Как найти площадь описанного четырехугольника по периметру

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними

Формула для нахождения площади четырехугольников через диагонали и угол между ними:

Через стороны и противолежащие углы

Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

Площадь вписанного четырехугольника в окружность

Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

Площадь описанного четырехугольника около окружности через радиус

Формула для нахождения площади описанного четырехугольника около окружности через радиус:

Площадь четырехугольника

Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн. Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.

В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.

Площадь четырехугольника по диагоналям и углу между ними

Площадь четырехугольника через стороны и углы между этими сторонами

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты

Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника в который можно вписать окружность

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Таблица с формулами площади четырехугольника

исходные данные
(активная ссылка для перехода к калькулятору)
эскиз формула
1 диагональ и угол между ними
2 стороны и углы между этими сторонами
3 стороны
(по Формуле Брахмагупты)
4 стороны и радиус вписанной окружности
5 стороны и углы между ними

Площадь частных случаев четырехугольников

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Калькулятор расчета площади четырехугольника

В публикации представлены онлайн-калькуляторы и формулы для расчета площади выпуклого четырехугольника по разным исходным данным: через диагонали и угол между ними, по всем сторонам (если вокруг можно описать окружность), по полупериметру и радиусу вписанной окружности.

Расчет площади

Инструкция по использованию: введите известные значения, затем нажмите кнопку “Рассчитать”. В результате будет вычислена площадь фигуры с учетом указанных данных.

1. Через диагонали и угол между ними

Формула расчета

2. По всем сторонам (формула Брахмагупты)

Примечание: Если вокруг четырехугольника можно описать окружность.

Формула расчета

p – полупериметр четырехугольника, равняется:

источники:

Математика

5.5.5. Площадь треугольника, параллелограмма, трапеции, круга, сектора

Формулы площади выпуклого четырехугольника

1. Формула площади четырехугольника по длине диагоналей и углу между ними
Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

(S=frac{1}{2}d_1d_2sinalpha)

где S — площадь четырехугольника,
d1, d2 — длины диагоналей четырехугольника,
α — угол между диагоналями четырехугольника.

2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

(S=pcdot r)

3. Формула площади четырехугольника по длине сторон и значению противоположных углов

4. Формула площади четырехугольника, вокруг которого можно описать окружность

(S=sqrt{(p-a)(p-b)(p-c)(p-d)})

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне
    высоты

  2. Формула площади треугольника по трем сторонам 

    Формула Герона

    S = √p(p — a)(p — b)(p — c)

  3. Формула площади треугольника по двум сторонам и углу между ними 
    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между
    ними.

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    a, b, c — длины сторон
    треугольника,

    h — высота треугольника,
    γ — угол между сторонами a и b,
    r — радиус вписанной окружности,
    R — радиус описанной окружности,

    p =  a + b + c   — полупериметр треугольника.
    2

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.

    S = a2

  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.

    где S — Площадь квадрата,
    a — длина стороны квадрата,
    d — длина диагонали квадрата.

Площадь
прямоугольника
 равна произведению длин
двух его смежных сторон

S = a · b


где S — Площадь
прямоугольника,

a,
b
 —
длины сторон прямоугольника.

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними
    Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

    где S — Площадь параллелограмма,
    a, b — длины сторон параллелограмма,
    h — длина высоты параллелограмма,
    d1d2 — длины диагоналей параллелограмма,
    α — угол между сторонами параллелограмма,
    γ — угол между диагоналями параллелограмма.

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.

    где S — Площадь ромба,
    a — длина стороны ромба,
    h — длина высоты ромба,
    α — угол между сторонами ромба,
    d1d2 — длины диагоналей.

  1. Формула Герона для трапеции

    S =  a + b (p — a)(p — b)(p — a — c)(p — a — d)
    4|a — b|
  2. Формула площади трапеции по длине основ и высоте 
    Площадь трапеции равна произведению полусуммы ее оснований на высоту 

    где S — Площадь трапеции,
    a, b — длины основ трапеции,
    c, d — длины боковых сторон трапеции,

    p =  a + b + c + d   — полупериметр трапеции.
    2
  1. Формула площади четырехугольника по длине диагоналей и углу между ними
    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    где S — площадь четырехугольника,
    d1d2 — длины диагоналей четырехугольника,
    α — угол между
    диагоналями четырехугольника.
  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности) 
    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r


  3. Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p — a)(p — b)(p — c)(p — d) — abcd cos2θ

    где S — площадь четырехугольника,
    abcd — длины сторон четырехугольника,

    p =  a + b + c + d   — полупериметр четырехугольника,
    2
    θ =  α + β  — полусумма двух противоположных углов четырехугольника.
    2

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p — a)(p — b)(p — c)(p — d)

  1. Формула площади круга через радиус
    Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр
    Площадь круга равна четверти произведения квадрата диаметра на число пи.

    где S — Площадь круга,
    r — длина радиуса круга,
    d — длина диаметра круга.

Площадь
эллипса
 равна произведению длин
большой и малой полуосей эллипса на число пи.

S = π · a · b


где S — Площадь
эллипса, 

a — длина большей полуоси
эллипса, 

b — длина меньшей полуоси
эллипса.

Формулы площади геометрических фигур

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

Треугольник

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

  2. Формула площади треугольника по трем сторонам

    Формула Герона

    S = √p(p — a)(p — b)(p — c)

  3. Формула площади треугольника по двум сторонам и углу между ними

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    a, b, c — длины сторон треугольника,
    h — высота треугольника,
    γ — угол между сторонами a и b,
    r — радиус вписанной окружности,
    R — радиус описанной окружности,

    p = a + b + c — полупериметр треугольника.
    2

Формулы площади квадрата

Квадрат

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.

    S = a2

  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.

    где S — площадь квадрата,
    a — длина стороны квадрата,
    d — длина диагонали квадрата.

Формула площади прямоугольника

Прямоугольник

Площадь прямоугольника равна произведению длин двух его смежных сторон

S = a · b

где S — Площадь прямоугольника,
a, b — длины сторон прямоугольника.

Формулы площади параллелограмма

параллелограмм

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними
    Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

    где S — Площадь параллелограмма,
    a, b — длины сторон параллелограмма,
    h — длина высоты параллелограмма,
    d1, d2 — длины диагоналей параллелограмма,
    α — угол между сторонами параллелограмма,
    γ — угол между диагоналями параллелограмма.

Формулы площади ромба

ромб

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.

    где S — Площадь ромба,
    a — длина стороны ромба,
    h — длина высоты ромба,
    α — угол между сторонами ромба,
    d1, d2 — длины диагоналей.

Формулы площади трапеции

трапеция

  1. Формула Герона для трапеции

    S = a + b (p-a)(p-b)(p-a-c)(p-a-d)
    |ab|
  2. Формула площади трапеции по длине основ и высоте

    Площадь трапеции равна произведению полусуммы ее оснований на высоту

    где S — площадь трапеции,
    a, b — длины основ трапеции,
    c, d — длины боковых сторон трапеции,

    p = a + b + c + d — полупериметр трапеции.
    2

Формулы площади выпуклого четырехугольника

выпуклый четырехугольник

  1. Формула площади четырехугольника по длине диагоналей и углу между ними

    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    где S — площадь четырехугольника,
    d1, d2 — длины диагоналей четырехугольника,
    α — угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)

    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. выпуклый четырехугольник

    Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p — a)(p — b)(p — c)(p — d) — abcd cos2θ

    где S — площадь четырехугольника,

    a, b, c, d — длины сторон четырехугольника,

    p = a + b + c + d2 — полупериметр четырехугольника,

    θ = α + β2 — полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p — a)(p — b)(p — c)(p — d)

Формулы площади круга

круг

  1. Формула площади круга через радиус
    Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр
    Площадь круга равна четверти произведения квадрата диаметра на число пи.

    где S — Площадь круга,
    r — длина радиуса круга,
    d — длина диаметра круга.

Формулы площади эллипса

эллипс

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

S = π · a · b

где S — Площадь эллипса,

a — длина большей полуоси эллипса,

b — длина меньшей полуоси эллипса.

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними


Площадь четырехугольника через диагонали


Формула для нахождения площади четырехугольников через диагонали и угол между ними:

d1, d2 — диагонали; α — угол между диагоналями.


Через стороны и противолежащие углы


Площадь четырехугольника через стороны и противолежащие углы


Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

p — полупериметр четырехугольника; a, b, c, d — стороны четырехугольника; α, β — противолежащие углы.


Площадь вписанного четырехугольника в окружность


Площадь вписанного четырехугольника в окружность


Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

p — полупериметр четырехугольника; a, b, c, d — стороны четырехугольника.


Площадь описанного четырехугольника около окружности через радиус


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через радиус:

p — полупериметр четырехугольника; r — радиус вписанной окружности; a, b, c, d — стороны четырехугольника.


Площадь описанного четырехугольника около окружности через стороны и противолежащие углы


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через стороны и противолежащие углы:

p — полупериметр четырехугольника; a, b, c, d — стороны четырехугольника; α, β — противолежащие углы.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти жилье на юге
  • Как найти крупного инвестора на проект
  • Как составить план сквера
  • Как исправить скрип дворников на автомобиле
  • Как найти спаунер в майнкрафте командой

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии