Как найти период полураспада радиоактивного препарата


Загрузить PDF


Загрузить PDF

Периодом полураспада вещества, которое находится в стадии распада, называют время, в течение которого количество этого вещества уменьшится в два раза. Первоначально этот термин использовался для описания распада радиоактивных элементов, таких как уран или плутоний, но, вообще говоря, он может быть использован для любого вещества, которое подвергается распаду в установленной или экспоненциальной скорости. Вы можете рассчитать период полураспада любого вещества, зная скорость распада, которая является разницей между начальным количеством вещества и количеством вещества, оставшимся после определенного периода времени. Читайте далее, чтобы узнать, как быстро и легко подсчитать период полураспада вещества.

  1. Изображение с названием Calculate Half Life Step 1

    1

    Разделите количество вещества в одной точке во времени на количество вещества, оставшееся после определенного периода времени.

    • Формула для вычисления периода полураспада: t1/2 = t * ln(2)/ln(N0/Nt)
    • В этой формуле: t — прошедшее время, N0 — начальное количество вещества и Nt — количество вещества через прошедшее время.
    • Например, если вначале количество составляет 1500 граммов, а конечный объем составляет 1000 граммов, начальное количество, деленное на конечный объем, равно 1,5. Предположим, что время, которое прошло, составляет 100 минут, то есть (t) = 100 мин.
  2. Изображение с названием Calculate Half Life Step 2

    2

    Вычислите десятичный логарифм числа (log), полученного на предыдущем шаге. Для этого введите полученное число в научный калькулятор, а затем нажмите кнопку log, либо введите log(1,5) и нажмите знак равенства для получения результата.

    • Логарифмом числа по заданному основанию называется такой показатель степени, в который необходимо возвести основание (то есть столько раз, сколько необходимо основание умножить на само себя), чтобы получить это число. В десятичных логарифмах используется основание 10. Кнопка log на калькуляторе соответствует десятичному логарифму. Некоторые калькуляторы вычисляют натуральные логарифмы ln.
    • Когда log (1,5) = 0,176, то это означает, что десятичный логарифм 1,5 равен 0,176. То есть если число 10 возвести в степень 0,176, то получится 1,5.
  3. Изображение с названием Calculate Half Life Step 3

    3

    Умножьте прошедшее время на десятичный логарифм 2. Если вы рассчитаете log(2) на калькуляторе, то получится 0,30103. Следует помнить, что прошедшее время составляет 100 минут.

    • Например, если прошедшее время составляет 100 минут, умножьте 100 на 0,30103. Результат равен 30,103.
  4. Изображение с названием Calculate Half Life Step 4

    4

    Разделите число, полученное на третьем шаге, на число, вычисленное на втором шаге.

    • Например, если 30,103 разделить на 0,176, то получится 171,04. Таким образом, мы получили период полураспада вещества, выраженный в единицах времени, используемых в третьем шаге.
  5. Изображение с названием Calculate Half Life Step 5

    5

    Готово. Теперь, когда вы рассчитали период полураспада для этой задачи, необходимо обратить внимание на то, что для расчетов мы использовали десятичный логарифм, но вы могли использовать и натуральный логарифм ln — результат был бы таким же. И, на самом деле, при расчете периода полураспада натуральный логарифм используется чаще.

    • То есть, вам было бы необходимо рассчитать натуральные логарифмы: ln(1,5) (результат 0,405) и ln(2) (результат 0,693). Затем, если вы умножите ln(2) на 100 (время), получится 0,693 x 100=69,3, и разделите на 0,405, вы получите результат 171,04 — тот же, что и при использовании десятичного логарифма.

    Реклама

  1. Изображение с названием 1425718 6

    1

    Узнайте, сколько вещества с известным периодом полураспада осталось через определенное количество времени. Решите следующую задачу: Пациенту было дано 20 мг йода-131. Сколько останется через 32 дня? Период полураспада йода-131 составляет 8 дней. Вот, как решить эту задачу:

    • Узнаем, сколько раз вещество сократилось вдвое за 32 дня. Для этого узнаем, сколько раз по 8 (таков период полураспада йода) умещается в 32 (в количестве дней). Для этого необходимо 32/8 = 4, так, количество вещества сокращалось вдвое четыре раза.
    • Другими словами, это означает, что через 8 дней останется 20мг/2, то есть 10 мг вещества. Через 16 дней будет 10мг/2, или 5мг вещества. Через 24 дня останется 5мг/2, то есть 2,5 мг вещества. Наконец, через 32 дня у пациента будет 2,5мг/2, или 1,25 мг вещества.
  2. Изображение с названием 1425718 7

    2

    Узнайте период полураспада вещества, если известно начальное и оставшееся количество вещества, а также прошедшее время. Решите следующую задачу: Лаборатория получила 200 г технеция-99m и через сутки осталось только 12,5 г изотопов. Каков период полураспада технеция-99m? Вот, как решить эту задачу:

    • Будем действовать в обратном порядке. Если осталось 12,5г вещества, тогда прежде, чем его количество сократилось в 2 раза, вещества было 25 г (так как 12,5 x 2); до этого было 50г вещества, а еще до этого было 100г, и, наконец, до этого было 200г.
    • Это означает, что прошло 4 периода полураспада прежде, чем от 200 г вещества осталось 12,5 г. Получается, что период полураспада составляет 24 часа/4 раза, или 6 часов.
  3. Изображение с названием 1425718 8

    3

    Узнайте, сколько периодов полураспада необходимо для того, чтобы количество вещества сократилось до определенного значения. Решите следующую задачу: Период полураспада урана-232 составляет 70 лет. Сколько периодов полураспада пройдет, чтобы 20 г вещества сократилось до 1,25 г? Вот, как решить эту задачу:

    • Начните с 20г и постепенно уменьшайте. 20г/2 = 10г (1 период полураспада), 10г/2 = 5 (2 периода полураспада), 5г/2 = 2,5 (3 периода полураспада) и 2,5/2 = 1,25 (4 периода полураспада). Ответ: необходимо 4 периода полураспада.

    Реклама

Предупреждения

  • Период полураспада — это приблизительное определение времени, необходимого для распада половины оставшегося вещества, а не точный расчет. Например, если остался только один атом вещества, то после полураспада не останется только половина атома, а останется один или ноль атомов. Чем больше количество вещества, тем более точным будет расчет по закону больших чисел

Реклама

Что вам понадобится

  • Инженерный калькулятор

Об этой статье

Эту страницу просматривали 55 661 раз.

Была ли эта статья полезной?

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый Анри Беккерель случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название «радиоактивность».

Вводим характеристики радиоактивности

Данный процесс – самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе радиоактивного распада, называют активность.

период полураспада атома зависит от

Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В СИ (Системе интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N – число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

название

Что происходит

Уравнение реакции

α –распад

превращение атомного ядра Х в ядро Y с выделением ядра атома гелия

ZАХZ-2YА-4+2He4

β — распад

превращение атомного ядра Х в ядро Y с выделением электрона

ZАХZ+1YА+-1eА

γ — распад

не сопровождается изменением ядра, энергия выделяется в виде электромагнитной волны

ZХАZXА

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

определение периода полураспада

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название «период полураспада». В чем смысл введения этого понятия?

Что такое период полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада — это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

Радий

88Ra219

альфа

0,001 секунд

Магний

12Mg27

бета

10 минут

Радон

86Rn222

альфа

3,8 суток

Кобальт

27Co60

бета, гамма

5,3 года

Радий

88Ra226

альфа, гамма

1620 лет

Уран

92U238

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

период полураспада плутония

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t2— t1, где моменты начала и окончания наблюдения достаточно близки. Допустим, что n – число атомов, распавшихся в данный временной интервал, тогда n = KN(t2— t1).

В данном выражении K = 0,693/T½ — коэффициент пропорциональности, называющийся константой распада. T½ — период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

период полураспада формула

— Пусть N0 – количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

— К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N0/2.

— По прошествии еще одного периода полураспада в образце остаются: N=N0/4=N0/22 активных атомов.

— По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N0/8=N0/23.

— К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N0/2n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

— ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N02t/ .

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A0•2-t/T. В этой формуле А0 – активность образца в начальный момент времени, А – активность по истечении t секунд, Т – период полураспада.

Масса вещества может быть использована в закономерности: m=m0•2-t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов – величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

что такое период полураспада

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T1/2/ln2= T1/2/0,693=1/ λ.

В этой записи τ – среднее время жизни, λ – постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Радиоуглеродный анализ ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

период полураспада это

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония — в зависимости от его изотопа — лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

период полураспада изотопа

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада — 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в цепной ядерной реакции, позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из урановой руды значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений «уран – торий», содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Серия
экспериментов, проведённая с соля́ми урана в период 1899—1900 гг., показала,
что радиоактивное излучение в сильном магнитном поле распадается на три составляющие:

лучи
первого типа отклоняются так же, как поток положительно заряженных частиц. Их
назвали альфа-лучами;

лучи
второго типа обычно отклоняются в магнитном поле так же, как поток отрицательно
заряженных частиц, их назвали бета-лучами (существуют, однако, позитронные
бета-лучи, отклоняющиеся в противоположную сторону);

а
лучи третьего типа, которые не отклоняются магнитным полем, назвали гамма-излучением.

Хотя
в ходе исследований были обнаружены и другие типы частиц, испускающихся при
радиоактивном распаде, эти названия сохранились до сих пор, поскольку
соответствующие типы распадов наиболее распространены.

Позже
было установлено, что альфа-лучи представляют собой поток ядер атома гелия. А
продуктом распада материнского ядра оказывается элемент, зарядовое число
которого на две единицы меньше, а массовое число на четыре единицы меньше, чем
у материнского ядра:

При
бета-минус-распаде ядро атома испускает один электрон и антинейтрино, в
результате чего образуется ядро нового элемента с тем же самым массовым числом,
но с атомным номером на единицу больше, чем у материнского ядра:

А
при бета-плюс-распаде ядра самопроизвольно испускают позитрон и электронное
нейтрино. Ядро нового химического элемента имеет то же самое массовое число, но
его атомный номер уменьшается на единицу:

Исследование
изотопов различных химических элементов показало, что большинство из них превращается
в более устойчивые изотопы путём радиоактивного распада. При этом очевидно, что
в процессе радиоактивного распада число ядер со временем уменьшается. Но предсказать,
когда именно распадётся то или иное ядро, оказалось невозможным. Однако было
установлено, что для каждого радиоактивного ядра существует некоторое характерное
время, называемое периодом полураспада, спустя которое в исходном
состоянии остаётся половина
первоначального количества радиоактивных
ядер.
При этом распавшиеся ядра превращаются в ядра других, более
устойчивых изотопов.

Период
полураспада характеризует такое свойство, как активность радионуклида. Данная
величина указывает на интенсивность радиоактивных превращений, т. е. на
количество радиоактивных распадов атомных ядер, происходящих за единицу времени.

В
СИ единицей активности является беккерель. 1 Бк — это активность
радиоактивного препарата, в котором происходит распад одного ядра за одну
секунду.
Внесистемной единицей активности служит кюри (1 Ки = 3,7 · 1010
Бк).

Таким
образом, чем меньше период полураспада радионуклида, тем быстрее происходит его
распад и тем активнее элемент.

Отметим
также, что период полураспада не зависит от того, в каком состоянии находится
вещество: твёрдом, жидком или газообразном. Кроме того, период полураспада не
зависит от времени, места и условий, в которых находится радиоактивное
вещество. Поэтому количество радиоактивных ядер «тогда», и «сейчас» зависит
только от промежутка времени, прошедшего с момента начала регистрации процесса
распада ядер.

Как
мы говорили, точно предсказать, когда произойдёт распад данного ядра невозможно.
Однако можно оценить среднее число ядер, которые распадутся за данный
промежуток времени. Закон, который описывает интенсивность
радиоактивного распада от времени и количества радиоактивных атомов в образце,
был открыт Фредериком Содди и Эрнестом Резерфордом в 1903 году. В своих работах
«Сравнительное изучение радиоактивности радия и тория» и «Радиоактивные
превращения» они сформулировали закон радиоактивного распада следующим образом:
«Во всех случаях, когда отделяли один из радиоактивных продуктов и
исследовали его активность независимо от радиоактивности вещества, из которого
он образовался, было обнаружено, что активность при всех исследованиях
уменьшается со временем по закону геометрической прогрессии
».

Давайте с вами получим
математическую форму закона радиоактивного распада. Для этого будем считать,
что в начальный момент времени число радиоактивных ядер составляло «Эн
нулевое». Тогда, через промежуток времени, равный периоду полураспада, у нас
останется? Правильно, половина от их первоначального количества.

За второй период полураспада у
нас распадётся половина от половины исходного числа ядер. То есть
нераспавшимися останется четверть от начального числа ядер. Рассуждая далее аналогичным
образом, найдём, что за промежуток времени, равный n периодам
полураспада, радиоактивных ядер останется:

Поскольку n
— это отношение времени наблюдения к периоду полураспада радиоактивного
элемента, то последнюю запись можно представить в том виде, который вы сейчас
видите на экране:

Полученное соотношение и
выражает математическую запись закона радиоактивного распада. С его
помощью можно найти число нераспавшихся ядер в любой момент времени.

Для примера давайте с вами решим
такую задачу. Изотоп  является β-радиоактивным с
периодом полураспада 30 лет. Определите заряд β-частиц, испущенных
этим изотопом за 15 лет, если масса исходного препарата равна 2 г.

Отметим, что закон
радиоактивного распада является статистическим, так как он справедлив до тех
пор, пока число нераспавшихся ядер остаётся достаточно большим.

Вы видите теоретический и
экспериментальный графики распада 47 ядер изотопа фермия-256, период
полураспада которого равен 3,5 часам. Из графиков хорошо видно, что пока ядер
было достаточно много (от 47 до 12), показательная функция хорошо описывала
закон распада. Однако при меньшем числе ядер истинная зависимость существенно
отличается от показательной функции.

Теперь давайте с вами выясним,
от чего же зависит активность радионуклида. Для этого вспомним, что в процессе
радиоактивного распада количество нераспавшихся ядер уменьшается, значит,
активность образца равна скорости уменьшения количества нераспавшихся ядер:

Подставим в данное уравнение
математическую запись закона радиоактивного распада и возьмём первую
производную по времени полученного выражения.

После всех математических
преобразований получим, что активность источника прямо пропорциональна числу
радиоактивных ядер, имеющихся в образце в данный момент времени, и обратно
пропорциональна периоду полураспада данного радиоактивного вещества.

Представим полученную нами
формулу в том виде, как это показано на экране:

Произведение, стоящее в
знаменателе формулы представляет собой среднее время жизни радиоактивного
изотопа.
Оно также равно периоду, за который количество нераспавшихся ядер
уменьшается в е ≅ 2,72 раз.

Как вы уже знаете, все
радиоактивные ядра данного изотопа одинаковы. Поэтому и вероятность распада для
каждого из них одинакова в каждую секунду. То есть распад ядра — это, так
сказать, не «смерть от старости», а скорее «несчастный случай» в его жизни. Ядро
может распасться сейчас, а может прожить в образце неопределённо долго без
распада.

Вероятность
распада одного ядра данного изотопа за одну секунду называется постоянной
распада
и обозначается греческой буквой лямбда (λ). Для
любого ядра данного изотопа постоянная распада одинакова. Но для ядер различных
изотопов постоянная распада различна.

Давайте предположим, что в некотором
радиоактивном образце имеется N ядер. Тогда вероятность
распада равна той части ядер (|dN/N|) образца,
которая распадётся за единицу времени:

(знак «–» в
уравнении указывает на убывание числа радиоактивных ядер данного изотопа с
течением времени). Из этой формулы следует, что доля распавшихся ядер
равна произведению постоянной распада на малый промежуток времени, за который
они распались:

Проинтегрируем это выражение от
начального до произвольного момента времени:

Воспользовавшись свойствами
логарифма, мы с вами получим второй вариант записи закона радиоактивного
распада
:

На основании полученного
уравнения мы с вами можем определить, от чего зависит постоянная радиоактивного
распада. Итак, предположим, что время наблюдения за радиоактивным препаратом
равно его периоду полураспада. Значит, через этот промежуток времени в образце
останется половина от первоначального количества ядер:

Перепишем закон радиоактивного
распада с учётом этого выражения.

И прологарифмируем полученное
равенство по основанию «Е».

Из полученной записи видно,
что постоянная распада обратно пропорциональна периоду полураспада
радиоактивного элемента:

Сравнивая эти формулы с
формулой, полученной нами ранее для активности вещества, видим, что активность
образца равна произведению постоянной распада и числа радиоактивных ядер в
образце в данный момент:

Активность и
единицы ее измерения.

Закон
радиоактивного распада

для любых превращений ядер устанавливает,
что за единицу времени распадается
всегда одна и та же доля нераспавшихся
ядер данного радионуклида. Эту долю
называют постоянной
распада

и обозначают l.
В общем виде этот закон выражается
экспоненциальной зависимостью:

,
(2.1)

где
N – число ядер, распавшихся за время t;
N0
– начальное число ядер радионуклида;
е = 2,718; l
– постоянная распада и соответствующий
ей период полураспада зависят только
от устойчивости ядер.

Этот закон,
выражающий уменьшение количества ядер
атомов радиоактивного вещества во
времени, называется законом радиоактивного
распада (рис. 4).

Для любого момента времени

,
(2.2)

,
(2.3)

где N1 и N2
– число ядер материнского и дочернего
радионуклидов; N0
число ядер материнского радионуклида
в начальный момент времени; l1
и l2 – постоянные
распада материнского и дочернего
радионуклидов.

Для
характеристики устойчивости ядер
радиоактивного вещества относительно
распада используется понятие период
полураспада
,
т.е.–
промежуток времени, в течение которого
в результате радиоактивного распада
количество ядер данного радиоактивного
вещества уменьшается в два раза.

.
(2.4)

Рис. 4. График радиоактивного распада:

N0
– исходное количество радиоактивного
вещества; Т1/2
– период

полураспада вещества

Величина,
обратная постоянной распада, называется
средним
временем жизни

t
радиоактивного ядра:

.
(2.5)

Период полураспада
для различных радионуклидов имеет
протяженность от долей секунды до
миллиардов лет. Соответственно и
радиоактивные вещества разделяют на
короткоживущие (часы, дни) и долгоживущие
(многие годы).

Например:
Po
имеет Т1/2
= 1,6´10-4с;

U
имеет Т1/2
= 4,47´1010
лет.

Период
полураспада – одна из основных
характеристик радиоактивных веществ,
которую учитывают при их практическом
применении. Так при гамма-терапии
предпочтение отдают радиоактивным
веществам с большим периодом полураспада,
например
Cs
1/2 = 30 лет),

Co
1/2 = 5,25
года). При введении радиоактивных веществ
в организм с диагностической целью
стремятся свести к минимуму дозу
облучения органов и тканей, поэтому
используют радиоактивные вещества,
период полураспада которых невелик,
например
Na
1/2

=
14,9 ч),
I
1/2

=
2,3 ч).

Активность и единицы измерения

Активность
есть мера интенсивности распада
радионуклида и определяется как
количество распадов ядер атомов
радиоактивного вещества в единицу
времени, т.е. как скорость распада ядер.

Если
радиоактивное вещество содержит N атомов
и его постоянная распада, выражающая
долю распадающихся атомов в единицу
времени, l,
то активность будет равна

Аn.
(2.6)

Известно,
что постоянная радиоактивного распада
и период полураспада Т1/2
связаны соотношением

.
(2.7)

Моль
вещества содержит 6,02´1023
атомов. В массе m вещества с массовым
числом А число атомов

.
(2.8)

Тогда активность
источника выражается формулой

Аn
,
(2.9)

где
Аn
– активность радионуклида, Бк; m
– масса радионуклида, г; А – массовое
число радионуклида; Т – период полураспада
радионуклида, с.

Активность
источника,
в котором содержатся радиоактивные
ядра одного вида, уменьшается во времени
по экспоненциальному закону:

Аn
= А0,
(2.10)

где
А0
– активность источника в начальный
момент времени (t = 0); t – текущее время,
которому соответствует активность
вещества An.

Чем меньше период
полураспада, тем большая доля ядер
атомов радионуклида распадается в
единицу времени.

Число
распадов в единицу времени в данном
количестве радиоактивного вещества
выражает активность
вещества. Поэтому количество радиоактивного
вещества удобнее выражать не в весовых
единицах, а в единицах активности.
Единицей измерения активности в
Международной системе единиц (СИ)
является Беккерель
(Бк).
Беккерель равен активности нуклида в
радиоактивном
источнике, в котором за время 1 с происходит
1 распад, т.е. 1 Бк = 1 расп./с.

В практике большое
применение получила внесистемная
единица измерения активности –
Кюри
(Ки).
Кюри равен активности нуклида в
радиоактивном источнике, в котором за
время 1 с происходит 3,7´1010
распадов, т.е. 1 Ки = 3,7´1010
Бк, такой активностью обладает 1 г радия
и радиоактивность 1 г Rа
была принята за единицу измерения Кюри.

1
Бк =
1 расп./с = 2,703´10-11
Ки.

Вес радионуклида
активностью 1 Ки тем больше, чем медленнее
распадается вещество, т.е. чем больше
период его полураспада. Так для

1/2
= 15 ч) масса = 0,1 г; для
Рu
1/2
= 24,4 тыс. лет) масса = 16 г; для
U
1/2 =
4,5 млрд. лет) масса = 3 т.

Для характеристики
загрязненности продуктов питания, воды,
строительных материалов, почвы и т.д.
используется: удельная активность Аm
= Аn/m,
объемная активность Аv
= Аn/V
и поверхностная активность Аs
= Аn/S,
где m
и V соответственно масса и объем препарата
пробы с активностью Аn,
а S – площадь загрязненной поверхности.

Удельная активность
Аm
измеряется в единицах СИ в Бк/кг, объемная
активность Аv
– в Бк/м3,
поверхностная активность в Бк/м2.
На практике также используются
внесистемные единицы активности (табл.
1).

Выбор единиц этих величин определяется
конкретной задачей.

Например, допустимую
концентрацию радионуклидов в воде
(объемную активность) удобнее выражать
Бк/л, а в воздухе в Бк/м3.

Если плотность пробы
r
= 1 кг/л например воды, измеренные значения
объемной активности Аv,
Бк/л численно совпадают с удельной
активностью Аm,
Бк/кг. Если плотность пробы отличается
от 1кг/л, удельную активность пробы можно
найти по формуле

Аm
= Аv/r.
(2.11)

Таблица
1. Единицы
измерения радиоактивности

Величина

Название и
обозначение

Соотношение
между

единицами

единица СИ

внесистемная

Активность

А

Бк

А

Ки

1 Бк = 1расп./с =

=
2,703´10-11
Ки

1
Ки = 3,7´1010
Бк

Удельная

Активность

Аm

Бк/кг

Ауд

Ки/кг

1
Бк/кг = 0,27´10-10
Kи/кг

1
Kи/кг
= 3,7´1010
Бк/кг

Объемная

Активность

Аv

Бк/м3

Аоб

Ки/л

1
Бк/м3
= 0,27´10-7
Kи/л,

1
Ки/л = 3,7´107
Бк/м3

Поверхностная
активность (степень загрязнения)

Аs

Бк/м2

Апов

Ки/км2

1
Бк/см2
=104
Бк/м2
=

=
0,27 Ки/км2

1
Ки/км2
= 3,7´104
Бк/м2
=

=
3,7 Бк/см2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти респондентов для проблемного интервью
  • Как найти установившуюся игру
  • Как на телефоне найти wallpaper
  • Как найти время полета мяча формула
  • Как найти инвесторов на свое дело

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии