1) Абсолютная погрешность.
Абсолютную погрешность принято обозначать прописной греческой буквой дельта (Δ).
Чтобы найти абсолютную погрешность, следует воспользоваться формулой:
Δ = |x – x0|
где
Δ — абсолютная погрешность;
x — приближённое (практическое) значение измеряемой величины;
x0 — точное (истинное/теоретическое) значение измеряемой величины.
Абсолютная погрешность имеет ту же единицу измерения, что и измеряемая величина. Например: если измеряемая величина измеряется в метрах, то и абсолютная погрешность будет измеряться в метрах; если изм. величину мы измеряем в килограммах, то и абсолютную погрешность — тоже в килограммах. И так далее.
2) Относительная погрешность.
Относительная погрешность, как правило, обозначается строчной греческой буквой дельта (δ).
Чтобы найти относительную погрешность, следует воспользоваться формулой:
δ = |x – x0|/x0
где
δ — относительная погрешность;
x — приближённое (практическое) значение измеряемой величины;
x0 — точное (истинное/теоретическое) значение измеряемой величины.
Относительная погрешность является безразмерной величиной. Относительная погрешность либо имеет единицу измерения 1 (доли единицы), либо измеряется в процентах.
Чтобы перевести относительную погрешность из долей единицы в проценты, необходимо умножить её на 100.
δ (%) = δ * 100 = (|x – x0|/x0) * 100
Для примера рассмотрим такую задачу.
Ученик измерял линейкой длину карандаша. В результате измерений ученик получил результат, равный 152 мм. Истинная же длина карандаша, измеренная штангенциркулем, равняется 151,7 мм. Вопрос: чему равна абсолютная и относительная погрешность результата измерений ученика?
Дано:
x = 152 мм;
x0 = 151,7 мм.
Найти:
Δ — ?
δ — ?
Решение.
1) Найдём абсолютную погрешность.
Δ = |x – x0| = |152 мм – 151,7 мм| = |0,3 мм| = 0,3 мм.
2) Найдём относительную погрешность.
δ = |x – x0|/x0 = (|152 мм – 151,7 мм|/151,7 мм) * 100% = (0,3 мм : 151,7 мм) * 100% = 0,198 %.
Ответ: Δ = 0,3 мм; δ = ок. 0,198 % (приближённое значение).
Абсолютная и относительная погрешность
4.2
Средняя оценка: 4.2
Всего получено оценок: 2187.
4.2
Средняя оценка: 4.2
Всего получено оценок: 2187.
Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.
Опыт работы учителем математики — более 33 лет.
Абсолютная погрешность
Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.
Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.
Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:
Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.
На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.
Относительная погрешность
Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.
Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.
Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.
Правила подсчета погрешностей
Для номинальной оценки погрешностей существует несколько правил:
- при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
- при делении и умножении чисел требуется сложить относительные погрешности;
- при возведении в степень относительную погрешность умножают на показатель степени.
Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.
Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.
Что мы узнали?
Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Светлана Лобанова-Асямолова
10/10
-
Валерий Соломин
10/10
-
Анастасия Юшкова
10/10
-
Ксюша Пономарева
7/10
-
Паша Кривов
10/10
-
Евгений Холопик
9/10
-
Guzel Murtazina
10/10
-
Максим Аполонов
10/10
-
Olga Bimbirene
9/10
-
Света Колодий
10/10
Оценка статьи
4.2
Средняя оценка: 4.2
Всего получено оценок: 2187.
А какая ваша оценка?
Определение относительной погрешности измерений
Относительная погрешность измерений – это отношение абсолютной погрешности измерений к истинному значению измеряемой величины, в долях или процентах:
$ δ = frac{Delta x}{x_{ист}}$ или $ δ = frac{Delta x}{x_{ист}} cdot 100 text{%} $
Правила округления
На практике относительную погрешность округляют до двух значащих цифр, выполняя округление с избытком, т.е. всегда увеличивая последнюю значащую цифру на единицу.
Например:
Для x = 1, $7 pm 0,2$ относительная погрешность измерений
$δ = frac{0,2}{1,7} cdot 100 text{%} approx 11,8 text{%} approx 12 text{%}$ — погрешность достаточно велика.
Внимание!
Чем меньше относительная погрешность измерения, тем оно точнее.
Примеры
Пример 1. Согласно данным эксперимента, проведенного в 1975 году, скорость света равна $c = 299 792 458 pm 1,2 м/с$. Найдите относительную погрешность измерений в этом эксперименте в долях и процентах.
$$ δ = frac{1,2}{299 792 458} approx 4,0 cdot 10^{-9} $$
$$δ = 4,0 cdot 10^{-9} cdot 100 text{%} approx (4,0 cdot 10^{-7} ) text{%} $$
Пример 2. В результате школьного эксперимента ускорение свободного падения оказалось равным $g = 10,0 pm 0,1 м/с^2$. Определите относительную погрешность для данного эксперимента, а также относительную погрешность по отношению к табличной величине $g_0 = 9,81 м/с^2$. Что вы можете сказать о систематической ошибке эксперимента?
Для данного эксперимента $δ = frac{0,1}{10,0} cdot 100 text{%} = 1,0 text{%} $
Относительная погрешность по отношению к табличной величине:
$$ δ_{таб} = frac{|g-g_0 |}{g_0} cdot 100 text{%}, δ_{таб} = frac{|10,0-9,81|}{9,81} cdot 100 text{%} approx 1,9 text{%} $$
Согласно полученным результатам $9,9 le g le 10,1$, табличное значение в этот отрезок не входит. В эксперименте присутствует систематическая ошибка: результаты систематически завышены.
Пример 3. При взвешивании масса слона оказалась равной $M = 3,63 pm 0,01$ т, а масса муравья $m = 41,2 pm 0,5$ мг. Какое измерение точнее?
Найдем относительные погрешности измерений:
$$ δ_M = frac{0,01}{3,63} cdot 100 text{%} approx 0,28 text{%} $$
$$ δ_m = frac{0,5}{41,2} cdot 100 text{%} approx 1,21 text{%} approx ↑1,3 text{%} $$
Таким образом, масса слона определена точнее.
Пример 4. Вольтметр измеряет напряжение с относительной погрешностью 0,5%. Найдите границы точного значения величины, если при измерении получено $V_0$ = 5 В.
Абсолютная погрешность измерений данным вольтметром:
$$ Delta V = V_0 cdot δ, Delta V = 5 cdot 0,005 = 0,025 (В) approx 0,03(В) $$
Границы точного значения:
$$ V = 5,00 pm 0,03 (В) или 4,97 le V le 5,03 (В) $$
Загрузить PDF
Загрузить PDF
Погрешность измерения, выраженная в процентах (далее процентная погрешность) — это разность между истинным и измеренным значением, деленная на истинное значение и умноженная на 100. Процентная погрешность позволяет представить, насколько (в процентах) измеренное значение отличается от истинного. Погрешность может быть вызвана ошибками в измерениях (неточными инструментами или человеческим фактором) или из-за округлением значений. При этом формула для вычисления процентной погрешности довольно простая.
-
1
Запишите формулу для вычисления процентной погрешности. Формула: [(|Измеренное значение — Истинное значение|) / Истинное значение] x 100. В эту формулу необходимо подставить два значения — измеренное и истинное.[1]
- Измеренное значение — это оценочное (приблизительное) значение; истинное значение — это точное значение.
- Например, если вы думаете, что в сумке лежат 9 апельсинов, но на самом деле их 10, число 9 — это приблизительное значение, а 10 — точное значение.
-
2
Вычтите точное значение из оценочного. В нашем примере вычтите 10 (точное значение) из 9 (оценочное значение): 9 — 10 = -1.[2]
- Эта разность характеризует различие между приблизительным и точным значениями, то есть насколько точное значение отличается от оценочного.
-
3
Найдите абсолютное значение этой разности. Так как в формулу нужно подставить абсолютное значение разности, знаком «минус» можно пренебречь. То есть в нашем примере -1 превратится в 1.[3]
- В нашем примере: 9 — 10 = -1. Абсолютное значение -1 записывается так: |-1| = 1.
- Если разность положительная, не меняйте ее. Например: 12 яблок (приблизительное значение) — 10 яблок (точное значение) = 2. Абсолютное значение 2: |2| = 2.
- В статистике абсолютное значение означает, что вас не интересует, в каком направлении отклоняется оценочное значение (слишком большое, то есть положительное, или слишком маленькое, то есть отрицательное). Вы просто хотите знать, на какую величину оценочное значение отличается от истинного.
-
4
Разделите найденную разность на абсолютную величину истинного значения. Сделайте это на калькуляторе или вручную. В нашем примере точное значение уже положительное, поэтому просто разделите 1 (полученная разность) на 10 (точное значение).[4]
- В нашем примере: 1/|10|= 1/10.
- В некоторых случаях точное значение может быть отрицательным числом. Если это так, знак «минус» можно проигнорировать (то есть работайте с абсолютной величиной точного значения).[5]
Реклама
-
1
Преобразуйте обычную дробь в десятичную. В проценты проще преобразовать десятичную дробь. В нашем примере 1/10 = 0,1. Более сложные вычисления выполните на калькуляторе.
- Если под рукой калькулятора нет, разделите числа в столбик, чтобы получить десятичную дробь. Как правило, достаточно 4–5 цифр после десятичной запятой, чтобы округлить дробь.
- При преобразовании обычной дроби в десятичную всегда делите положительное число на положительное число.
-
2
Умножьте полученную десятичную дробь на 100. В нашем примере умножьте 0,1 на 100, а затем к результату припишите символ «%». Так вы получите процентную погрешность.[6]
- В нашем примере: 0,1 x 100 = 10 %.
-
3
Проверьте результат, чтобы убедиться, что он правильный. Иногда замена знаков (положительный/отрицательный) и деление могут привести к незначительным ошибкам в расчетах. Поэтому лучше проверить ответ.
- В нашем примере необходимо убедиться, что оценочное значение (9 апельсинов) отличается от истинного значения (10 апельсинов) на 10 %. 10 % (10 % = 0,1) от 10 апельсинов равно 1 (0,1 × 10 = 1).
- 9 апельсинов + 1 = 10 апельсинов. Это подтверждает, что оценочное значение (9) действительно отличается от истинного значения (10) на 1 (то есть на 10 %).
Реклама
Советы
- Иногда измеренное (оценочное, приблизительное) значение называется экспериментальным, а истинное (точное) значение называется теоретическим. Обязательно используйте значение, с которым сравнивается данное значение, как точное значение.
- Так как в данном методе используются абсолютные величины приблизительных и точных значений, нет разницы, в каком порядке вычитать числа. Например,|8 — 4| = 4 и |4 — 8| = |-4|= 4. Результаты одинаковые!
Реклама
Об этой статье
Эту страницу просматривали 64 767 раз.
Была ли эта статья полезной?
Как определять погрешности измерений
Измерение – нахождение значения физической величины
опытным путем с помощью средств измерений.
Прямое
измерение
– определение значения физической
величины непосредственно средствами измерения.
Косвенное
измерение
– определение значения физической
величины по формуле, связывающей ее с другими физическими величинами, определяемыми
прямыми измерениями.
А, В, С, … — физические величины.
Апр. – приближенное значение физической величины.
А – абсолютная погрешность измерения физической
величины.
— относительная погрешность измерения
физической величины.
иА
– абсолютная
инструментальная погрешность, определяемая конструкцией прибора.
оА – абсолютная погрешность отсчета, она равна в
большинстве случаев
половине цены деления; при
измерении времени – цене деления секундомера или часов.
Абсолютную погрешность измерения
обычно округляют до одной значащей цифры:
Численное значение результата
измерений округляют так, чтобы его последняя цифра оказалась в том же разряде,
что и цифра погрешности:
Результат
измерения записывается так:
%
Определение погрешности методом среднего арифметического
При многократных
измерениях величины погрешность можно оценить следующим образом:
1.
Определить среднее
значение величины А:
(при трех
измерениях).
2.Определить отклонение каждого значения от среднего:
3.Определить среднее значение отклонения,
его и принимают за абсолютную погрешность:
4.Определить
относительную погрешность и выразить ее в процентах:
|
|
|
|
|
1 |
|
|
||
2 |
|
|
||
3 |
|
|
Многократные измерения
предпочтительнее, так как при их проведении возможна компенсация случайных
факторов, влияющих на результат. Обычно многократные измерения проводят, слегка
изменяя условия опыта, но предполагая, что значение величины А не изменяются
Определение
погрешности косвенных измерений
При косвенных измерениях значение
физической величины находится путем расчетов по формуле.
Относительную погрешность
определяют так, как показано в таблице:
Формула величины |
Формула |
1. |
|
2. 3. |
|
4. |
|
Абсолютную погрешность определяют
по формуле:
( выражается десятичной дробью)
Пример: пусть измеряется сопротивление проводника. .
Результаты прямых измерений:
Тогда ;
,
;
,
;
,
,
.
Графическое
представление результатов эксперимента
Правила построения
графиков
выберите соответствующую бумагу;
выберите масштаб по осям координат;
напишите обозначения измеряемых физических величин;
нанесите на график данные;
нанесите на график доверительные интервалы;
проведите кривую через нанесенные точки;
составьте заголовок графика.
Для построения графиков выпускают
специальную бумагу-миллиметровку.
При выборе масштабов по осям
координат следует руководствоваться следующими правилами:
— значение независимой переменной
откладывают вдоль оси абсцисс, функции – вдоль оси ординат;
— цена наименьшего деления масштабной
сетки должна быть сравнимой с величиной погрешности измерения;
— точка пересечения оси абсцисс и оси
ординат не обязательно должна иметь координаты (0,0).
При построении графиков следует
иметь в виду, что по результатам опытов мы получаем не точку, а прямоугольник
со сторонами и
.
В
|
|||||
|
|||||
0
А
При выполнении простых лабораторных
работ достаточно обвести экспериментальную точку кружком или пометить
крестиком, не указывая доверительных интервалов.
Этот кружок или крестик будут
обозначать, что данная точка получена с каким-то приближением и истинное
значение измеряемой величины лежит где-то в ее окрестности.
Правила
приближенных вычислений
1. Основное
правило округления.
Если первая
отброшенная цифра равна 5 или больше, то последнюю из сохраняемых цифр
увеличивают на единицу; если первая отброшенная цифра меньше 5, то последнюю из
сохраняемых цифр оставляют без изменения, например:
2. При сложении и
вычитании приближенных чисел
в полученном результате сохраняют столько десятичных знаков, сколько их в числе
с наименьшим количеством десятичных знаков, например:
3. При умножении
и делении приближенных чисел
в полученном результате нужно сохранить столько значащих цифр, сколько их имеет
приближенное число с наименьшим количеством значащих цифр, например:
4. При возведении
в квадрат приближенного числа
нужно в результате сохранять столько значащих цифр, сколько их имеет возводимое
в степень число, например:
5. При извлечении
квадратного корня в результате
нужно сохранять столько значащих цифр, сколько их имеет подкоренное число,
например:
6. При вычислении
промежуточных результатов в
них следует сохранять на одну цифру больше, чем требуют правила 2-5. Причем при
подсчете значащих цифр запасные цифры не учитываются. В окончательном
результате запасная цифра отбрасывается по основному правилу округления.
7. При нахождении
углов или тригонометрических функций значение соответствующего угла записывают с точностью до градуса, если
значение тригонометрической функции имеет две значащие цифры; если угол задан с
точностью до градусов, то в значении тригонометрической функции сохраняют две
значащие цифры, например: