Как найти площадь фигуры 8 класс геометрия

Формулы площади геометрических фигур

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

Треугольник

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

  2. Формула площади треугольника по трем сторонам

    Формула Герона

    S = √p(p — a)(p — b)(p — c)

  3. Формула площади треугольника по двум сторонам и углу между ними

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    a, b, c — длины сторон треугольника,
    h — высота треугольника,
    γ — угол между сторонами a и b,
    r — радиус вписанной окружности,
    R — радиус описанной окружности,

    p = a + b + c — полупериметр треугольника.
    2

Формулы площади квадрата

Квадрат

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.

    S = a2

  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.

    где S — площадь квадрата,
    a — длина стороны квадрата,
    d — длина диагонали квадрата.

Формула площади прямоугольника

Прямоугольник

Площадь прямоугольника равна произведению длин двух его смежных сторон

S = a · b

где S — Площадь прямоугольника,
a, b — длины сторон прямоугольника.

Формулы площади параллелограмма

параллелограмм

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними
    Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

    где S — Площадь параллелограмма,
    a, b — длины сторон параллелограмма,
    h — длина высоты параллелограмма,
    d1, d2 — длины диагоналей параллелограмма,
    α — угол между сторонами параллелограмма,
    γ — угол между диагоналями параллелограмма.

Формулы площади ромба

ромб

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.

    где S — Площадь ромба,
    a — длина стороны ромба,
    h — длина высоты ромба,
    α — угол между сторонами ромба,
    d1, d2 — длины диагоналей.

Формулы площади трапеции

трапеция

  1. Формула Герона для трапеции

    S = a + b (p-a)(p-b)(p-a-c)(p-a-d)
    |ab|
  2. Формула площади трапеции по длине основ и высоте

    Площадь трапеции равна произведению полусуммы ее оснований на высоту

    где S — площадь трапеции,
    a, b — длины основ трапеции,
    c, d — длины боковых сторон трапеции,

    p = a + b + c + d — полупериметр трапеции.
    2

Формулы площади выпуклого четырехугольника

выпуклый четырехугольник

  1. Формула площади четырехугольника по длине диагоналей и углу между ними

    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    где S — площадь четырехугольника,
    d1, d2 — длины диагоналей четырехугольника,
    α — угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)

    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. выпуклый четырехугольник

    Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p — a)(p — b)(p — c)(p — d) — abcd cos2θ

    где S — площадь четырехугольника,

    a, b, c, d — длины сторон четырехугольника,

    p = a + b + c + d2 — полупериметр четырехугольника,

    θ = α + β2 — полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p — a)(p — b)(p — c)(p — d)

Формулы площади круга

круг

  1. Формула площади круга через радиус
    Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр
    Площадь круга равна четверти произведения квадрата диаметра на число пи.

    где S — Площадь круга,
    r — длина радиуса круга,
    d — длина диаметра круга.

Формулы площади эллипса

эллипс

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

S = π · a · b

где S — Площадь эллипса,

a — длина большей полуоси эллипса,

b — длина меньшей полуоси эллипса.

Необходимо определить, что такое высота параллелограмма.

Это перпендикуляр, проведённый из любой точки стороны параллелограмма к прямой, содержащей противоположную параллельную сторону. Обычно высоту проводят из вершины параллелограмма. Так как параллелограмм имеет две пары параллельных сторон, то он имеет высоты двух различных длин.

Высота (BE), проведённая между длинными сторонами, короче высоты (BF), проведённой между короткими сторонами.

Pgrama_augst.png

Так как стороны ромба одинаковы, то высоты ромба также одинаковы: (BE = BF).

Romba_augst.png 

Площадь произвольного параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота.

Pgrama_lauk1.png

Проведём высоты из двух вершин (B) и (C) к стороне (AD) .

Прямоугольные треугольники (ABE) и (DCF) равны (равные гипотенузы как противоположные стороны параллелограмма и равные катеты как расстояние между параллельными прямыми).

Параллелограмм (ABCD) и прямоугольник (EBCF) — равновеликие, так как состоят из равных фигур:

SABCD=SABE+SEBCD;SEBCF=SEBCD+SDCF.

Значит, площадь параллелограмма определяется так же, как площадь прямоугольника:

SEBCF=BE⋅BC;SABCD=BE⋅BC=BE⋅AD.

Если обозначить сторону через (a), высоту — через (h), то:

Для определения площади параллелограмма можно использовать короткую сторону и высоту, проведённую к короткой стороне.

Диагонали ромба в точке пересечения делятся пополам, они перпендикулярны и делят ромб на четыре равных прямоугольных треугольника.

Romba_lauk.png

SABCD=4⋅SABO=4⋅BO⋅AO2=2⋅BO⋅AO

.

Формула определения площади ромба:

Эта формула справедлива для определения площади любого четырёхугольника, если его диагонали перпендикулярны.

Так как диагонали квадрата равны, то для определения площади квадрата в формуле достаточно длины одной диагонали:

Площадь произвольного треугольника

Так как диагональ параллелограмма делит его на два равных треугольника, то площадь треугольника равна половине площади параллелограмма.

Trijst_lauk1.png

Sтреуг=aha2

, где (h) — высота (на рисунке — (BE)), проведённая к стороне (a) (на рисунке — (AD)).

Для определения площади треугольника можно использовать любую сторону и высоту, проведённую к этой стороне.

Удобно иногда использовать формулу Герона, если известны длины всех трёх сторон треугольника.

SΔ=pp−ap−bp−c;p=a+b+c2

— формула Герона, где (a), (b) и (c) — стороны треугольника, (p) — полупериметр треугольника.

Площадь прямоугольного треугольника

Так как катеты прямоугольного треугольника взаимно перпендикулярны, то один катет может быть высотой, а другой катет — стороной, к которой проведена высота. Получаем формулу:

S=a⋅b2, где (a) и (b) — катеты.

Для прямоугольного треугольника также можно применять формулы площади произвольного треугольника.

Пример:

1. вычислим площадь треугольника со сторонами (17) см, (39) см, (44) см.

Решение:

p=17+39+442=50;SΔ=50⋅50−17⋅50−39⋅50−44=50⋅33⋅11⋅6==25⋅2⋅3⋅11⋅11⋅2⋅3=5⋅2⋅3⋅11=330см2.

Чтобы легче было вычислить корень, необходимо не перемножать все числа, а раскладывать их на множители: 

a⋅a=a

.

Формулу Герона можно использовать для вычисления высоты треугольника.

Пример:

2. вычислим меньшую высоту треугольника, стороны которого равны (15) см, (13) см, (4) см.

Решение:

используем две формулы вычисления площади: 

SΔ=aha2

 и

SΔ=pp−ap−bp−c

.

Меньшая высота в треугольнике — та, которая проведена к большей стороне, поэтому (a =) (15) см.

SΔ=pp−ap−bp−c=16⋅1⋅3⋅12=24см2

.

15⋅h2=24⋅215⋅h=48;h=4815=3,2(см).

Иногда формула Герона используется для вычисления площади параллелограмма, если даны стороны параллелограмма и его диагональ.

Пример:

3. дан параллелограмм со сторонами (17) см и (39) см, длина диагонали равна (44) см. Вычислим площадь параллелограмма.  

Решение:

диагональ делит параллелограмм на два равных треугольника. Используем результат, полученный в первом примере:

Sпараллелограмма=2⋅SΔ=2⋅330=660(см2)

.

Трапеция имеет одну пару параллельных сторон, следовательно, имеет одну высоту — перпендикуляр, проведённый между параллельными сторонами.

Чаще всего высоту трапеции проводят из вершин или через точку пересечения диагоналей.

Trapeces_augst.png

Площадь трапеции определим как сумму площадей треугольников, на которые трапецию делит диагональ.
 

Trapeces_lauk.png

SABCD=SABD+SDBC;SABCD=AD⋅BE2+BC⋅DF2=AD⋅BE2+BC⋅BE2==AD+BC⋅BE2.

Если обозначить параллельные стороны (основания) трапеции через (a) и (b), высоту через (h), то:

Обрати внимание!

Важные следствия:

1. если высоты треугольников равны, то их площади относятся как длины оснований.

2. Если основания треугольников равны, то их площади относятся как длины высот.

3. Если высоты треугольников равны и их основания равны, то они равновелики, например, медиана делит треугольник на две равновеликие части.

Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!
!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

площадь квадрата
SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!
!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

площадь прямоугольника
SABCD = AB · BC

SABCD = 3 · 7 = 21 см2

Запомните!
!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!
!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигуры
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!
!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
знак треугольника
ABC и
знак треугольникаACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

Sзнак треугольника
ABC
= SABCD : 2

Sзнак треугольника
ABC
= 20 : 2 = 10 см2

Sзнак треугольника
ABC
=
Sзнак треугольника
ACD
= 10 см2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 декабря 2015 в 22:54

Ирина Петренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ирина Петренко
Профиль
Благодарили: 0

Сообщений: 1

как написать правильно площадь треугольника?undecided

0
Спасибоthanks
Ответить

9 декабря 2015 в 19:41
Ответ для Ирина Петренко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


S(рисуешь мини треугольник) = ,,,,,

0
Спасибоthanks
Ответить


План урока:

Площадь прямоугольного треугольника

Площадь произвольного треугольника

Площадь параллелограмма

Площадь ромба

Площадь трапеции

Площадь прямоугольного треугольника

Пусть в прямоугольном треугольнике известны два его катета. Обозначим их буквами а и b. Как тогда вычислить площадь такого треуг-ка?

Прямоугольный треугольник можно достроить до прямоугольника:

1 ploshad mnogougolnikov

Площадь получившегося прямоугольника равна произведению чисел а и b. С другой стороны, прямоугольник состоит из двух треуг-ков площадью S, поэтому его общая площадь составляет 2S. Тогда можно записать, что

2 ploshad mnogougolnikov

Задание. Катеты прямоугольного треугольника имеют длины 3 и 4. Определите его площадь.

Решение. Просто подставляем в формулу вместе букв a и b числа 3 и 4:

3 ploshad mnogougolnikov

Задание. Площадь прямоугольного треугольника равна 100, а один катет больше другого вдвое. Найдите оба катета.

Решение. Пусть меньший катет равен х, тогда больший катет будет равен 2х. Выразим площадь прямоугольного треугольника через х:

4 ploshad mnogougolnikov

Естественно, нас интересует только положительный корень, а отрицательный можно отбросить:

x = 10

Меньший катет оказался равным 10, тогда больший катет, который вдвое больше, будет равен 20.

Ответ: 10; 20.

Задание. Найдите площадь фигуры, показанной на рисунке. Сторона каждой клеточки имеет длину, равную единице:

5 ploshad mnogougolnikov

Решение. Эту фигуру можно разбить на квадрат со стороной 8 и два прямоугольных треуг-ка, то есть всего на три фигуры:

6 ploshad mnogougolnikov

Подсчитаем площадь каждой из трех фигур по отдельности:

7 ploshad mnogougolnikov

Чтобы найти площадь всей фигуры, достаточно просто сложить три полученных числа:

8 ploshad mnogougolnikov

Задание. Вычислите площадь треуг-ка, изображенного на рисунке (площадь каждой отдельной клеточки составляет единицу):

9 ploshad mnogougolnikov

Решение. Здесь проблема заключается в том, что треуг-к прямоугольным не является. Однако можно построить прямоуг-к, который будет состоять сразу из 4 треуг-ков:

10 ploshad mnogougolnikov

Мы можем найти как площадь всего прямоугольника (обозначим ее как S), так и площади трех прямоугольных треуг-ков S1, S2 и S3:

11 ploshad mnogougolnikov

Площадь произвольного треугольника

Перейдем к более сложному случаю, когда необходимо подсчитать площадь произвольного треугольника, не являющегося прямоугольным. Предположим, надо найти площадь произвольного ∆АВС. Опустим из А на сторону ВС высоту АН:

12 ploshad mnogougolnikov

В результате мы получили два прямоугольных треуг-ка, ∆АВН и ∆АCН. Мы уже знаем, как найти их площади:

13 ploshad mnogougolnikov

Общая площадь всего ∆АВС равна сумме площадей ∆АВН и ∆АСН. Запишем ее и вынесем общий множитель АН/2 за скобки:

14 ploshad mnogougolnikov

В скобках стоит сумма ВН + НС. Но ведь эта сумма равна длине стороны ВС! Тогда окончательно формулу можно записать в виде:

15 ploshad mnogougolnikov

Получили, что для вычисления площади произвольного треугольника надо сначала умножить его высоту на сторону, на которую она падает, а далее поделить результат на 2. Однако для полного доказательства этого факта надо рассмотреть особый случай, когда высота в треуг-ке падает не на сторону, а на ее продолжение (такая ситуация возникает в тупоугольном треуг-ке):

16 ploshad mnogougolnikov

На рисунке снова получились всё те же прямоугольные треуг-ки ∆АСН и ∆АВН. Запишем формулы их площади:

17 ploshad mnogougolnikov

Отличие в том, что на этот раз площадь АВС можно вычислить не как сумму, а как разницу этих площадей:

18 ploshad mnogougolnikov

Итак, можно сформулировать следующее правило:

19 ploshad mnogougolnikov

Примечание. Часто сторону, на которую опущена высота, называют основанием треуг-ка.

Задание. Вычислите площадь ∆АВС, если сторона АВ имеет длину 7, а высота СН равна 4.

20 ploshad mnogougolnikov

Решение. В данной задаче на сторону длиной 7 падает высота длиной 4. Надо просто подставить эти числа в формулу:

21 ploshad mnogougolnikov

Задание. Докажите, что медиана треуг-ка разбивает его на два равновеликих треуг-ка.

Решение.

Пусть в ∆АВС проведена медиана СМ. Требуется доказать, что

22 ploshad mnogougolnikov

Важно заметить, что СН будет являться высотой не только для ∆АВС, но также и для ∆СВМ и ∆САМ. Обозначим СН как h, а АВ как а. Тогда мы можем найти длины отрезков ВМ и АМ, ведь медиана делит сторону АВ пополам:

23 ploshad mnogougolnikov

Получили одно и то же значение, то есть площади треуг-ков равны.

В рассмотренной задаче мы использовали тот факт, что у нескольких треуг-ков может быть общая высота. Общая высота используется и в многих других геометрических задачах.

Задание. Предложите способ, как разделить треуг-к, показанный на рисунке, на три равновеликих треуг-ка:

24 ploshad mnogougolnikov

Чтобы треуг-ки были равновелики, достаточно, чтобы у них была общая высота, а основания, на которые эта высота падает, были бы равны друг другу. Поэтому можно просто поделить нижнюю сторону на три одинаковых отрезка (длиной по 7 клеток) и соединить концы полученных отрезков с противоположной вершиной:

25 ploshad mnogougolnikov

Красной линией здесь показаны границы треуг-ков, а штриховой – их общая высота СН. Вычислить площадь каждого из треуг-ков можно по следующим формулам:

26 ploshad mnogougolnikov

Но отрезки BD, DE и EA одинаковы (по 7 клеточек), поэтому одинаковы будут и площади:

27 ploshad mnogougolnikov

Заметим, что необязательно делить на три одинаковых отрезка именно нижнюю сторону. Допустимы и два других варианта решения:

28 ploshad mnogougolnikov

Но и это не единственные решения задачи. Попробуйте самостоятельно предложить ещё несколько вариантов.

Формула площади треуг-ка показывает, что между длинами высот и сторон есть взаимосвязь.

Задание.В ∆РЕТ РЕ = 72, ЕТ = 45. Высота ТН имеет длину 40. Найдите высоту РМ.

29 ploshad mnogougolnikov

Решение.

Зная ТН и РЕ, мы сможем найти площадь треуг-ка:

30 ploshad mnogougolnikov

Теперь запишем эту формулу площади в ином виде, когда используется высота МР и сторона ЕТ

31 ploshad mnogougolnikov

Величину SРЕТ мы только что вычислили, а длина ЕТ известна из условия, поэтому можно подставить их в формулу:

32 ploshad mnogougolnikov

Площадь параллелограмма

Для вычисления площади параллелограмма введем понятие «высота параллелограмма». Так называют перпендикуляр, опущенный на сторону параллелограмма (ее в такой ситуации часто называют основанием) из одной из вершин параллелограмма. Важно понимать, что высоты могут упасть не на само основание, а на его продолжение. Так как у каждого параллелограмма есть 4 вершины, а из каждой из них можно опустить высоту на две противоположных вершины, то всего у параллелограмма должно быть 8 высот:

33 ploshad mnogougolnikov

На рисунке синим показаны высоты параллелограмма, а красным цветом отмечены продолжения оснований. Оказывается, что площадь параллелограмма равна произведению его высоты и основания, на которую она опущена. Докажем это.

Опустим в параллелограмме АВСD высоты ВН и СК:

34 ploshad mnogougolnikov

В результате получили четырехуг-к ВНКС, который является прямоугольником, ведь все его углы прямые. Очевидно, что ∆АВН и ∆DCK равные. Это можно доказать тем, что они являются прямоугольными, у них есть одинаковые гипотенузы АВ и CD (они равны как противоположные стороны параллелограмма) и одинаковые катеты ВН и СК (это уже противоположные стороны прямоугольника ВНКС).

Раз они равны, то одинаковы и их площади:

35 ploshad mnogougolnikov

Но величину Sможно заменить на S2. В свою очередь полученная сумма равна площади прямоугольника ВНКС, которая может быть вычислена как произведение его смежных сторон:

36 ploshad mnogougolnikov

Но ВН – это высота, а НК – основание параллелограмма. То есть мы доказали следующее утверждение:

37 ploshad mnogougolnikov

Задание. Найдите площадь параллелограмма, изображенного на рисунке:

38 ploshad mnogougolnikov

Решение. По рисунке несложно определить длину как основания, так и высоты параллелограмма:

39 ploshad mnogougolnikov

Далее надо просто перемножить эти длины:

40 ploshad mnogougolnikov

Примечание. Конечно, если вы вдруг забыли формулу площади параллелограмма, можно просто разделить его на прямоугольник и два прямоугольных треуг-ка:

41 ploshad mnogougolnikov

Дальше можно просто посчитать по отдельности S1, S2и S3, после чего сложить их. Попробуйте сделать это самостоятельно.

Задание. Площадь параллелограмма равна 162 см2, а одна из его высот вдвое короче основания, к которому она проведена. Найдите эту высоту и основание.

Решение. В данной задаче не потребуется даже рисунок. Обозначим высоту буквой h, тогда основание, которое вдвое длиннее, составляет 2h. Произведение этих чисел – это площадь, то есть оно равно 162:

42 ploshad mnogougolnikov

Высота равна 9, а основание будет вдвое больше, то есть его длина равна 18.

Ответ: 9 и 18.

Задание. Смежные стороны параллелограмма ABCD имеют длину 12 и 14 см, а угол между ними равен 30°. Вычислите его площадь.

Решение. Опустим на сторону длиной 14 см высоту:

43 ploshad mnogougolnikov

Для вычисления площади надо сначала найти высоту ВН. Её можно определить из ∆АВН. Он является прямоугольным, а его острый угол∠А = 30°. У такого треуг-ка катет, лежащий против 30°, вдвое меньше АВ:

44 ploshad mnogougolnikov

Площадь ромба

Многие четырехуг-ки, изученные нами ранее, являются частными случаями параллелограмма. Для прямоугольника и квадрата мы уже знаем формулы вычисления площади. Осталось разобраться с ромбом. Ясно, что его площадь можно найти также, как и у параллелограмма. Однако площадь ромба можно посчитать и зная только его диагонали.

Построим ромб и проведем в нем диагонали:

45 ploshad mnogougolnikov

Нам уже известно, что диагонали ромба пересекаются под прямым углом, а точка их пересечения является серединой для каждой диагонали:

46 ploshad mnogougolnikov

Получается, что диагонали разбивают ромб на 4 одинаковых прямоугольных треуг-ка. Высчитаем, к примеру, SAOB:

47 ploshad mnogougolnikov

В результате мы доказали следующее утверждение:

48 ploshad mnogougolnikov

Задание. Одна диагональ ромба равна 3,2 дм, а другая составляет 14 см. Найдите его площадь.

Решение. Для начала надо перевести все длины в одинаковые единицы измерения. Заменим дециметры на сантиметры:

49 ploshad mnogougolnikov

Задание. Одна диагональ ромба в три раза длиннее другой, а площадь фигуры составляет 150. Вычислите длину диагоналей ромба.

Решение. Обозначим меньшую диагональ как х, тогда вторая будет равна 3х. Выразим площадь через х:

50 ploshad mnogougolnikov

Вторая диагональ ромба будет втрое длиннее, то есть ее длина равна 3•10 = 30

Ответ: 10 и 30 см.

Площадь трапеции

Осталось рассмотреть единственный известный нам вид четырехуг-ка, который не является параллелограммом. Это трапеция. Для вычисления ее площади также потребуется высота. Под ней подразумевают перпендикуляр, опущенный из вершины трапеции на одно из ее оснований. Другими словами, высота трапеции – это расстояние между основаниями трапеции.

В произвольной трапеции ABCD, где АD – большее основание, опустим из В высоту (то есть перпендикуляр) на AD, а из D– высоту на ВС. Также проведем диагональ ВD:

51 ploshad mnogougolnikov

Ясно, что общая площадь трапеции будет равна сумме площадей ∆АВDи ∆ВСD. В свою очередь площадь каждого из них можно подсчитать по стороне и опущенной на нее высоте. Высоты мы как раз и провели, это ВН и DK, поэтому можно записать:

52 ploshad mnogougolnikov

Теперь заметим, что отрезки ВН и КD одинаковы, ведь фигура ВНDК является прямоугольником. Тогда площадь ∆ВСD можно записать в таком виде:

53 ploshad mnogougolnikov

В итоге мы доказали, что для вычисления площади трапеции следует ее высоту умножить на сумму длин оснований, после чего поделить результат на два. Обычно этот факт записывают следующим образом:

54 ploshad mnogougolnikov

Задание. У трапеции АВСD основаниями являются АВ (21 см) и CD (17 см). Высота ВН составляет 7 см. Найдите площадь трапеции.

55 ploshad mnogougolnikov

Решение. Это простая задача на использование формулы площади трапеции:

56 ploshad mnogougolnikov

Задание. Найдите площадь прямоугольной трапеции, показанной на рисунке (площадь клеточки равна единице):

57 ploshad mnogougolnikov

Решение. На рисунке показана прямоугольная трапеция. Её высота равна длине ее правой боковой стороны трапеции. Покажем размеры, необходимые нам для выполнения расчета:

58 ploshad mnogougolnikov

Считаем площадь:

59 ploshad mnogougolnikov

Задание. Тупой угол равнобедренной трапеции составляет 135°. Проведенная из этого угла высота делит противолежащее основание на отрезки длиной 14 и 34 см. Какова площадь трапеции?

Решение. Выполним построение:

60 ploshad mnogougolnikov

Найдем острый угол трапеции. Так как CD||АВ, то

61 ploshad mnogougolnikov

Рассмотрим ∆АDH. Он прямоугольный, а один из его острых углов равен 45°. Тогда и второй острый угол также равен 45°. То есть это равнобедренный треуг-к. Это помогает найти длину высоты DH:

62 ploshad mnogougolnikov

ведь это прямоугольныетреуг-ки с равными гипотенузой и катетом:

63 ploshad mnogougolnikov

Из равенства треуг-ков следует, что

64 ploshad mnogougolnikov

Итак, сегодня мы узнали, как вычислять площади треуг-ков и некоторых видов четырехуг-ков. В большинстве случаев предварительно необходимо найти высоту в многоугольнике. В будущем мы узнаем ещё несколько формул для вычисления площадей фигур.

Формулы площадей фигур

формулы площадей фигур

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

  • формулы площади треугольника
  • формулы площади квадрата
  • формула площади прямоугольника
  • формулы площади параллелограмма
  • формулы площади ромба
  • формулы площади трапеции
  • формулы площади дельтоида
  • формулы площади произвольного выпуклого четырехугольника
  • формулы площади круга
  • формула площади эллипса

Формулы площади треугольника

формулы площади треугольника

Формула площади треугольника по стороне и высоте

формула площади треугольника по стороне и высоте

Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

S = 12 a · h

,

где a — одна из сторон треугольника, h — высота, проведенная к стороне треугольника.

Формула площади треугольника по трем сторонам

формула площади треугольника по трем сторонам

Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c.

S = pp-ap-bp-c

,

где p — полупериметр треугольника: p = a + b + c2
a, b, c — стороны треугольника.

Формула площади треугольника по двум сторонам и углу между ними

формула площади треугольника по двум сторонам и углу между ними

Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

S = 12 a · b · sinγ

,

где a, b — стороны треугольника,
γ — угол между сторонами a и b.

Формула площади треугольника по трем сторонам и радиусу описанной окружности

формула площади треугольника по трем сторонам и радиусу описанной окружности

S = a · b · c4R

,

a, b, c — стороны треугольника,
R — радиус описанной окружности.

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

формула площади треугольника по трем сторонам и радиусу вписанной окружности

Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

S = p · r

,

где S — площадь треугольника,
r — радиус вписанной окружности,
p — полупериметр треугольника: p = a + b + c2

Формулы площади квадрата

формулы площади квадрата

Формула площади квадрата по длине стороны

формула площади квадрата по длине стороны

Площадь квадрата равна квадрату длины его стороны.

S = a2

,

где S — площадь квадрата,
a — длина стороны квадрата.

Формула площади квадрата по длине диагонали

формула площади квадрата по длине диагонали

Площадь квадрата равна половине квадрата длины его диагонали.

S = d22

,

где S — площадь квадрата,
d — длина диагонали квадрата.

Формула площади прямоугольника

формула площади прямоугольника

Площадь прямоугольника равна произведению длин двух его смежных сторон.

S = a · b

,

где S — площадь прямоугольника,
a, b — длины сторон прямоугольника.

Формулы площади параллелограмма

Параллелограмм — это четырёхугольник, у которого противолежащие стороны параллельны.

формулы площади параллелограмма

Формула площади параллелограмма по длине стороны и высоте

формула площади параллелограмма по длине стороны и высоте

Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

S = a · h

,

где S — площадь параллелограмма,
a, h — длины сторон параллелограмма.

Формула площади параллелограмма по двум сторонам и углу между ними

формула площади параллелограмма по двум сторонам и углу между ними

Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

S = a · b · sinα

,

где S — площадь параллелограмма,
a, b — длины сторон параллелограмма,
α — угол между сторонами параллелограмма.

Формула площади параллелограмма по двум диагоналям и углу между ними

формула площади параллелограмма по двум диагоналям и углу между ними

Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

S =
d1 · d2
· sinβ2 = d1 · d2
· sinγ2

,

где S — площадь параллелограмма,
d1, d2 — длины диагоналей параллелограмма,
β, γ — угол между диагоналями параллелограмма.

Формулы площади ромба

формулы площади ромба

Формула площади ромба по длине стороны и высоте

формула площади ромба по длине стороны и высоте

Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

S = a · h

,

где S — площадь ромба,
a — длина стороны ромба,
h — длина высоты ромба.

Формула площади ромба по длине стороны и углу

формула площади ромба по длине стороны и углу

Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

S = a2 · sinα

,

где S — площадь ромба,
a — длина стороны ромба,
α — угол между сторонами ромба.

Формула площади ромба по длинам его диагоналей

формула площади ромба по длинам его диагоналей

Площадь ромба равна половине произведению длин его диагоналей.

S = d1 · d22

,

где S — площадь ромба,
d1, d2 — длины диагоналей ромба.

Формулы площади трапеции

Трапеция — это четырёхугольник, у которого две (a, b) стороны параллельны (основания), а две другие (c, d) стороны не параллельны (боковые стороны).

формулы площади трапеции

Формула Герона для трапеции

формула Герона для трапеции

S = a + b|a — b| p-ap-bp-a-cp-a-d

,

где S — площадь трапеции,
a, b — длины основ трапеции,
c, d — длины боковых сторон трапеции,
p=a+b+c+d2 — полупериметр трапеции.

Формула площади трапеции по длине основ и высоте

формула площади трапеции по длине основ и высоте

Площадь трапеции равна произведению полусуммы её оснований на высоту.

S = a + b · h2

,

где S — площадь трапеции,
a, b — длины основ трапеции,
h — высота трапеции.

Формулы площади дельтоида

Дельтоид — это выпуклый четырёхугольник, состоящий из двух различных равнобедренных треугольников с общим основанием, вершины которых лежат по разные стороны от этого основания.

формулы площади дельтоида

Формула площади дельтоида по двум неравным сторонам и углу между ними

формула площади дельтоида по двум неравным сторонам и углу между ними

Площадь дельтоида равна произведению длин неравных сторон на синус угла между ними.

S = a·b sinβ

,

где S — площадь дельтоида,
a, b — длины неравных сторон дельтоида,
β — угол между неравными сторонами дельтоида.

Формула площади дельтоида по равным сторонам и углу между ними

формула площади дельтоида по равным сторонам и углу между ними

Площадь дельтоида равна полусумме произведения каждой из пар равных сторон на синус угла между ними.

S = a2 sinγ + b2 sinα2

,

где S — площадь дельтоида,
a, b — длины сторон дельтоида,
α — угол между равными сторонами b,
γ — угол между равными сторонами a.

Формула площади дельтоида по двум неравным сторонам и радиусу вписанной окружности

формула площади дельтоида по двум неравным сторонам и радиусу вписанной окружности

Площадь дельтоида равна произведению суммы неравных сторон на радиус вписанной окружности.

S = a+b r

,

где S — площадь дельтоида,
a, b — длины неравных сторон дельтоида,
r — радиус вписанной окружности.

Формула площади дельтоида по двум диагоналям

формула площади дельтоида по двум диагоналям

Площадь дельтоида равна половине произведения длин двух диагоналей.

S = d1 · d22

,

где S — площадь дельтоида,
d1, d2 — диагонали дельтоида.

Формулы площади произвольного выпуклого четырехугольника

формулы площади выпуклого четырехугольника

Формула площади произвольного выпуклого четырехугольника по длине диагоналей и углу между ними

формула площади произвольного выпуклого четырехугольника по длине диагоналей и углу между ними

Площадь произвольного выпуклого выпуклого четырехугольника равна половине произведения его диагоналей умноженной на синус угла между ними.

S = d1 · d2 · sinγ2

,

где S — площадь четырехугольника,
d1, d2 — диагонали четырехугольника,
γ — любой из четырёх углов между диагоналями.

Формула площади произвольного выпуклого четырехугольника по длине сторон и значению противоположных углов

формула площади произвольного выпуклого четырехугольника по длине сторон и значению противоположных углов

S = p-ap-bp-cp-d — a·b·c·d ·cos2θ

,

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника,
p=a+b+c+d2 — полупериметр четырехугольника,
θ = α + β2 — полусумма двух противоположных углов четырехугольника.

Формула площади вписанного четырехугольника (формула Брахмагупты)

формула площади вписанного четырехугольника (формула Брахмагупты)

Если вокруг четырехугольника можно описать окружность, то его площадь равна

S = p-ap-bp-cp-d

,

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника,
p=a+b+c+d2 — полупериметр четырехугольника.

Формула площади четырехугольника с вписанной окружностью

формула площади четырехугольника с вписанной окружностью

Если в четырехугольник можно вписать окружность, то его площадь равна:

S = p· r

,

где S — площадь четырехугольника,
r — радиус вписанной окружности,
p=a+b+c+d2 — полупериметр четырехугольника.

Формула площади четырехугольника с вписанной и описанной окружностями

формула площади четырехугольника с вписанной и описанной окружностями

Если в четырехугольник можно вписать окружность, а также около него можно описать окружность, то его площадь равна:

S = a·b·c·d

,

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника.

Формулы площади круга

формулы площади круга

Формула площади круга через радиус

Площадь круга равна произведению квадрата радиуса на число пи.

формула площади круга через радиус

S = πr2

,

где S — площадь круга,
r — радиус круга.

Формула площади круга через диаметр

формула площади круга через диаметр

Площадь круга равна четверти произведения квадрата диаметра на число пи.

S = πd24

,

где S — площадь круга,
d — диаметр круга.

Площадь сегмента круга

площадь сегмента круга

Площадь кругового сегмента через угол в градусах.

S = R22 · π · α°180° — sinα

,

где S — площадь сегмента круга,
R — радиус круга,
α° — угол в градусах.

Площадь кругового сегмента через угол в радианах.

S = R22 · αрад. — sinα

,

где S — площадь сегмента круга,
R — радиус круга,
α° — угол в радианах.

Формула площади эллипса

формула площади эллипса

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

S = π · a · b

,

где S — площадь эллипса,
a — длина большей полуоси эллипса,
b — длина меньшей полуоси эллипса.

  • Коротко о важном
  • Таблицы
  • Формулы
  • Формулы по геометрии
  • Теория по математике

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить задание для водителя
  • Круговой сегмент как найти высоту
  • Не работает ворд пишет сбой активации продукта как исправить
  • Как найти слово в тексте openoffice
  • Как найти массу вещества растворенного в воде

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии