

11. На клетчатой бумаге нарисован круг площадью 2,8. Найдите площадь закрашенного сектора.

На рисунке изображен сектор, то есть часть круга. Но какая же это часть? Это четверть круга и еще круга, то есть круга.

Значит, нам надо умножить площадь круга на . Получим:

12. На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь закрашенной фигуры.

Площадь фигуры равна разности площадей двух кругов, один из которых расположен внутри другого. По условию, площадь внутреннего круга равна 9. Радиус внешнего круга относится к радиусу внутреннего как 4 к 3. Площадь круга равна , то есть пропорциональна квадрату радиуса. Значит, площадь внешнего круга в раза больше площади внутреннего и равна 16. Тогда площадь фигуры равна 16 — 9 = 7.

Задачи на координатной плоскости

13. Найдите площадь четырехугольника, вершины которого имеют координаты (4;2), (8;4), (6;8), (2;6).

Заметим, что этот четырехугольник — квадрат. Сторона квадрата a является гипотенузой прямоугольного треугольника с катетами, равными 2 и 4. Тогда

14. Найдите площадь четырехугольника, вершины которого имеют координаты

На рисунке изображен параллелограмм (четырехугольник, имеющий две пары параллельных сторон). Площадь параллелограмма равна произведению основания на высоту. Основание равно 2, высота 8, площадь равна 16.

Фигуры на квадратной решетке

В этой статье речь пойдет о фигурах на квадратной решетке. В этом разделе присутствует несколько типов задач, это:

1) определение градусной меры угла;

2) определение тангенса угла (косинуса, синуса);

3) определение площади той или иной фигуры – трапеции, параллелограмма, сектора круга, треугольника и т.п.;

4) определение наибольшей (наименьшей) медианы (высоты) треугольника;

5) определение радиуса вписанной в треугольник (описанной около треугольника) окружности;

6) определение площади сложных или составных фигур.

Разберем задачи каждого типа.

Определение градусной меры угла.

1. Определите градусную меру угла:

фигуры на квадратной решетке

фигуры на квадратной решетке

Данный угол – тупой, и можно заметить, что левый луч, образующий его, является биссектрисой прямого угла (см. второй рисунок, угол показан рыжими прямыми). Тогда градусная мера этого угла равна:90circ+(<90circ>/2)=135circ» /></p>
<p>Ответ: <img decoding=

2. Определите градусную меру угла (имеется в виду “рыжий” угол):

фигуры на квадратной решетке

В этой задаче все просто, если вспомнить, что любой угол, вписанный в окружность и опирающийся на диаметр, равен 90circ

Ответ: 90circ

3. Определите градусную меру угла (рыжий).

фигуры на квадратной решетке

Имеем правильный шестиугольник. Угол, градусную меру которого нам надо определить – вписанный.

Он опирается на дугу, которую стягивает хорда, являющаяся стороной шестиугольника. Тогда центральный угол, опирающийся на ту же дугу, это 1/6 часть всей окружности, или 60circ. Вписанный угол вдвое меньше центрального, если они опираются на одну и ту же дугу, значит, искомый угол равен 30circ.

4. Определите градусную меру угла.

фигуры на квадратной решетке

“Нехорошая” задача. В данной задаче определить градусную меру угла можно только приближенно, однако мы не можем вписать приближенный ответ в бланк. Выделенный рыжим угол – тупой, можно заметить , что он состоит из прямого угла и еще некоторой части. Эту часть можно определить только “на глаз” – прикинуть, что она составляет примерно третью часть прямого угла, или 30circ. Тогда весь угол – 90circ+30circ=120circ. Ответ – 120circ. К сожалению такие задачи, где приходится прикидывать, встречаются.

Определение синусов, косинусов, тангенсов углов.

Здесь придется вспомнить геометрические определения синуса, косинуса, тангенса:

Синус угла – отношение противолежащего катета к гипотенузе.

Косинус угла – отношение прилежащего катета к гипотенузе.

Тангенс угла – отношение противолежащего катета к прилежащему.

5. Определить синус, косинус и тангенс угла.

фигуры на квадратной решетке

Для того, чтобы воспользоваться определениями синуса, косинуса и тангенса, надо сначала выделить прямоугольный треугольник.

фигуры на квадратной решетке

Конечно, удобнее вычислять, если катеты и гипотенуза этого треугольника будут целыми числами. Катеты, понятно, лежат на прямых, образующих саму решетку, поэтому нужно смотреть на луч этого угла, который станет гипотенузой нашего треугольника, и найти такое место, где этот луч пересечет узел решетки:

Тогда в нашем треугольнике катеты – 3 и 4 клетки, а гипотенузу найдем по теореме Пифагора.

Тогда: синус угла – 4/5, или 0,8, косинус угла – 3/5, или 0,6, тангенс угла – 4/3, или 1,33 – кстати, вы подумали, как записать такое число в бланк ответов?

6. Определить тангенс угла:

Вспомним, что тангенс тупого угла равен тангенсу острого, смежного с ним, взятого с отрицательным знаком.

фигуры на квадратной решетке

Надо найти тангенс смежного острого угла. Так как луч, образующий его – гипотенуза прямого угла и проходит прямо по узлам решетки, то катеты треугольников, образуемых этим лучом, всегда равны. Тогда тангенс равен:1/1=2/2=3/3=1. Искомый тангенс тупого угла – (-1).

7. Определить тангенс угла. фигуры на квадратной решетке

Данный угол – острый, его тангенс – положительный. Осталось найти подходящий узел решетки, чтобы построить прямоугольный треугольник (для этого черным помечена опорная точка – узел решетки). В этом треугольнике считаем количество клеточек в каждом из катетов и определяем тангенс. У нас катеты – 1 и 4 клеточки, искомый тангенс – 1/4.

8. Определить тангенс угла.

фигуры на квадратной решетке

Данный угол – тупой, значит, его тангенс – отрицателен. Определяем тангенс смежного с ним острого угла, ставим перед ним минус – и дело в шляпе. Чтобы определить тангенс острого угла, выбираем целый узел, через который проходит луч, образующий угол – помечен черной точкой. Катеты получившегося треугольника – 1 и 3 клетки, тангенс равен отношению противолежащего катета к прилежащему, значит, 3/1=3. Искомый тангенс тупого угла – (-3).

9 и 10. Попробуйте сами определить тангенсы углов на рисунках ниже. Ответ – в конце статьи.

фигуры на квадратной решетке фигуры на квадратной решетке

Определение площади той или иной фигуры.

11. Определите площадь трапеции:

фигуры на квадратной решеткеНесмотря на то, что трапецию уложили на бок, сразу можем определить, где у нее основания – ведь, чтобы определить площадь трапеции, нужно знать основания и высоту трапеции:

S_TR=<<a+b>/2>h» /></p>
<p>У нас верхнее (малое) основание – 2 клетки, нижнее (большое) – 4 клетки. Высота трапеции – 2 клетки. Тогда вычисляем площадь: <img decoding=

Для вычисления площади параллелограмма достаточно высоты и основания (есть, конечно, и другие формулы, но в данном случае, на решетке, они вряд ли пригодятся): S_PAR=a*h. У данного параллелограмма основание равно 1 клетке, а вот высота? Высота – всегда перпендикуляр к основанию… или к его продолжению! Вы согласны, что высота этого параллелограмма равна 4 клеткам? Тогда его площадь S_PAR=1*4=4.

13. Определите площадь ромба.

фигуры на квадратной решеткеНетрудно понять, что посчитать площадь ромба удобно, разделив его на треугольники либо по вертикали, либо по горизонтали. Имеем два треугольника с основанием 6 клеток, высотой 2 клетки (поделила по горизонтали). Площадь треугольника определяем по формуле: S_Delta=<a*h>/2=6″ />.</p>
<p>Площадь ромба равна <img decoding=.

Кстати, площадь ромба здесь еще очень удобно определить как половину произведения его диагоналей: 2S_Delta=<d_1*d_2>/2=<6*4>/2=12″ />.</p>
<p><strong>14.</strong> Определите площадь кругового сектора, в ответ запишите площадь, деленную на <img decoding=.

фигуры на квадратной решетке

Радиус окружности равен 3, поэтому площадь всего круга будет: S_kr=<pi>r^2=9<pi>» />.</p>
<p>Так как центральный угол сектора равен <img decoding=, а это 1/3 от 360circ, то площадь сектора будет равна 1/3 от площади всего круга, то есть S=<1/3>S_kr=3<pi>» />. Делим на число <img decoding=и записываем ответ: 3

15. Определите площадь треугольника:

фигуры на квадратной решетке

Чтобы найти площадь треугольника, нужно знать его основание и высоту. За основание может быть принята любая удобная сторона, удобная – значит, она расположена строго вертикально или горизонтально – так, чтобы ее длину в клеточках было удобно считать. Здесь возьмем за основание самую длинную сторону, расположенную вертикально, ее длина в клеточках – 10. Проведем к этой стороне высоту из правой вершины, высота получится равной 3 клеточкам. Тогда площадь этого треугольника: S_Delta=<a*h>/2=<10*3>/2=15″ />.</p>
<p><strong>16.</strong> Определите площадь треугольника:</p>
<p> <img decoding=

Основание его равно 2 клеткам, высота – 4 клеточки, и неважно, что она не “попала” в основание, ведь она может быть опущена и на его продолжение. Тогда площадь равна: S_Delta=<a*h>/2=<2*4>/2=4″ />.</p>
<p>Определение наибольшей или наименьшей высоты (или медианы) треугольника.</p>
<p><strong>17.</strong> Определите наименьшую высоту треугольника. Размер клетки 1 см. Ответ дайте в см.</p>
<p>Проведем высоты из вершин данного треугольника к основаниям или их продолжениям:</p>
<p> <img decoding=

Понятно, что самая маленькая высота – та, что внутри треугольника (а). Ее длина – 1 клеточка.

фигуры на квадратной решетке

18. Найдите наибольшую медиану треугольника, изображенного на клетчатой бумаге с размером клетки 1 см. Ответ дайте в см.

фигуры на квадратной решетке

В этом треугольнике нетрудно определить середины сторон – точки, в которых медианы пересекутся со сторонами треугольника (отмечены черными кружочками). Но медианы получаются близкими по длине – как узнать, какая все же длиннее? фигуры на квадратной решетке

Очевидно, что борьба развернется между медианами “b” и “c”, “а” – не конкурент, она явно короче. Длину “с” можно определить сразу – это 5 клеточек. Осталось разобраться с медианой “b”, и здесь нельзя выполнить расчет неточно. Воспользуемся тем, что треугольник изображен на сетке – тогда можно использовать теорему Пифагора. Построим прямоугольный треугольник на гипотенузе “b”:

фигуры на квадратной решетке

Видно, что катеты этого треугольника 3 и 4 клетки, тогда гипотенуза (это и есть наша медиана “b”) равна 5 и равна медиане “с”. В ответ нужно записать длину наибольшей медианы, ответ: 5

19. Найдите наименьшую медиану треугольника, изображенного на клетчатой бумаге с размером клетки 1 см. Ответ дайте в см.

фигуры на квадратной решетке

Проведем медианы. Самую длинную медиану (к самой короткой стороне треугольника) не проводим.

Какая из медиан короче – рыжая или зеленая? Если заметить, что два этих отрезка являются перпендикуляром и наклонной между двумя параллельными прямыми, образующими саму сетку, то очевидно, что перпендикуляр – рыжая медиана – короче (по теореме). Ее длина – 2 клетки, записываем ответ: 2.

фигуры на квадратной решетке

20. Найдите наибольшую высоту треугольника, изображенного на клетчатой бумаге с размером клетки 1 см. Ответ дайте в см.

Очевидно, что здесь наибольшая высота – это высота, проведенная к продолжению наименьшей стороны треугольника, ее длина составит 4 клетки. Ответ: 4.

Определение радиуса вписанной в треугольник (описанной около треугольника) окружности.

21. Для данного треугольника определите радиус описанной около него окружности. Размер клетки – 1 см. Ответ дайте в см.

фигуры на квадратной решетке

В такого типа задачах может помочь знание формул. Нужно помнить, что

S_Delta=<a*b*c>/<4R>» />, где a, b и c – стороны треугольника, R – радиус описанной окружности.</p>
<p><img decoding=, где p=<a+b+c>/2″ /> – полупериметр треугольника, r – радиус вписанной окружности.</p>
<p>Площадь этого треугольника – <img decoding=

Снова понадобятся стороны – чтобы определить полупериметр. Катеты: 5 и 12, тогда гипотенуза – 13 (пифагорова тройка).

Полупериметр: p=<a+b+c>/2=<5+12+13>/2=15″ /></p>
<p>Это прямоугольный треугольник, площадь найдем через катеты: <img decoding=

фигуры на квадратной решетке

23. Определим радиус описанной около треугольника окружности:

Самая длинная – 10, самая короткая – l=sqrt<1^2+3^2>=sqrt<10>» />.Его площадь мы нашли в задаче 15, она равна 15 квадратным см. Осталось найти стороны.</p>
<p>Средняя: <img decoding=

Здесь V – число целочисленных точек внутри фигуры (целочисленные точки – это узлы нашей решетки), G – число целочисленных точек на границе фигуры (на линиях, ограничивающих фигуру). Применять формулу для фигур, содержащих элементы круга не стоит – речь идет о фигурах, полученных при пересечении прямых.

Однако сначала разберем простые случаи.

24. Определите площадь изображенной на клетчатой бумаге фигуры. Размер клетки 1 см. Ответ дайте в кв. см.

фигуры на квадратной решетке

Видно, что фигура состоит из двух треугольников, причем площадь маленького нужно вычесть из площади большого. Определяем площади, большой треугольник: S_Delta=<a*h>/2=<4*3>/2=6″ />. Малый треугольник: <img decoding=. Внутри фигуры три узла решетки, на границе – 4. Тогда площадь: S=3+4/2-1=4– как видите, ответ тот же.

25. Определите площадь квадрата, размер клетки 1 см. Ответ дайте в кв. см.

фигуры на квадратной решетке

Очень хочется повернуть квадрат так, чтобы стоял на стороне, и сказать, что сторона равна 3, а площадь – 9. Но это не так. Определим длину стороны квадрата по теореме Пифагора: a=sqrt<3^2+1^2>=sqrt<10>» />. Тогда площадь этого квадрата равна 10. Ответ: 10.</p>
<p>Получится ли такой же ответ по нашей волшебной формуле? Внутри фигуры девять узлов решетки, на границе – 4 (вершины квадрата). Тогда площадь: <img decoding=.

26. Определите площадь заштрихованной фигуры, размер клетки 1 см. Ответ дайте в кв. см.

фигуры на квадратной решетке

При отыскании площади такой фигуры принцип тот же: находим площадь большого квадрата и вычитаем площадь малого.

Сторона большого квадрата: a=sqrt<3^2+3^2>=sqrt<18>» />, значит, его площадь – 18 кв. см.</p>
<p>Сторона малого: <img decoding=.

фигуры на квадратной решетке

Здесь легко по клеткам определить радиус как большего, так и меньшего круга, посчитать их площади и затем вычесть одно из другого.

Больший круг: S=pi<r^2>=4pi» /></p>
<p>Меньший круг: <img decoding=. В ответ записываем найденную площадь, деленную на число pi: 3

28. Определить площадь изображенной на клетчатой бумаге фигуры. Размер клетки 1 см. Ответ дайте в кв. см.

фигуры на квадратной решетке

Эту фигуру можно разбить на три треугольника и определить сумму их площадей: 3+1+1=5.

фигуры на квадратной решетке

По формуле Пика имеем то же самое: S=V+G/2-1. Внутри фигуры два узла решетки, на границе – 8. Тогда площадь: S=2+8/2-1=5– ответ тот же.

29. Определить площадь изображенной на клетчатой бумаге фигуры. Размер клетки 1 см. Ответ дайте в кв. см.

фигуры на квадратной решетке

В этом случае надо еще придумать, как разбить нашу фигуру на более простые. Нужно сделать это так, чтобы площади определялись точно, без “ну, там примерно полклеточки”. И это не обязательно должны быть треугольники!

фигуры на квадратной решетке

Это могут быть трапеция и треугольник, а площадь трапеции мы уже научились находить. Но в этом случае точно определить площадь можно только разбив фигуру на треугольники: у меня вышло 4 кв. см.

По формуле Пика: внутри два узла решетки, на границе – 6. Тогда площадь: S=2+6/2-1=4. Ответ: 4

30. Самостоятельно определите площадь фигуры удобным вам способом:

фигуры на квадратной решеткеОтвет – в конце статьи.

31. Вот такая интересная фигура встретилась на пробном ЕГЭ в 2014 году одному из учеников:

фигуры на квадратной решетке

Как тут быть? Можно вычленить полный круг и определить его площадь, но остается еще “рыбий хвост” – этакий сдавленный ромб, и как определить его площадь?

фигуры на квадратной решетке

Этот “хвост” – круг, из которого вырезали 8 сегментов – см. рисунок, а площадь сегмента – это площадь сектора (в нашем случае – четверть круга) минус площадь треугольника (красными линиями). Считаем: “тело” рыбы – полный круг. Радиус его 2 клетки, площадь тогда 4pi. Площадь сектора – pi, площадь треугольника – 2. Площадь сегмента равна: pi-2, а восьми сегментов – 8pi-16. Площадь “хвоста”:

4pi-(8pi-16)=16-4pi. Соединим “хвост” и “тело”: 16-4pi+4pi=16.

фигуры на квадратной решетке

Ответ на 9 задачу: 1,5

Ответ на 10 задачу: 1/2

Ответ на 30 задачу: 5

Если что-то все же осталось непонятно, задавайте ваши вопросы в комментариях, я обязательно отвечу!

Найди площадь участка, изображённого на рисунке, если размер одной клетки составляет 1×1.


Я просто дорисовала 2 площади фигуры. Это прямоугольник АОРС и треугольник АВС.
Если из треугольника АВС я вычту треугольник АDС, то я узнаю площадь заштрихованной фигуры.
Вычисляю площадь треугольника АВС:
Она состоит из половины квадрата АОВН, которую делит пополам диагональ треугольника АВН и половины прямоугольника НВРС, у которой диагональ ВС. То есть фактически половина всего прямоугольника АОРС.
Sтр(авс) = АО*АС2 — 1, где V — количество внутренних точек многоугольника (соответствующих целым числам клеток), G — количество внешних точек фигуры, тоже соответственно целым числам.

Получаем: V = 2, G = 5,
S = V + G/2 — 1 = 2 + 2.5 — 1 = 3.5.
Ответ: площадь этого участка соответствует 3.5 клеткам.
Рубрика — образование

Содержание

  1. Формула Пика
  2. Площади фигур (плоских и объемных)
  3. ПЛОЩАДИ ПЛОСКИХ ФИГУР
  4. Геометрия. Применение формул. Задача 5 Базового ЕГЭ по математике

Формула Пика

Формула Пика. Рассказ о формуле, при помощи которой можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник). Это формула Пика.

Она секретной не является. Информация о ней в интернете имеется, но многим материал статьи будет крайне полезен. Об этой формуле обычно рассказывается применительно к нахождению площади треугольника. На примере треугольника мы её и рассмотрим.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

ФОРМУЛА ПИКА

Площадь искомой фигуры можно найти по формуле:

М – количество узлов на границе треугольника (на сторонах и вершинах)

N – количество узлов внутри треугольника

*Под «узлами» имеется ввиду пересечение линий.

Найдём площадь треугольника:

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Ещё пример. Найдём площадь параллелограмма:

M = 18 (обозначены красным)

N = 20 (обозначены синим)

Найдём площадь трапеции:

M = 24 (обозначены красным)

N = 25 (обозначены синим)

Найдём площадь многоугольника:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

Понятно, что находить площадь трапеции, параллелограмма, треугольника проще и быстрее по соответствующим формулам площадей этих фигур. Но знайте, что можно это делать и таким образом.

А вот когда дан многоугольник, у которого пять и более углов эта формула работает хорошо.

Теперь взгляните на следующие фигуры:

Это типовые фигуры, в заданиях стоит вопрос о нахождении их площади. Такие или подобные им будут на ЕГЭ. При помощи формулы Пика такие задачи решаются за минуту. Например, н айдём площадь фигуры:

M = 11 (обозначены красным)

N = 5 (обозначены синим)

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Конечно, можно и эти «микрофигурки» дробить на более простые фигуры (треугольники, трапеции). Способ решения выбирать вам.

Найдём площадь фигуры:

Опишем около неё прямоугольник:

Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур:

В будущем будем рассматривать задания на нахождение площади, связанные с окружностями построенными на листе в клетку, не пропустите! На этом всё. Успехов вам!

Источник

Площади фигур (плоских и объемных)

Сначала мы рассмотрим площади плоских фигур.

Слышал ты что-нибудь про формулу Пика? Когда ее можно применять, а когда нельзя?

Сколько ты знаешь способов нахождения площади фигур на клетчатой бумаге? А их на самом деле три! И хотя задачу по нахождению площади фигур на клетчатой бумаге убрали из ЕГЭ, сам навык очень полезен для понимания планиметрии!

Во второй части мы рассмотрим как находить площади объемных фигур (призмы и пирамиды)

ПЛОЩАДИ ПЛОСКИХ ФИГУР

Способы нахождения площади фигур на клетчатой бумаге:

Способ 1. Считай клетки и применяй формулы

Удобен для стандартных фигур: треугольника, трапеции и т.д.

  • Подсчитывая клеточки и применяя простые теоремы, найти те стороны, высоту, диагонали, которые требуются для применения формулы площади;
  • Подставить найденные значения в уравнение площади.

Способ 2. Дострой до прямоугольника и вычти лишнее

Очень удобен для сложных фигур, но и для простых неплох

  • Достроить искомую фигуру до прямоугольника;
  • Найти площадь всех получившихся дополнительных фигур и площадь самого прямоугольника;
  • Из площади прямоугольника вычесть сумму площадей всех лишних фигур.

Способ 3. Формула Пика

Работает только для многоугольников без дырок, все вершины которых попадают в узлы сетки.

  • Назовём «узлами» точки пересечения линий сетки нашей клетчатой бумаги.

Подсчитаем, сколько узлов попадает в нашу фигуру. Причём, отдельно посчитаем те узлы, которые попадают внутрь нашей фигуры, и отдельно – те, которые лежат на границе.

В примере на рисунке получилось ( Г = 22) на границе и ( В = 32) внутри.

Формула Пика. Делим границу пополам, прибавляем внутренности и вычитаем 1:( S = Г/2 + В – 1 )

Источник

Геометрия. Применение формул. Задача 5 Базового ЕГЭ по математике

Чтобы уверенно решать задачи по геометрии — даже такие простые — необходимо выучить основные понятия и формулы.

Это формулы площадей фигур — треугольника (5 формул), параллелограмма, ромба, прямоугольника, произвольного четырехугольника, а также круга. Формулы для длины окружности, длины дуги и площади сектора. Для средней линии треугольника и средней линии трапеции.

Надо знать, что такое центральный и вписанный угол. Знать основные тригонометрические соотношения. В общем, учите основы планиметрии.

Больше полезных формул — в нашем ЕГЭ-Справочнике.

В этой статье — основные типы заданий №5 Базового ЕГЭ по математике. Задачи взяты из Банка заданий ФИПИ.

Вычисление длин отрезков, величин углов и площадей фигур по формулам

1. На клетчатой бумаге с размером клетки изображена трапеция. Найдите длину средней линии этой трапеции.

Средняя линия трапеции равна полусумме её оснований:

2. Найдите величину угла ABC. Ответ дайте в градусах.

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Соединим точки А и С с центром окружности и проведем диаметры через точки А и С. Видим, что величина центрального угла АОС равна Тогда

3. Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на

Проведем из точки В перпендикуляр к прямой ОА. Из прямоугольного треугольника ОВС по теореме Пифагора:

Осталось умножить найденное значение синуса на

4. Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Самый простой способ — воспользоваться формулой площади ромба, выраженной через его диагонали:

, где и — диагонали.

5. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Площадь трапеции равна произведению полусуммы оснований на высоту:

Основания нашей трапеции равны 4 и 8, а высота равна боковой стороне (поскольку трапеция прямоугольная), то есть 3 см. Площадь трапеции

Нахождение площадей многоугольников сложной формы

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ и на авторских задачах.

6. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

7. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Многие репетиторы рекомендуют в таких задачах пользоваться формулой Пика. В ней нет необходимости, однако эта формула довольно интересна.

Согласно формуле Пика, площадь многоугольника равна В+Г/2-1

где В — количество узлов внутри многоугольника, а Г — количество узлов на границе многоугольника.

Узлами здесь названы точки, в которых пересекаются линии нашей клетчатой бумаги.

Посмотрим, как решается задача 7 с помощью формулы Пика:

Синим на рисунке отмечены узлы внутри треугольника. Зеленым — узлы на границе.

Аккуратно посчитав те и другие, получим, что В = 9, Г = 5, и площадь фигуры равна S = 9 + 5/2 — 1 = 10,5.

Выбирайте — какой способ вам больше нравится.

8. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки

Такой четырехугольник получится, если от квадрата размером отрезать 2 прямоугольника и 4 треугольника. Найдите их на рисунке.

Площадь каждого из больших треугольников равна

Площадь каждого из маленьких треугольников равна

Тогда площадь четырехугольника

9. Авторская задача. Найдите площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки

На рисунке изображен ромб с вырезанным из него квадратом.

Площадь ромба равна половине произведения его диагоналей.

Площадь вырезанного квадрата равна 4.

Площадь фигуры равна 36 — 4 = 32.

Площадь круга, длина окружности, площадь части круга

Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.

Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.

10. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

11. На клетчатой бумаге нарисован круг площадью 2,8. Найдите площадь закрашенного сектора.

На рисунке изображен сектор, то есть часть круга. Но какая же это часть? Это четверть круга и еще круга, то есть круга.

Значит, нам надо умножить площадь круга на . Получим:

12. На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь закрашенной фигуры.

Площадь фигуры равна разности площадей двух кругов, один из которых расположен внутри другого. По условию, площадь внутреннего круга равна 9. Радиус внешнего круга относится к радиусу внутреннего как 4 к 3. Площадь круга равна , то есть пропорциональна квадрату радиуса. Значит, площадь внешнего круга в раза больше площади внутреннего и равна 16. Тогда площадь фигуры равна 16 — 9 = 7.

Задачи на координатной плоскости

13. Найдите площадь четырехугольника, вершины которого имеют координаты (4;2), (8;4), (6;8), (2;6).

Заметим, что этот четырехугольник — квадрат. Сторона квадрата a является гипотенузой прямоугольного треугольника с катетами, равными 2 и 4. Тогда

14. Найдите площадь четырехугольника, вершины которого имеют координаты

На рисунке изображен параллелограмм (четырехугольник, имеющий две пары параллельных сторон). Площадь параллелограмма равна произведению основания на высоту. Основание равно 2, высота 8, площадь равна 16.

Источник

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти все свои адреса электронной почты
  • Как найти соседа который умер
  • Как найти хорошего человека паука
  • Как составить интонационную схему предложения
  • Как найти папку в терминале ubuntu

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии