Как найти остаток при делении в столбик

План урока:

Случаи деления 80 : 20, 87 : 29

Деление с остатком

Решение задач на деление с остатком

Случаи деления, когда делитель больше делимого

Здравствуйте, ребята. Я, Знайка, продолжаю учить вас математике.

Выражение «твердый орешек» означает трудную для решения задачу. Орешек знанья тверд, но мы не привыкли отступать, вместе его расколем. Пусть скорлупа ореха — символ знания, ядро — опыт человечества. Математика раскроет тайны деления двузначных чисел, если будем стараться. Французский ученый Декарт говорил: «Умейте использовать свой хороший ум, чтобы справиться с задачами».

Начинайте, ребята, скорее работу,

Решайте, считайте, не сбивайтесь со счёта.

Случаи деления 80 : 20, 87 : 29

Начнем с деления на двузначное число.

Приемы деления вида 80 : 20

2 delenie s ostatkom

3 delenie s ostatkom

4 delenie s ostatkom

Приемы деления вида 87 : 29

Найдите значения двух выражений:

5 delenie s ostatkom

Для решения посмотрите на цифры единиц. Делитель заканчивается на 9. Вспомните таблицу умножения девяти. Какое произведение имеет семерку на конце? 27.

6 delenie s ostatkom

Других вариантов в таблице умножения на девять нет. Ответ равен трем.

7 delenie s ostatkom

Внимательно посмотрите на цифры в единицах. Делимое заканчивается на четверку. Вспомните множитель, который при умножении шести в произведении дает последнюю цифру четверку.

8 delenie s ostatkom

Это два случая: четыре, девять. В значениях произведений четверка на конце. Какой множитель подходит? Давайте посмотрим. Девять — многовато.

9 delenie s ostatkom

Задания легко решать, если знаешь таблицу умножения.

11 delenie s ostatkom

Деление столбиком на двузначное число

Вы уже знаете, что для записи действия деления применяют математический символ в виде двоеточия (∶), обелюса (÷), дробной (–), косой (∕) черты. Сегодня мы используем знак, который похож на лежащую боком букву.

12 delenie s ostatkom

При делении столбиком очень важна аккуратность, поэтому возьмите листок в клеточку.

Как записать решение примера 32 : 16 столбиком? Запишите каждую цифру делимого 32 в отдельную клеточку. Отступите одну клеточку вправо, запишите делитель 16. Проведите вертикальную и горизонтальную черточку.

13 delenie s ostatkom

Подбираем частное. Посмотрите на цифры единиц 2 и 6. Вспомните табличные случаи.

14 delenie s ostatkom

Семерка нам не подойдет, потому что 16 ∙ 7 — это большая величина. Значит, выбираем двойку. Проверяем: 16 ∙ 2 = 32. Записываем двойку на место частного под чертой. Вычитаем 32 из делимого. Пишем нуль. 32 разделили нацело.

15 delenie s ostatkom

Хорошо. А знаете ли вы, что с древних времён замечено влияние грецкого ореха на работу мозга. Как будто природа создала его, по форме извилин напоминающим полушария головного мозга. Благодаря работе этого центрального органа мы справляемся с математическими задачами.

16 delenie s ostatkom

Деление с остатком

Ребята, я предлагаю вам отправиться в путешествие по реке на лодках. Прежде чем отплыть от берега, нам нужно разделить 9 спасательных кругов на 2 лодки. Как узнать, сколько кругов окажется в одной лодке?

Верно, надо разделить. Запишите решение. Сколько получилось в выражении?

17 delenie s ostatkom

У вас трудности. Что заметили?

9 на 2 нацело не делится.

Почему не можем найти значение данного выражения?

Потому что это не табличный случай. Мы не умеем решать такие выражения.

Ребята, оказывается, в примерах может получиться остаток. Это арифметическое действие, играющее большую роль в математике и криптографии — науке о защите информации. В компьютерной технике тоже часто решают данные выражения.

18 delenie s ostatkom

Напишите отрезок натурального ряда от 17 до 37.

19 delenie s ostatkom

Выпишите из этого отрезка числа, которые делятся на 9.

Проверьте, это — 18, 27, 36.

Остаток при делении натуральных чисел 19, 28, 37 на 9 равен единице, потому что они следующие при счете.

Запишите отрезок натурального ряда от 11 до 25. Обведите числа, которые делятся на шесть нацело.

20 delenie s ostatkom

Укажите остатки при делении на 6 тринадцати и четырнадцати. Запишите выражения.

Проверьте:

21 delenie s ostatkom

Объясните, как рассуждали.

15 — на третьем месте после 12, 16 — четвертое место, а 17 – пятое место после 12.

Какой самый большой остаток получается при делении на 6?

Это пять, так как между величинами, которые делятся на шесть нацело, находится пять чисел.

22 delenie s ostatkom

Интересно знать! В Древнем Египте кушать ядра грецких орехов могли только высшие, самые главные жрецы. Для всех остальных, особенно для простого народа — это было запрещено. Чтобы не становились умнее и не начали много думать. Но мы с вами знаем пользу орехов и хорошо соображаем, поэтому продолжаем урок.

Деление с остатком на однозначное число

Существует два способа решения примеров.

1 способ деления на 5, 6, 7, 8, 9

Первый способ подходит, когда делитель равен или больше пяти. Мы должны найти в делимом наибольшее число, чтобы разделить, например, на семерку.

23 delenie s ostatkom

Как его отыскать? Посчитайте семерками. Если бы делили на пять, то считали бы пятерками, на шесть – шестерками и так далее.

Считаем семерками:

24 delenie s ostatkom

Разве 41 разделить на 7 — это пять? Нет, мы разделили только 35. Теперь найдем, сколько не разделили. Из 41 отнимите 35, получится шесть. Это искомый остаток.

25 delenie s ostatkom

Сделайте обязательный шаг — убедитесь, что остаток получился меньше чем делитель. Действительно 6 < 7. Правильное решение. Если получится больше, то нужно пересчитать заново.

Вычислите, чему равен частное и остаток при делении:

26 delenie s ostatkom

27 delenie s ostatkom

2 способ деления на 4, 3, 2 и 1

Второй способ подходит, когда делитель меньше пяти. Способ заключается в том, что делимое уменьшаем на 1 и проверяем, делится ли оно на делитель. Вы посмотрите:

28 delenie s ostatkom

Значит, вы можете применять оба способа в решении таких примеров.

29 delenie s ostatkom

Сорок пять меньше 52, а пятьдесят четыре больше. Значит, делим 45. Находим сколько осталось.

30 delenie s ostatkom

Лучше использовать второй способ. Вычитайте единицу.

31 delenie s ostatkom

32 delenie s ostatkom

Деление на двузначное число с остатком

Орешек знаний тверд, но мы его удачно раскалываем. Для решения таких примеров научимся работать не с самим числом, а с его десятками, но не с простыми, а округленными. Каким образом это работает?

Договоримся так: если количество единиц в числе меньше пяти, то есть — 1, 2, 3, 4, то количество десятков изменять не будем. Если же количество единиц в числе больше пяти, то есть — 5, 6,7, 9, то количество десятков увеличим на один.

Например, 96 разделим на 29. Каждое число округлим. У 96-и девять десятков, да шестерка даст еще один десяток. Округлим 96 до десяти десятков. 29 имеет два десятка и один десяток даст девятка, потому что она больше пяти.

33 delenie s ostatkom

Получается, что надо 10 десятков разделить на три десятка. Воспользуемся вторым способом. Уменьшим 10 на единицу, получаем 9.

34 delenie s ostatkom

Особенность в решении таких примеров в том, что не надо сразу писать ответ. Держите под рукой черновик и проверяйте решение. Чтобы проверить, не ошиблись ли, надо:

35 delenie s ostatkom

Решим следующий пример, где этот метод не работает. 77 – семь десятков да семерка в единицах дает еще один десяток. 13 округляем до десяти.

36 delenie s ostatkom

Получается, что пример сводится к делению восьми на один. Но восьмерка не подходит. 13 ∙ 7 явно больше 77. Поэтому пробуем шестерку. Видите, шестерка не подошла.

37 delenie s ostatkom

Уменьшаем еще на один. Получаем пять.

38 delenie s ostatkom

39 delenie s ostatkom

Полезно знать, что употреблять грецкие орехи нужно взрослым и детям. Важно это делать правильно и регулярно. Тогда вы получите максимальную пользу от этого ценного продукта.

Продолжим урок математики.

Деление с остатком столбиком

В 52 содержится 6 раз по 8, остаётся 4.

52 : 8 = 6 (ост. 4)

Пример с остатком запишите в виде деления в столбик:

  1. Делимое 52 напишите слева, правее — делитель 8. Между ними проведите вертикальную черту в две клетки — знак деления, горизонтальной линией подчеркните делитель.
  2. Сколько делителей 8 помещается в делимом 52? Вспомните табличный случай 8 ∙ 6 = 48. Запишите неполное частное 8 в форму.
  3. Найдите остаток. 48 вычтите из делимого. Проведите черту. Это знак равно. Запишите 4. 

40 delenie s ostatkom

Напоминаю: сравните остаток и делитель. 4 < 6. Пример решили верно.

Выполните деления с остатком 51 : 7 =

Ближайшее к делимому будет табличное произведение 49.

41 delenie s ostatkom

2 < 7. Значит, пример решили правильно.

Проверка деления с остатком

Но случаются ошибки. Проверить решения можно обратными действиями.

Выполните деление с остатком и сделайте проверку:

42 delenie s ostatkom

Убедиться в правильности решения помогает проверка.

Сравните: 6 < 12. 

43 delenie s ostatkom

Решение задач на деление с остатком

Простые задачи легко решить, если составить модель-схему условия и решения задачи на числовом луче.

Рассмотрите пример задачи:

Повар испек 17 творожных и 19 брусничных ватрушек. На тарелки положит по три штуки одного сорта. Узнайте, сколько нужно тарелок и сколько ватрушек останется.

Решение:

44 delenie s ostatkom

Ответ: для творожных ватрушек нужно 5 тарелок, две останутся; для брусничных — 5 тарелок, одна ватрушка останется.

Составьте задачу на деление с остатком, выбрав подходящее выражение:

45 delenie s ostatkom

Проверьте рассуждение. Для задачи подойдет второе выражение, а первое и последнее – не подходят, потому что это табличные случаи.

Пример задачи: На пальто пришивается 4 пуговицы. На сколько таких пальто хватит 15 пуговиц? Сколько пуговиц останется?

46 delenie s ostatkom

Ответ: пуговиц хватит на три пальто. Останется 3 пуговицы.

Придумайте задачу к схеме:

47 delenie s ostatkom

Мама купила 21 конфету и поделила по 8 штук детям. Сколько детей в семье и сколько конфет мама оставила себе?

Решение:

21 : 8 = 2 (ост.5)

Ответ: в семье двое детей. Мама оставила 5 конфет.

Умения решать задачи по математике помогают в жизни.

Незнайка отправился в магазин. У него есть 90 рублей, и он хочет купить мороженое по цене 28 рублей. Сколько стаканчиков с мороженым сможет купить Незнайка и сколько денег у него останется?

Подсказка: решить задачу можно округлив величины. 90 – это девять десятков, а 28 округлим до трех десятков.

Проверьте:

48 delenie s ostatkom

Ответ: Незнайка купит 3 стаканчика с мороженным. У него останется 6 рублей.

Случаи деления, когда делитель больше делимого

В конце урока Орешек принес интересный пример:

49 delenie s ostatkom

Делитель 9 больше делимого 7. Как решить?

Сколько раз по девять содержится в семи? Конечно — нуль раз. В частном запишите 0. Нуль умножить на девять получится нуль. Вычитаем 0. Остаток 7.

50 delenie s ostatkom

Ребята, наш урок подошёл к концу.

51 delenie s ostatkom

Сегодня мы рассмотрим деление в столбик — объяснение (3 класс).

Бывают небольшие числа, и с ними можно работать в уме. Бывают очень большие числа, для таких чисел люди нашли разные способы умножения и деления. Есть умножение в столбик. Это замечательно, там сразу видно что куда необходимо переносить и куда добавлять. Конечно, если аккуратно записывать. Но если есть умножение в столбик, тогда должно быть и деление в столбик.

Люди нашли удобный способ представления деления больших чисел, чтобы ничего не забыть.

Пример:

Деление в столбик — объяснение (3 класс).

Это удобно, но почему так?

Сегодня в этом разбираются Бом, Бим и ребята.

Деление — это действие обратное умножению

Деление двух чисел — это действие обратное к умножению. Используется для нахождения одного из неизвестных (первого или второго множителя) в операции умножения. Делить на ноль — нельзя.

Деление в столбик — объяснение (3 класс)

Деление в столбик — это удобный способ представления деления одного числа на другое.

Сегодня ребята пришли раньше на представление и пошли осматривать цирк. По дороге им встретился Бим, который вез тележку с тремя коробками.

— Здравствуйте, ребята! — обрадовался. Бим. — Пойдемте за кулисы, поможете мне и Бому!

Бим и ребята пошли к Бому. В трех коробках находились бананы: в первой большой коробке лежали два больших пакета, в каждом большом пакете лежало по 100 бананов. Во второй, средней коробке, лежали два средних пакета; и здесь в каждом среднем пакете лежало по 10 бананов. В третьей маленькой коробке лежало четыре банана.

Давайте посчитаем сколько всего бананов получается, — предложил Бим.

Skysmart RU

— Давайте посчитаем сколько всего бананов получается, — предложил Бим. — В большом пакете 100 бананов. Всего 2 больших пакета. В двух больших пакетах будет:

2 х 100 = 200 бананов.

Всего в большой коробке лежит 200 бананов. Теперь считаем сколько бананов в средней коробке: два пакета по 10 бананов,

2 х 10 = 20 бананов.

В маленькой коробке 4 банана. Получается, что во всех трех коробках будет:

200 + 20 + 4 = 224 банана.

Мне буфетчица сказала, что надо поделить эти бананы на 14 представлений и дать тебе, Бом, для твоих подопечных. Вот, что я придумал. Давайте все бананы высыплем в одну коробку и будем раскладывать по одному банану на 14 подносов пока все бананы не закончатся.

Бим начал высыпать все бананы в маленькую коробку.

— Здесь, конечно, бананов немного, а если бы бананов была тонна, то ты тоже по одному банану раскладывал бы? — поинтересовался Бом. — Очень легко запутаться. Давай придумаем другой способ.

— Ребята, — обратился Бом к школьникам, — помогите Биму все бананы сложить на место. В большой коробке должно быть два больших пакета по 100 бананов, всего в большой коробке будет 200 бананов. В средней коробке два средних пакета по 10 бананов в каждом пакете, всего в средней коробке будет 20 бананов. В маленькой коробке будет четыре банана.

И давай, Бим, договоримся, что в большой коробке будут лежать только большие пакеты по 100 бананов, в средней только средние пакеты по 10 бананов, в маленькой коробке только оставшиеся бананы без никаких пакетиков.

Ребята быстро помогли Бому и Биму.

— Вот теперь всё на месте, — подытожил Бом. — Давайте теперь будем делить так, чтобы бананов хватило на 14 представлений. В большой коробке два больших пакета, два на 14 не делится. А что, если мы бананы переложим из большой коробки в среднюю? Но для этого нужно достать каждый большой пакет и выложить из него бананы по 10 штук в средние пакети, и тогда мы можем бананы из большой коробки переложить в среднюю коробку.

Бом достал большой пакет из большой коробки. Ребята переложили бананы в средние пакеты и начали считать:

— Из одного большого пакета получается 10 средних пакетов по 10 бананов.

— У нас два больших пакета, значит из двух больших пакетов у нас получается 20 средних пакетов по 10 бананов, продолжил Бом. — Мы все средние пакеты помещаем в среднюю коробку.

Ого! В средней коробке уже 22 средних пакета. Такое количество уже делится на 14, это у нас неполное деление с остатком. Получается, на каждое представление будет по одному среднему пакету.

Бом взял 14 подносов и разложил по 1 среднему пакетику на каждый поднос:

Деление в столбик. Деление в столбик с остатком.

— У нас было 22 средних пакетика, 14 мы разложили по местам, остаток 8 средних пакетиков в средней коробке и 4 банана в маленькой. Восемь на четырнадцать не делится. Но если мы оставшиеся в средней коробке бананы в восьми средних пакетах высыплем в маленькую коробочку, то получится в маленькой коробочке 84 банана:

8 х 10 + 4 = 84.

84 банана делятся на 14, получается по 6 бананов, то есть мы на каждый поднос должны добавить еще по 6 бананов. У нас всего 14 подносов, и на каждом подносе лежит одинаковое количество бананов. Значит мы поделили поровну все бананы, которые у нас были. На каждом подносе 1 средний пакет и 6 бананов. Выходит, что всего на каждом подносе по 16 бананов.

— Неужели всякий раз придется по разным пакетикам раскладывать, чтобы правильно поделить? — озадаченно спросил Бим.

— Совсем не обязательно, — ответил Коля. — Люди вместо коробок и пакетиков договорились, как будет называться каждая из цифр в числе. Цифра, которая стоит в числе самой правой, называется разрядом единиц. У нас в маленькой коробке 4 банана, значит число единиц — 4.

— Следующая цифра, которая находится левее разряда единиц называется разрядом десятков, — продолжила Оля. — У нас в средней коробке 2 пакета, значит число десятков равно 2. И мы знаем, что 2 десятка — это 20, и у нас в средней коробке как раз 2 пакетика по 10 бананов, всего 20 бананов.

— Следующая цифра, которая находится левее разряда десятков называется разрядом сотен. У нас это самая большая коробка, в ней два больших пакета, значит число бананов 200, — закончил Вася. — И мы знаем, что 2 сотни — это число 200.

— А какие еще числа могут стоять … в разрядах? — поинтересовался Бим.

— Число в каждом из разрядов может быть любой цифрой от 0 до 9, — ответил Биму Коля. — Еще левее от разряда сотен стоит разряд тысяч. У нас нет еще большей коробки, в которой лежали бы пакеты с количеством бананов по 1000 в каждом, поэтому мы ничего не пишем.

— Мы разложили бананы, у нас общее число бананов 224: 4 банана в маленькой коробке, 2 средних пакета по 10 бананов в средней коробке, — всего 20, и 2 больших пакета из 100 бананов в большой коробке, — подытожил Бом. — Число единиц у нас 4, число десятков 2, число сотен 2. Записываем: 4 стоит справа, левее стоит число десятков 2, еще левее число сотен 2. Теперь это число 224 будем делить на 14.

Деление в столбик - объяснение для 3 класса

— Давайте теперь запишем деление 224 на 14 в столбик, — предложил Коля. — Делимое у нас 224, делитель 14. Смотрим: первая цифра слева 2 (число сотен) на 14 не делится, значит надо к ней справа приписать следующую за “2” цифру 2. Читаем число, которое получилось — 22. Число 22 уже делится на 14. Число 14 помещается в числе 22 по одному (1) разу, вот это число “1” и записываем в ответ для частного первым, потом надо из 22 вычесть 14 х 1:

22

14

____

8

Мы при делении 22 на 14 находим неполное частное 1 и остаток 8. Неполное частное записываем в частное результата, остаток пишем как при обычном вычитании чисел в столбик.

Теперь смотрим, есть ли еще цифры справа, в делимом 224. Да такая цифра есть, после 22 стоит цифра 4, мы её записываем справа от остатка 8. Эта четверка будет стоять на том же месте в строке, где стоит 4 в числе 224, но только ниже возле “8”. У нас внизу получается число “84”. Смотрим, делится ли оно на делитель “14”. Делится. В результате деления 84 на 14 получаем “6”, его записываем справа от “1” в частном. А внизу после того, как умножим 14 х 6 = 84 мы пишем опять обыкновенное вычитание в столбик:

84

84

___

0

Ура! Еще и остаток в конце равен 0. В числе 224 нет справа больше цифр, сносить на более нижние строки нечего. Значит, мы закончили деление. Частное — 16.

— Смотрите, получилось такое же число, как и количество бананов на каждом подносе, — обрадовалась Оля.

 — Проверка, что деление выполнено правильно, делается также как и для обычного деления: частное умножается на делитель, должно получиться делимое, — добавил Вася.

— Сейчас каждый из нас еще по одному примеру деления в столбик запишет, — продолжил Коля.

Коля 1000 : 25 = 40. Оля 1025 : 25 = 41. Вася 10025 : 25 =401.

Примеры деления в столбик

— Жалко, что у нас нет бананов в остатке, я бы его съел, огорчился Бим.

— Делаем вывод, — продолжил Коля. — Все деление в столбик состоит из неполных делений чисел, пока в числе не окончатся все разряды, но если после того, как мы снесли последний разряд (число единиц) остался остаток, то все деление у нас неполное, и результат будет состоять из частного-результата и остатка-результата. Если в конце деления остаток 0, то так и говорят, что делимое делится на делитель без остатка.

Можно и так определить деление в столбик, — подытожил Бом:

Деление в столбик — это ряд неполных делений чисел (неполных делимых), составленных из остатков от деления и цифр делимого, на делитель. В результате деления в столбик должны быть использованы все цифры делимого.

Вначале в делимом выделяем первое неполное делимое из цифр делимого, начиная с левой цифры делимого, пока неполное делимое не будет делиться не делитель. Частное от неполного деления записываем первой цифрой в частном.

К остатку от неполного деления сносим следующие цифры из делимого, пока новое неполное делимое не будет делится на делитель. При этом, если после снесенной цифры, неполное делимое не делится на делитель, то в частное ставится справа 0. После деления нового неполного делителя на делимое неполное частное записывается справа от уже найденных цифр частного, а к полученному неполному остатку опять сносятся последующие цифры из делимого. Действия повторяются, пока не будут снесены все цифры делимого.

Tetrika-school

Деление в столбик с остатком: объяснение (3 класс)

Неполное частное при делении в столбик — это частное от деления в столбик, при котором имеется остаток после использования последнего разряда в операции деления в столбик.

— Получается, — подхватил Вася, — что при делении в столбик тоже может быть неполное деление, когда есть остаток в самом конце деления. И результат тогда пишут, как при обычном неполном делении: частное-результат или как обычно говорят “частное”, а в конце в скобочке пишут остаток.

Пример:

Деление в столбик с остатком

— Спасибо ребята, что помогли нам сегодня разобраться с делением в столбик, — поблагодарил зрителей Бом. — Вот вам 315 конфет. Поделите в столбик 315 на 15 и разложите по 15 конфет в каждый кулечек. Три пакетика заберите себе, а остальные я раздам другим ребятам. Сколько всего получится пакетиков и сколько пакетиков мне останется раздать ребятам пусть посчитают ребята, которые научились делению в столбик.

— Подсказка. В ответе должен быть 21 кулечек, три из которых получили Коля, Оля и Вася, — добавил Бим. — Теперь напишите, пожалуйста, вопросы и ответы для ребят с Бомом, а я побежал одеваться, мой выход в самом начале представления, а выход Бома с обезьянками будет позже.

Бим убежал.

— До начала представления еще есть время, — посмотрел на часы Бом. — Ребята, давайте запишем вопросы:

  • Что такое деление?
  • Деление в столбик — это …
  • Деление в столбик с остатком — это …

И как обычно, ответы:

  • Деление двух чисел — это действие обратное к умножению, используется для нахождения одного из неизвестных (первого или второго множителя) в операции умножения. Делить на ноль — нельзя.
  • Деление в столбик — это удобный способ представления обыкновенного деления. Деление — это действие обратное к умножению.
  • Неполное частное при делении в столбик — это частное от деления в столбик, при котором имеется остаток после использования последнего разряда в операции деления в столбик

— Спасибо, ребята! — обрадовался Бом. — Вы очень помогли нам с Бимом. А теперь бегите на представление.

Tetrika-school

Заключение

Сегодня мы постарались в игровой форме рассмотреть тему: «Деление в столбик — объяснение (3 класс)». Надеемся, что ребята выучат деление в столбик и оно им еще не один раз пригодится.

Оригинальная идея подачи материала принадлежит Стуловой Лилии Валериевне (преподаватель математики от 5 лет и старше).

Не забудьте оценить наши старания! Комментарии приветствуются. По желанию подписывайтесь на нас в Яндекс.Дзен и в других социальных сетях!!!)))

Деление столбиком используют, когда нужно разделить простые или сложные многозначные числа. Оно помогает найти ответ за счёт разбивания решения на ряд более простых шагов. В статье объясним на примерах, как делить в столбик и дадим пошаговый алгоритм.

Какие арифметические действия используют при делении в столбик

При знакомстве с делением в столбик у школьника могут возникнуть трудности и недопонимания. Отчасти потому, что при сложении в столбик мы только складываем, а при вычитании только вычитаем. Когда же мы делим в столбик, то по очереди  выполняем: деление, умножение и вычитание. Кроме того, нужно знать таблицу умножения, уметь делить с остатком и аккуратно писать цифры, каждую в своей клетке, чтобы не ошибиться в расчётах.

Термины «делимое», «делитель», «частное», «неполное делимое»

Делить в столбик двузначные числа на однозначное

Разделим 86 на 2

1. Для начала определим первое неполное делимое и узнаем, сколько будет цифр в частном. 8 можем разделить на 2, значит, 8 — первое неполное делимое, в частном будет первая цифра. После 8 есть ещё одна цифра, значит, и в частном будет ещё одна цифра — всего две цифры.

2. Разделим первое неполное делимое 8 на делитель 2, получим первую цифру частного — 4.

3. Умножим делитель 2 на цифру частного 4, получим ответ — 8. Этот результат записываем под первым неполным делимым.

4. Находим остаток 8 — 8 = 0. Остаток 0 меньше делителя 2, значит, продолжаем вычисления. Остаток 0 можно не писать.

5. Сносим (переписываем) цифру 6 — это новое неполное делимое.

6. Делим неполное делимое 6 на делитель 2, получаем — 3. Результат записываем в частное.

7. Умножаем делитель 2 на новую цифру частного 3, получаем 6. Результат записываем под вторым неполным делимым.

8. Записываем последний остаток 0. Больше мы не можем снести ни одной цифры, значит, неполных делимых не осталось. Деление в столбик закончено.

Делить в столбик трёхзначное число на однозначное

Разделим 486 на 3

1. Сначала определим, сколько цифр в частном: первая цифра делимого — 4, мы можем разделить 4 на 3, значит, в частном будет первая цифра. После первого неполного делимого ещё две цифры, значит, и в частном будет ещё две цифры — всего три.

2. Затем разделим первое неполное делимое 4 на делитель 3. В результате получим 1.

3. Далее умножим делитель на полученную цифру частного: 3 · 1 =  3. Запишем 3 под первым неполным делителем.

4. Теперь нужно найти остаток при помощи вычитания.

5. Остаток 1 меньше делителя 3, значит, продолжаем вычисления. Рядом с цифрой остатка 1 пишем следующую цифру делимого — 8. Следующее неполное делимое — 18.

6. Разделим 18 на 3 и получим вторую цифру частного — 6.

7. Теперь умножим делитель на полученную цифру частного: 3 · 6 = 18 и найдём остаток — 0. Его можно не писать.

8. Сносим цифру 6 — это последнее неполное делимое. Делим 6 на 3 и получаем — 2. В частное пишем 2.

9. Далее умножим делитель на полученную цифру частного: 3 · 2 = 6 и найдём остаток — 0. Вычисления закончены.

Пример деления с нулём в частном, или сколько раз можно сносить цифру делимого, чтобы получить одно новое неполное делимое

Разделим 816 на 8

1. Первое неполное делимое 8, а за ним ещё две цифры. Значит, в частном будет 3 цифры.

2. Разделим первое неполное делимое 8 на делитель 4 и запишем в частное ответ — 2.

3. Умножим делитель 4 на цифру частного 2, получим 8. Запишем число под первым неполным делимым. 

4. Сносим цифру 1 — это новое неполное делимое. Остаток 0 не пишем.

5. Вспомним деление с остатком и разделим 1 на 4. В результате получим 0, остаток — 1. Цифру 0 записываем в частное.

6. Умножим делитель 4 на цифру частного 0, результат 0 запишем под вторым неполным делимым. Остаток 1. 

7. Сносим 6 и получаем новое неполное делимое 16. Делим 16 на 4, получаем цифру частного 4.

8. Умножаем делитель 4 на цифру частного 4 и пишем результат под неполным делимым.

9. Записываем последний остаток 0 — деление выполнено. 

Как можно сократить запись деления

Когда мы получили неполное делимое 1, которое меньше делителя 4, сносим вторую цифру делимого, чтобы новое неполное делимое было больше делителя. А в частное ставим 0. И далее выполняем деление в установленном порядке.

В этом примере мы дважды сносили цифру делимого, чтобы получить неполное делимое, которое больше делителя.

Надеемся, что теперь у вашего ребёнка не возникнет трудностей с делением в столбик. А если вдруг они есть, наши репетиторы с удовольствием готовы вам помочь!

Влюбляем в обучение на уроках в онлайн-школе Тетрика

Оставьте заявку и получите бесплатный вводный урок

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Деление
  5. Деление с остатком

Начнём рассмотрение новой темы с решения задачи.

Мама принесла 8 конфет и разделила их поровну между двумя детьми. Сколько конфет получил каждый?

8 : 2 = 4 (к.)

Каждый ребёнок получил по 4 конфеты.

На следующий день мама опять принесла 8 конфет, но в гостях у её детей была ещё одна подружка. Мама опять разделила конфеты поровну, но уже между тремя детьми. Сколько конфет получил каждый ребёнок?

Каждый получил по 2 конфеты и 2 конфеты остались лишними.

Как это записать?

8 : 3 = 2 (ост. 2)

Как сделать проверку?

2 • 3 + 2 = 8


Правило 1

Деление с остатком — это деление одного числа на другое, при котором остаток не равен нулю.

16 : 7 = 2 (ост. 2)

23 : 8 = 2 (ост. 7)

Правило 2

При делении с остатком остаток всегда должен быть меньше делителя.

43 : 8 = 5 (ост. 3)

остаток 3 < делимого 5

34 : 4 = 8 (ост. 2)

остаток 2 < делимого 4

Правило 3

Если делимое меньше делителя, в частном получается ноль, а остаток равен делимому.

7 : 10 = 0 (ост. 7)

6 : 9 = 0 (ост. 6)


Порядок решения

14 : 5 = 2 (ост. 4)

1. Нахожу наибольшее число до 14, которое делится на 5 без остатка. Это число 10.

10 : 5 = 2

2. Вычитаю из делимого найденное число: 14 − 10 = 4

3. Сравниваю остаток с делителем

4 < 5

Решение верно.


Проверка деления с остатком

1. Умножаю неполное частное на делитель.

2. Прибавляю остаток к полученному результату.

3. Сравниваю полученный результат с делимым, он должен быть МЕНЬШЕ.


Деление в столбик

В 23 содержится 5 раз по 4, и ещё остаётся 3.

Решение записывают так:

23 : 4 = 5 (ост. 3) или так:

, где 23 — делимое, 4 — делитель, 5 — неполное частное, а 3  — остаток.

Советуем посмотреть:

Табличное деление

Внетабличное деление

Деление суммы на число

Деление на однозначное число

Деление чисел, оканчивающихся нулями

Свойства деления

Деление


Правило встречается в следующих упражнениях:

2 класс

Страница 76. Урок 29,
Петерсон, Учебник, часть 3

Страница 77. Урок 29,
Петерсон, Учебник, часть 3

Страница 79. Урок 30,
Петерсон, Учебник, часть 3

Страница 80. Урок 30,
Петерсон, Учебник, часть 3

Страница 81. Урок 31,
Петерсон, Учебник, часть 3

Страница 82. Урок 31,
Петерсон, Учебник, часть 3

Страница 84. Урок 32,
Петерсон, Учебник, часть 3

Страница 87. Урок 33,
Петерсон, Учебник, часть 3

Страница 108. Повторение,
Петерсон, Учебник, часть 3

3 класс

Страница 77,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 4,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 31,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 32,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 36,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 46. Урок 17,
Петерсон, Учебник, часть 1

Страница 68. Урок 28,
Петерсон, Учебник, часть 2

Страница 93. Урок 41,
Петерсон, Учебник, часть 2

Страница 5. Урок 2,
Петерсон, Учебник, часть 3

Страница 35. Урок 16,
Петерсон, Учебник, часть 3

4 класс

Страница 61,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 89,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 18,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 35,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 11. ПР 3. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 50. Тест 1. Вариант 1,
Моро, Волкова, Проверочные работы

Страница 60. ПР 1. Вариант 1,
Моро, Волкова, Проверочные работы

Страница 18,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 21,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 74,
Моро, Волкова, Рабочая тетрадь, часть 2

5 класс

Задание 531,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 679,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 766,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1130,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1793,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 532,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 1

Задание 533,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 1

Номер 769,
Мерзляк, Полонский, Якир, Учебник

Номер 800,
Мерзляк, Полонский, Якир, Учебник

Номер 1,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 25,
Мерзляк, Полонский, Якир, Учебник

Номер 350,
Мерзляк, Полонский, Якир, Учебник

Номер 352,
Мерзляк, Полонский, Якир, Учебник

Номер 515,
Мерзляк, Полонский, Якир, Учебник

Номер 1091,
Мерзляк, Полонский, Якир, Учебник

Номер 1154,
Мерзляк, Полонский, Якир, Учебник

Номер 1,
Мерзляк, Полонский, Якир, Учебник

Задание 1083,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1131,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1144,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 330,
Мерзляк, Полонский, Якир, Учебник

Номер 331,
Мерзляк, Полонский, Якир, Учебник

Номер 341,
Мерзляк, Полонский, Якир, Учебник

Номер 431,
Мерзляк, Полонский, Якир, Учебник

Номер 496,
Мерзляк, Полонский, Якир, Учебник

Номер 580,
Мерзляк, Полонский, Якир, Учебник

Номер 581,
Мерзляк, Полонский, Якир, Учебник

Номер 602,
Мерзляк, Полонский, Якир, Учебник

Номер 784,
Мерзляк, Полонский, Якир, Учебник

Номер 1215,
Мерзляк, Полонский, Якир, Учебник

8 класс

Номер 4,
Мерзляк, Полонский, Якир, Учебник

Номер 46,
Мерзляк, Полонский, Якир, Учебник

Номер 138,
Мерзляк, Полонский, Якир, Учебник

Номер 139,
Мерзляк, Полонский, Якир, Учебник

Номер 141,
Мерзляк, Полонский, Якир, Учебник

Номер 207,
Мерзляк, Полонский, Якир, Учебник

Номер 212,
Мерзляк, Полонский, Якир, Учебник

Номер 302,
Мерзляк, Полонский, Якир, Учебник

Номер 304,
Мерзляк, Полонский, Якир, Учебник

Номер 305,
Мерзляк, Полонский, Якир, Учебник


Деление с остатком.

Рассмотрим простой пример:
15:5=3
В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.

Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу:
В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?

Решение:
Поделим число 16 на 5 столбиком получим:

Деление с остатком
Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.

16=5⋅3+1

a=bc+d
a – делимое,
b – делитель,
c – неполное частное,
d – остаток.

Ответ: каждый ребенок возьмет по 3 игрушки и одна игрушка останется.

Остаток от деления

Остаток всегда должен быть меньше делителя.

Если при делении остаток равен нулю, то это значит, что делимое делиться нацело или без остатка на делитель.

Если при делении остаток больше делителя, это значит, что найденное число не самое большое. Существует число большее, которое поделит делимое и остаток будет меньше делителя.

Вопросы по теме “Деление с остатком”:
Остаток может быть больше делителя?
Ответ: нет.

Остаток может быть равен делителю?
Ответ: нет.

Как найти делимое по неполному частному, делителю и остатку?
Ответ: значения неполного частного, делителя и остатка подставляем в формулу и находим делимое. Формула:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)

Пример №1:
Выполните деление с остатком и сделайте проверку: а) 258:7 б) 1873:8

Решение:
а) Делим столбиком:
Деленис с остатком 258:7

258 – делимое,
7 – делитель,
36 – неполное частное,
6 – остаток. Остаток меньше делителя 6<7.

Подставим в формулу и проверим правильно ли мы решили пример:
7⋅36+6=252+6=258

б) Делим столбиком:
Деление с остатком 1873:8

1873 – делимое,
8 – делитель,
234 – неполное частное,
1 – остаток. Остаток меньше делителя 1<8.

Подставим в формулу и проверим правильно ли мы решили пример:
8⋅234+1=1872+1=1873

Пример №2:
Какие остатки получаются при делении натуральных чисел: а) 3 б)8?

Ответ:
а) Остаток меньше делителя, следовательно, меньше 3. В нашем случае остаток может быть равен 0, 1 или 2.
б) Остаток меньше делителя, следовательно, меньше 8. В нашем случае остаток может быть равен 0, 1, 2, 3, 4, 5, 6 или 7.

Пример №3:
Какой наибольший остаток может получиться при делении натуральных чисел: а) 9 б) 15?

Ответ:
а) Остаток меньше делителя, следовательно, меньше 9. Но нам надо указать наибольший остаток. То есть ближайшее число к делителю. Это число 8.
б) Остаток меньше делителя, следовательно, меньше 15. Но нам надо указать наибольший остаток. То есть ближайшее число к делителю. Это число 14.

Пример №4:
Найдите делимое: а) а:6=3(ост.4) б) с:24=4(ост.11)

Решение:
а) Решим с помощью формулы:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)
а:6=3(ост.4)
(a – делимое, 6 – делитель, 3 – неполное частное, 4 – остаток.) Подставим цифры в формулу:
а=6⋅3+4=22
Ответ: а=22

б) Решим с помощью формулы:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)
с:24=4(ост.11)
(с – делимое, 24 – делитель, 4 – неполное частное, 11 – остаток.) Подставим цифры в формулу:
с=24⋅4+11=107
Ответ: с=107

Задача:

Проволоку 4м. нужно разрезать на куски по 13см. Сколько таких кусков получится?

Решение:
Сначала надо метры перевести в сантиметры.
4м.=400см.
Можно поделить столбиком или в уме получим:
400:13=30(ост.10)
Проверим:
13⋅30+10=390+10=400

Ответ: 30 кусков получиться и 10 см. проволоки останется.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Составьте предложения с то как местоимение с разделительным союзом с суффиксом с частицей
  • Как найти символ номер на телефоне
  • Как найти обратный элемент в кольце вычетов
  • Как найти квартиранта быстро
  • Как найти степень с основанием в дроби

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии