Как найти опорное базисное решение

Рассмотрим
СЛАУ (1.6). Введём в рассмотрение m-мерные
векторы-столбцы, координаты которых
равны коэффициентам при неизвестных и
свободным членам системы (1.6):


,
,
.

Тогда
СЛАУ (1.6) можно записать с помощью этих
векторов в виде:


. (1.8)

Из
равенства (1.8) можно заключить, что
решение системы (1.6) сводится к нахождению
коэффициентов разложения

вектора

по векторам

.
Все эти коэффициенты находятся методом
жордановых
исключений
.

В
результате ряда жордановых исключений
расширенная матрица СЛАУ принимает
следующий вид:

т.е.
векторы

преобразовались в единичные. Отсюда
следует, что векторы

являются линейно независимыми и
составляют базис
системы векторов

.

Систему
r
уравнений, в которой столбцы коэффициентов
при r
неизвестных являются единичными
векторами, называют СЛАУ, приведённой
к единичному базису

или приведённой
к разрешённому виду
.
Переменные

,
соответствующие векторам

называют базисными,
а весь набор базисных переменных называют
базисом
системы переменных

.
Переменные

,
соответствующие векторам

,
называют свободными.

Если
в общем решении системы (1.6) свободным
переменным придать нулевые решения, то
полученное частное решение


векторной записи (
))
называют базисным.
Чтобы найти все базисные решения, нужно
преобразовать систему, последовательно
переходя от одного единичного базиса
к другому с помощью жордановых исключений.
В принципе, из данной системы n
векторов

максимально возможным числом базисов
является

.
Каждому такому базису соответствует
базис системы переменных

и соответствующее базисное решение.

Задача
1.3.
Найти все
базисные решения СЛАУ:

Решение:
Представив
СЛАУ в виде таблицы и сделав два шага
жордановых исключений, придём к табл.
1.11, откуда получим базисное решение:
(1, 2, 0, 0).

Таблица
1.11
Таблица 1.12

1

-5

-5/2

-3

-2

1

1

2

-3/5

1

-4/5

-1/5

1

1/3

1

-5

-5

-1

-3

2

Таблица 1.13
Таблица 1.14

1

-1/2

-3/2

1/2

-3

1

-2

Таблица 1.15
Таблица 1.16

1

-5/4

-5/4

1/4

3/2

-1/2

В
табл. 1.11 содержится две строки,
следовательно ранг r
данной системы равен 2, n=4,
поэтому система может иметь не более

базисных решений.

Другими
базисами могут быть

.

Преобразуя
табл. 1.11 рядом жордановых исключений,
приходим последовательно к табл. 1.12,
1.13, 1.14, 1.15, 1.16, откуда находим остальные
базисные решения: (-3, 0, -5, 0), (
,
0, 0,

),
(0, -1, 0, -5), (0,

,

,
0), (0, 0,

,
-3).

В
экономических и управленческих задачах
отрицательные значения переменных, как
правило, не имеют реального смысла.
Поэтому представляет интерес
неотрицательные
решения СЛАУ
,
т.е. решения, среди компонентов которых
нет отрицательных чисел. Неотрицательные
базисные решения играют особую роль в
математическом программировании и
называются опорными
решениями

(планами).

Покажем,
как с помощью жордановых исключений
найти опорные планы. Пусть СЛАУ
представлена в виде жордановой таблицы,
где все элементы столбца свободных
членов неотрицательны.

Таблица
1.17

1

···

0=

···

···

···

···

···

···

0=

···

Выясним,
как сохранить неотрицательность
свободных членов в процессе жордановых
исключений. Пусть первый шаг жордановых
исключений производится с разрешающим
элементом

.

Таблица
1.18

1

···

···

···

···

···

···

···

0=

···

···

···

···

···

···

···

0=

···

···

···

···

···

···

···

Тогда
после жорданова исключения свободный
член в разрешающей строке

,
если разрешающий элемент

.
Это первое
требование

к разрешающему элементу.

После
шага жорданова исключения свободный
член произвольный i-й
строки равен

Последнее
выражение будет неотрицательным, если

.
Это неравенство всегда будет выполняться
при любом

;
если же

должно выполняться неравенство

Это
второе
требование

к разрешающему элементу.

Иными
словами, отношение свободного члена
разрешающей строки к разрешающему
элементу должно удовлетворять условию
минимальности
,
т.е. оно должно быть наименьшим из всех
отношений свободных членов к соответствующим
положительным элементам разрешающего
столбца.

Таким
образом, имеем следующее правило
для нахождения опорного плана СЛАУ.
Вначале СЛАУ представляется в виде
жордановой таблицы так, чтобы все
свободные члены были неотрицательными.
Затем производится возможное число
жордановых исключений, выбирая разрешающий
элемент среди положительных чисел
основной части таблицы по наименьшему
отношению свободных членов к соответствующим
положительным элементам разрешающего
столбца. Искомое опорное решение (план)
найдётся приравниванием верхних
(свободных) переменных нулю, а базисных
(боковых) – свободным членам. Если в
ходе жордановых исключений встретится
0-строка, в которой все элементы не
положительны, а свободный член
неотрицателен, то данная система не
имеет неотрицательных (в частности,
опорных) решений, хотя и является
совместной.

Задание
1.4
. Найти все
опорные решения (планы) системы линейных
алгебраических уравнений

Решение.
Представим СЛАУ в виде жордановой
таблицы со свободными неотрицательными
членами

Таблица 1.19

1

0=

16

1

1

3

0=

8

-1

1

3

-1

После
двух шагов жордановых исключений получим
соответствующие табл.1.20 и табл.1.21

1

10

6

Таблица 1.20
Таблица 1.21

1

16

1

1

3

0=

24

2

2

Из
таблицы 1.21 получаем первое опорное
решение (план) (10, 0, 6, 0). Производя следующие
шаги жордановых исключений, получим
следующие жордановы таблицы: из которых
получены следующие опорные планы: (4,
12, 0, 0), (0, 10, 0, 2), (0, 0, 4, 4).

Таблица
1.22 Таблица 1.23

1

2

10

1

4

-1

12

2

1

Таблица
1.24

1

4

4

Нетрудно
убедиться в том, что нет других опорных
планов для данной СЛАУ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Системы линейных уравнений с примерами решений

Содержание:

Системы уравнений, как и отдельные уравнения, используют для решения сложных и необходимых задач. Системы уравнений бывают с двумя, тремя и более переменными. В этой главе вы ознакомитесь с простейшими системами двух уравнений с двумя переменными. Основные темы лекции:

  • уравнения с двумя переменными;
  • график линейного уравнения;
  • системы уравнений;
  • способ подстановки;
  • способ сложения;
  • решение задач составлением системы уравнений.

Уравнения с двумя переменными

До сих пор мы рассматривали уравнение с одной переменной. Однако существуют задачи, решение которых приводит к уравнениям с двумя переменными.

Пример:

На 22 руб. купили несколько книжек по 5 руб. и географических карт — по 3 руб. Сколько купили книжек и карт?

Решение:

Пусть купили х книжки у карт. За книжки заплатили 5х руб., а за карты — 3у руб. Всего заплатили 22 руб., то есть, 5х + Зу = 22.

Это уравнение с двумя переменными. Приведём и другие примеры таких уравнений с двумя переменными:

Уравнение вида ах + by = с, где а, b, с — данные числа, называется линейным уравнением с двумя переменными х и у. Если

Примеры линейных уравнений:

два первых из них — уравнение первой степени с двумя переменными.

Паре чисел х = -1 и у = 9 удовлетворяет уравнение 5х + Зу -= 22, так как А пара чисел х = 1 и у = 2 этому уравнению не удовлетворяет, поскольку

Каждая пара чисел, удовлетворяющая уравнение с двумя переменными, т. е. обращающая это уравнение в верное равенство, называется решением этого уравнения.

Обратите внимание: одно решение состоит из двух чисел, на первом месте записывают значение х, на втором — у. Корнями их не называют.

Чтобы найти решение уравнения с двумя переменными, следует подставить в уравнение произвольное значение первой неременной и, решив полученное уравнение, найти соответствующее значение второй переменной.

Для примера найдем несколько решений уравнения

Если х = 1, то отсюда у = -2. Пара чисел х = 1 и у = -2 — решение данного уравнения. Его записывают ещё и так: (1; -2). Придавая переменной х значения 2, 3, 4, . , так же можно найти сколько угодно решений уравнения: (2; 1), (3; 4), (4; 7), (5; 10), . Каждое уравнение первой степени с двумя переменными имеет бесконечно много решений.

Уравнение также имеет бесконечно много решений, но сформулированную выше задачу удовлетворяет только одно из них: (2; 4).

Два уравнения с двумя переменными называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считаются равносильными.

Для уравнения с двумя переменными остаются справедливыми свойства, сформулированные для уравнений с одной переменной.

Обе части уравнения с двумя переменными можно умножить или разделить на одно и то же число, отличное от нуля. Любой член такого уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный. В результате получается уравнение, равносильное данному.

Например, уравнение можно преобразовать так: . Каждое из этих уравнений равносильно друг другу.

Иногда возникает потребность решить уравнение с двумя переменными во множестве целых чисел, то есть определить решения, являющиеся парами целых чисел. Способы решения таких уравнений определил древнегреческий математик Диофант (III в.), поэтому их называют диофантовыми уравнениями. Например, задача о книжках и картах сводится к уравнению где х и у могут быть только целыми (иногда натуральными) числами.

Переменную у из этого уравнения выразим через х:

Будем подставлять в равенство вместо х первые натуральные числа до тех пор, пока не получим целое значение переменной у. Это можно делать устно. Если х = 2, то у = 4. Других натуральных решений уравнение не имеет. Поэтому задача имеет единственное решение: 2 книги и 4 карты.

Пример:

Решение:

а) При любых значениях х и у значения выражения не может быть отрицательным числом. Поэтому уравнение не имеет решений.

б) Значение выражения равно нулю только при условии, когда x -3 = 0 и y = 0. Значит, уравнение имеет только одно решение: х = 3, у = 0.

Пример:

Составьте уравнение с двумя переменными, решением которого будет пара чисел (1; -5).

Решение:

Пишем любой двучлен с переменными х и у, например Если х = 1, а у = -5, то значение даного двучлена равно 28. Следовательно, уравнение удовлетворяет условие задачи.

Есть много других линейных уравнений с двумя переменными, имеющих такое же решение (1; -5).

График линейного уравнения с двумя переменными

Рассмотрим уравнение Давая переменной х значения -2, -1,0,1,2, 3. найдём соответствующие значения переменной у. Будем иметь решение данного уравнения: (-2; -б), (-1; -4,5), (0; -3),

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Примеры решения СЛАУ

Методы решения систем линейных уравнений широко используются в задачах математики, экономики, физики, химии и других науках. На практике, они позволяют не делать лишних действий, а записать систему уравнений в более компактной форме и сократить время выполнения задач. Поэтому, будущим специалистам очень важно понять основные методы решения и научиться выбирать оптимальный.

Перед изучением примеров решения задач советуем изучить теоретический материал по СЛАУ, прочитать все теоремы и методы решения. Список тем находится в правом меню.

Примеры по темам:

СЛАУ: основные понятия, виды

Задание. Проверить, является ли набор $<0,3>$ решением системы $left<begin 3 x-2 y=-6 \ 5 x+y=3 endright.$

Решение. Подставляем в каждое из уравнений системы $x=0$ и $y=3$ :

$$3 x-2 y=-6 Rightarrow 3 cdot 0-2 cdot 3=-6 Rightarrow-6=-6$$ $$5 x+y=3 Rightarrow 5 cdot 0+3=3 Rightarrow 3=3$$

Так как в результате подстановки получили верные равенства, то делаем вывод, что заданный набор является решением указанной СЛАУ.

Ответ. Набор $<0,3>$ является решением системы $left<begin 3 x-2 y=-6 \ 5 x+y=3 endright.$

Задание. Систему $left<begin x-y+z-4 t=0 \ 5 x+y+t=-11 endright.$ записать в матричной форме и выписать все матрицы, которые ей соответствуют.

Решение. Заданную СЛАУ записываем в матричной форме $A cdot X=B$ , где матрица системы:

$$A=left(begin 1 & -1 & 1 & -4 \ 5 & 1 & 0 & 1 endright)$$

$$A=left(begin 1 & -1 & 1 & -4 \ 5 & 1 & 0 & 1 endright)$$

вектор-столбец свободных коэффициентов:

то есть, запись СЛАУ в матричной форме:

$$left(begin 1 & -1 & 1 & -4 \ 5 & 1 & 0 & 1 endright)left(begin x \ y \ z \ t endright)=left(begin 0 \ -11 endright)$$

Задание. Записать матрицу и расширенную матрицу системы $left<begin 2 x_<1>+x_<2>-x_<3>=4 \ x_<1>-x_<2>=5 endright.$

Решение. Матрица системы $A=left(begin 2 & 1 & -1 \ 1 & -1 & 0 endright)$ , тогда расширенная матрица $tilde=(A mid B)=left(begin 2 & 1 & -1 & 4 \ 1 & -1 & 0 & 5 endright)$

Критерий совместности системы

Задание. При каких значениях $lambda$ система $left<begin 2 x_<1>-x_<2>+x_<3>+x_<4>=1 \ x_<1>+2 x_<2>-x_<3>+x_<4>=2 \ x_<1>+7 x_<2>-4 x_<3>+2 x_<4>=lambda endright.$ будет совместной?

Решение. Ранг матрицы равен количеству ненулевых строк после приведения этой матрицы к ступенчатому виду. Поэтому записываем расширенную матрицу системы $tilde$ (слева от вертикальной черты находится матрица системы $A$ ):

и с помощью элементарных преобразований приводим ее к ступенчатому виду. Для этого вначале от второй строки отнимаем две вторых строки, а от третьей вторую, в результате получаем:

Третью строку складываем с первой:

и меняем первую и вторую строки матрицы местами

Квадратные СЛАУ. Матричный метод решения

Теоретический материал по теме — матричный метод решения.

Задание. Найти решение СЛАУ $left<begin5 x_<1>+2 x_<2>=7 \ 2 x_<1>+x_<2>=9endright.$ матричным методом.

Решение. Выпишем матрицу системы $left<begin 5 x_<1>+2 x_<2>=7 \ 2 x_<1>+x_<2>=9 endright.$ и матрицу правых частей $B=left(begin 7 \ 9 endright)$ . Найдем обратную матрицу для матрицы системы. Для матрицы второго порядка обратную можно находить по следующему алгоритму: 1) матрица должна быть невырождена, то есть ее определитель не должен равняться нулю: $|A|=1$ ; 2) элементы, стоящие на главной диагонали меняем местами, а у элементов побочной диагонали меняем знак на противоположный и делим полученные элементы на определитель матрицы. Итак, получаем, что

$$X=left(begin x_ <1>\ x_ <2>endright)=A^ <-1>B=left(begin 1 & -2 \ -2 & 5 endright) cdotleft(begin 7 \ 9 endright)=$$ $$=left(begin -11 \ 31 endright) Rightarrowleft(begin x_ <1>\ x_ <2>endright)=left(begin -11 \ 31 endright)$$

Две матрицы одного размера равны, если равны их соответствующие элементы, то есть в итоге имеем, что $x_<1>=-11$, $x_<2>=31$

Ответ. $x_<1>=-11$, $x_<2>=31$

Задание. Решить с помощью обратной матрицы систему $left<begin 2 x_<1>+x_<2>+x_<3>=2 \ x_<1>-x_<2>=-2 \ 3 x_<1>-x_<2>+2 x_<3>=2 endright.$

Решение. Запишем данную систему в матричной форме:

где $A=left(begin 2 & 1 & 1 \ 1 & -1 & 0 \ 3 & -1 & 2 endright)$ — матрица системы, $X=left(begin x_ <1>\ x_ <2>\ x_ <3>endright)$ — столбец неизвестных, $B=left(begin 2 \ -2 \ 2 endright)$ — столбец правых частей. Тогда

Найдем обратную матрицу $A^-1$ к матрице $A$ с помощью союзной матрицы:

Определитель матрицы $A$

$$Delta=left|begin 2 & 1 & 1 \ 1 & -1 & 0 \ 3 & -1 & 2 endright|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 1+1 cdot 0 cdot 3-$$ $$-3 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-1 cdot 1 cdot 2=-4 neq 0$$

Отсюда искомая матрица

Метод / Теорема Крамера

Теоретический материал по теме — метод Крамера.

Задание. Найти решение СЛАУ $left<begin 5 x_<1>+2 x_<2>=7 \ 2 x_<1>+x_<2>=9 endright.$ при помощи метода Крамера.

Решение. Вычисляем определитель матрицы системы:

$$Delta=left|begin 5 & 2 \ 2 & 1 endright|=5 cdot 1-2 cdot 2=1 neq 0$$

Так как $Delta neq 0$ , то по теореме Крамера система совместна и имеет единственное решение. вычислим вспомогательные определители. Определитель $Delta_<1>$ получим из определителя $Delta$ заменой его первого столбца столбцом свободных коэффициентов. Будем иметь:

$$Delta_<1>=left|begin 7 & 2 \ 9 & 1 endright|=7-18=-11$$

Аналогично, определитель $Delta_<2>$ получается из определителя матрицы системы $Delta$ заменой второго столбца столбцом свободных коэффициентов:

$$Delta_<2>=left|begin 5 & 7 \ 2 & 9 endright|=45-14=31$$

Тогда получаем, что

Ответ. $x_<-1>=-11$, $x_ <2>= 31$

Задание. При помощи формул Крамера найти решение системы $left<begin 2 x_<1>+x_<2>+x_<3>=2 \ x_<1>-x_<2>=-2 \ 3 x_<1>-x_<2>+2 x_<3>=2 endright.$

Решение. Вычисляем определитель матрицы системы:

$$Delta=left|begin 2 & 1 & 1 \ 1 & -1 & 0 \ 3 & -1 & 2 endright|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 1+1 cdot 0 cdot 3-$$ $$-3 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-1 cdot 1 cdot 2=-4 neq 0$$

Так как определитель матрицы системы неравен нулю, то по теореме Крамера система совместна и имеет единственное решение. Для его нахождения вычислим следующие определители:

$$Delta_<1>=left|begin 2 & 1 & 1 \ -2 & -1 & 0 \ 2 & -1 & 2 endright|=2 cdot(-1) cdot 2+(-2) cdot(-1) cdot 1+$$ $$+1 cdot 0 cdot 2-2 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-(-2) cdot 1 cdot 2=4$$ $$Delta_<2>=left|begin 2 & 2 & 1 \ 1 & -2 & 0 \ 3 & 2 & 2 endright|=2 cdot(-2) cdot 2+1 cdot 2 cdot 1+2 cdot 0 cdot 3-$$ $$-3 cdot(-2) cdot 1-2 cdot 0 cdot 2-1 cdot 2 cdot 2=-4$$ $$Delta_<3>=left|begin 2 & 1 & 2 \ 1 & -1 & -2 \ 3 & -1 & 2 endright|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 2+$$ $$+1 cdot(-2) cdot 3-3 cdot(-1) cdot 2-(-1) cdot(-2) cdot 2-1 cdot 1 cdot 2=-12$$

Метод Гаусса. Метод последовательного исключения неизвестных

Теоретический материал по теме — метод Гаусса.

Задание. Решить СЛАУ $left<begin 2 x_<1>+x_<2>+x_<3>=2 \ x_<1>-x_<2>=-2 \ 3 x_<1>-x_<2>+2 x_<3>=2 endright.$ методом Гаусса.

Решение. Выпишем расширенную матрицу системы и при помощи элементарных преобразований над ее строками приведем эту матрицу к ступенчатому виду (прямой ход) и далее выполним обратный ход метода Гаусса (сделаем нули выше главной диагонали). Вначале поменяем первую и вторую строку, чтобы элемент $a_<1>$ равнялся 1 (это мы делаем для упрощения вычислений):

Далее делаем нули под главной диагональю в первом столбце. Для этого от второй строки отнимаем две первых, от третьей — три первых:

Все элементы третьей строки делим на два (или, что тоже самое, умножаем на $frac<1><2>$:

Далее делаем нули во втором столбце под главной диагональю, для удобства вычислений поменяем местами вторую и третью строки, чтобы диагональный элемент равнялся 1:

От третьей строки отнимаем вторую, умноженную на 3:

Умножив третью строку на $left(-frac<1><2>right)$ , получаем:

Проведем теперь обратный ход метода Гаусса (метод Гассу-Жордана), то есть сделаем нули над главной диагональю. Начнем с элементов третьего столбца. Надо обнулить элемент $$tilde simleft(begin 1 & -1 & 0 & -2 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 3 endright)$$

Далее обнуляем недиагональные элементы второго столбца, к первой строке прибавляем вторую:

Полученной матрице соответствует система

$left<begin x_<1>+0 cdot x_<2>+0 cdot x_<3>=-1 \ 0 cdot x_<1>+x_<2>+0 cdot x_<3>=1 \ 0 cdot x_<1>+0 cdot x_<2>+x_<3>=3 endright.$ или $left<begin x_<1>=-1 \ x_<2>=1 \ x_<3>=3 endright.$

Однородные СЛАУ. Фундаментальная система решений

Теоретический материал по теме — однородные СЛАУ.

Задание. Выяснить, имеет ли однородная СЛАУ $left<begin 3 x-2 y=-1 \ x+3 y=7 endright.$ ненулевые решения.

Решение. Вычислим определитель матрицы системы:

$$Delta=left|begin 3 & -2 \ 1 & 3 endright|=9-(-2)=9+2=11 neq 0$$

Так как определитель не равен нулю, то система имеет только нулевое решение $x=y=0$

Ответ. Система имеет только нулевое решение.

Задание. Найти общее решение и ФСР однородной системы $Delta=left|begin 3 & -2 \ 1 & 3 endright|=9-(-2)=9+2=11 neq 0$

Решение. Приведем систему к ступенчатому виду с помощью метода Гаусса. Для этого записываем матрицу системы (в данном случае, так как система однородная, то ее правые части равны нулю, в этом случае столбец свободных коэффициентов можно не выписывать, так как при любых элементарных преобразованиях в правых частях будут получаться нули):

$$A=left(begin 1 & 1 & 0 & -3 & -1 \ 1 & -2 & 2 & -1 & 0 \ 4 & -2 & 6 & 3 & -4 \ 2 & 4 & -2 & 4 & -7 endright)$$

с помощью элементарных преобразований приводим данную матрицу к ступенчатому виду. От второй строки отнимаем первую, от третьей — четыре первых, от четвертой — две первых:

$$A simleft(begin 1 & 1 & 0 & -3 & -1 \ 0 & -2 & 2 & 2 & 1 \ 0 & -6 & 6 & 15 & 0 \ 0 & 2 & -2 & 10 & -5 endright)$$

Обнуляем элементы второго столбца, стоящие под главной диагональю, для этого от третьей строки отнимаем три вторых, к четвертой прибавляем вторую:

$$A simleft(begin 1 & 1 & 0 & -3 & -1 \ 0 & -2 & 2 & 2 & 1 \ 0 & 0 & 0 & 9 & -3 \ 0 & 0 & 0 & 12 & -4 endright)$$

От четвертой строки отнимем $$frac<4><3>$$ третьей и третью строку умножим на $$frac<1><3>$$ :

$$A simleft(begin 1 & 1 & 0 & -3 & -1 \ 0 & -2 & 2 & 2 & 1 \ 0 & 0 & 0 & 3 & -1 \ 0 & 0 & 0 & 0 & 0 endright)$$

Нулевые строки можно далее не рассматривать, тогда получаем, что

$$A simleft(begin 1 & 1 & 0 & -3 & -1 \ 0 & -2 & 2 & 2 & 1 \ 0 & 0 & 0 & 3 & -1 endright)$$

Далее делаем нули над главной диагональю, для этого от первой строки отнимаем третью, а ко второй строке прибавляем третью:

$$A simleft(begin 1 & 1 & 0 & -6 & 0 \ 0 & -2 & 2 & 5 & 0 \ 0 & 0 & 0 & 3 & -1 endright)$$

то есть получаем систему, соответствующую данной матрице:

Или, выразив одни переменные через другие, будем иметь:

Здесь $x_<2>, x_<4>$ — независимые (или свободные) переменные (это те переменные, через которые мы выражаем остальные переменные), $x_<1>,x_<3>,x_<5>$ — зависимые (связанные) переменные (то есть те, которые выражаются через свободные). Количество свободных переменных равно разности общего количества переменных $n$ (в рассматриваемом примере $n=5$ , так как система зависит от пяти переменных) и ранга матрицы $r$ (в этом случае получили, что $r=3$ — количество ненулевых строк после приведения матрицы к ступенчатому виду): $n-r=5-3=2$

Так как ранг матрицы $r=3$ , а количество неизвестных системы $n=5$ , то тогда количество решений в ФСР $n-r=5-3-2$ (для проверки, это число должно равняться количеству свободных переменных).

Для нахождения ФСР составляем таблицу, количество столбцов которой соответствует количеству неизвестных (то есть для рассматриваемого примера равно 5), а количество строк равно количеству решений ФСР (то есть имеем две строки). В заголовке таблицы выписываются переменные, свободные переменные отмечаются стрелкой. Далее свободным переменным придаются любые, одновременно не равные нулю значений и из зависимости между свободными и связанными переменными находятся значения остальных переменных. Для рассматриваемой задачи эта зависимость имеет вид:

Тогда придавая в первом случае, например, независимым переменным значения $x_<2>=1$ , $x_<4>=0$ получаем, что $left<begin x_<1>=-1+6 cdot 0=-1 \ x_<3>=1-frac<5> <2>cdot 0=1 \ x_<5>=3 cdot 0=0 endright.$ . Полученные значения записываем в первую строку таблицы. Аналогично, беря $x_<2>=0$ , $x_<4>=2$, будем иметь, что $x_<1>=12,x_<3>=-5,x_<5>=6$ , что и определяет второе решение ФСР. В итоге получаем следующую таблицу:

Эти две строчки и есть фундаментальным решением заданной однородной СЛАУ. Частное решение системы:

Общее решение является линейной комбинацией частных решений:

$$X=C_ <1>X_<1>+C_ <2>X_<2>=C_<1>left(begin -1 \ 1 \ 1 \ 0 \ 0 endright)+C_<2>left(begin 12 \ 0 \ -5 \ 2 \ 6 endright)$$

где коэффициенты $C_<1>, C_<2>$ не равны нулю одновременно. Или запишем общее решение в таком виде:

Придавая константам $C_<1>, C_<2>$ определенные значения и подставляя их в общее решение, можно будет находить частные решения однородной СЛАУ.

П.1. Базисные и опорные решения

Рассмотрим линейную систему из m уравнений с n переменными

(2.1)

В дальнейшем будет интересен случай, когда n > m.

Будем полагать, что в системе (2.1) все уравнения являются независимыми, что в свою очередь означает r = m, где r – ранг матрицы системы
A = (aij).

Рассмотрим одну из таких систем

Составим расширенную матрицу системы и проведем несложные преобразования

В данном случае r = 2, число переменных n = 3. Очевидно, что такая система имеет бесконечно много решений.

Перейдем от последней матрицы к системе уравнений

Выразим переменные х1 и х3 через переменную х2

Рассмотрим столбцы перед переменными х1 и х3, как векторы и . Данные векторы образуют базис в двумерном пространстве. Отсюда название переменных х1 и х3 – базисные переменные.

В общем случае базисных переменных в системе из m независимых уравнений с n переменными будет m.

Определение 2.1. Базисными переменными системы m линейных уравнений с n переменными (m

Число базисных решений равно количеству неупорядоченных подмножеств из n элементов (число неизвестных) по m (число базисных неизвестных), т.е. это число равно

,

где n! = n × (n – 1) ×…× 3 × 2 × 1; m! = m × (m – 1) ×…× 2 × 1.

В данном примере число базисных решений определяется следующим образом

.

Среди базисных решений выделяют вырожденные решения, в которых нулевыми являются не только свободные решения, но и некоторые базисные.

Обратимся к примерам 1.1 и 1.2, рассмотренным в предыдущем параграфе. В системе ограничений одной и другой задачи присутствует требование неотрицательности переменных х1, …, хn. Это требование не является случайным, поскольку в экономических моделях, связанных с решением систем линейных уравнений, неизвестные величины соответствуют некоторым конкретным экономическим показателям, которые могут быть только неотрицательными. Неотрицательные базисные решения назовем опорными*.

Рассмотрим отыскание опорных решений на примере.

П р и м е р 2.1. Найти все опорные решения системы линейных уравнений:

Решение. Столбец свободных переменных не содержит отрицательных компонент. Если бы в каком-то уравнении были отрицательные свободные члены, нужно было бы умножением обеих частей уравнения на (– 1) сделать свободный член соответствующего уравнения положительным. Составим расширенную матрицу системы

и определим первый разрешающий элемент так, чтобы в последнем столбце в результате элементарных преобразований не появились отрицательные компоненты. Очевидно, разрешающий элемент должен быть положительным. В первом столбце все компоненты положительные. Какой из них можно взять в качестве разрешающего? Составим отношения (j = 1, 2, 3). Если за разрешающий элемент выбрать тот из элементов первого столбца, которому соответствует минимальное отношение, то в столбце свободных членов после преобразований не будет отрицательных компонент – это элемент а31 = 1. Получим

.

Во втором столбце первоначальной матрицы за разрешающий можно взять только элемент а22 = 1 (он единственный положительный элемент этого столбца)

.

В третьем столбце за разрешающий можно взять а33 = 11, т. к. :

.

В четвертом столбце все элементы отрицательные и разрешающий элемент выбрать нельзя.

Остановимся на первом варианте и продолжим процесс далее

.

Очевидно, ранг матрицы равен 2, базисные неизвестные – х1 и х4; свободные – х2 и х3. Общее решение: (7 – 11х2 + 34 х3; х2; х3; 1 – 3х2 + 9х3).

Базисное решение (7; 0; 0; 1) является опорным.

В данном случае существует базисных решений, соответствующих базисным переменным: х1х2; х1х3; х1х4; х2х3; х2х4; х3х4. Вариант х1х4 уже был рассмотрен.

Вернемся к матрице системы, полученной после преобразований:

.

Варианты х1х3; х2х3; х3х4 невозможны, т.к. в столбце, соответствующем х3, нет положительных компонент, и х3 не может войти в базис. Введем в базис х2: , значит разрешающий элемент а12 = 3. Получим

.

Базисное решение — опорное.

Проверим последний вариант х2х4: в четвертом столбце последней матрицы разрешающим может быть только элемент а12 = 1/3 > 0, но тогда из базиса уйдет неизвестная х2 и получим базисные переменные х1х4, что уже было рассмотрено.

Итак, опорные решения: (7; 0; 0; 1) и .

Сформулируем общее правило выбора разрешающего элемента при отыскании опорного решения для определенного столбца j.

1. Приводим систему уравнений к виду, когда в столбце свободных членов нет отрицательных чисел.

2. В выбранном столбце j в «конкурсе» на звание «разрешающий элемент» участвуют только положительные элементы.

3. Каждый элемент в столбце свободных членов, делим на соответствующий ему элемент столбца j.

4. Выбираем из полученных соотношений наименьшее (Qj).

5. Элемент, для которого отношение, полученное в пункте 3, наименьшее, является разрешающим элементом.

Последнее изменение этой страницы: 2017-04-12; Просмотров: 1796; Нарушение авторского права страницы

источники:

http://www.webmath.ru/poleznoe/formules_5_7.php

http://lektsia.com/8x32c1.html

Содержание:

Исследование различных процессов, в том числе и экономических, обычно начинается с их моделирования, т.е. отражения реального процесса через математические соотношения. При этом составляются уравнения или неравенства, которые связывают различные показатели (переменные) исследуемого процесса, образуя систему ограничений. В этих процессах выделяются такие переменные, меняя которые можно получить оптимальное значение основного показателя данной системы (прибыль, доход, затраты и т.д.). Соответствующие методы, позволяющие решать указанные задачи, объединяются под общим названием «математическое программирование» или математические методы исследования операций.

Математическое программирование включает в себя такие разделы математики, как линейное, нелинейное и динамическое программирование. Сюда же относят и стохастическое программирование, теорию игр, теорию массового обслуживания, теорию управления запасами и некоторые другие.

Математическое программирование — это раздел высшей математики, посвященный решению задач, связанных с нахождением экстремумов функций нескольких переменных, при наличии ограничений на переменные.

Методами математического программирования решаются задачи о распределении ресурсов, планировании выпуска продукции, ценообразования, транспортные задачи и т.д.

Построение математической модели экономической задачи включает следующие этапы:

  1. выбор переменных задачи;
  2. составление системы ограничений;
  3. выбор целевой функции.

Переменными задачи называются величины Линейное программирование - основные понятия с примерами решения

Система ограничений включает в себя систему уравнений и неравенств, которым удовлетворяют переменные задачи и которые следуют из ограниченности ресурсов или других экономических или физических условий, например, положительности переменных и т.п.

Целевой функцией называют функцию переменных задачи, которая характеризует качество выполнения задачи, и экстремум которой требуется найти.

Общая задача математического программирования формулируется следующим образом: найти экстремум целевой функции: Линейное программирование - основные понятия с примерами решения и соответствующие ему переменные при условии, что эти переменные удовлетворяют системе ограничений:

Линейное программирование - основные понятия с примерами решения

Если целевая функция и система ограничений линейны, то задача математического программирования называется задачей линейного программирования и в общем виде может быть записана следующим образом:

Линейное программирование - основные понятия с примерами решения

Линейное программирование - основные понятия с примерами решения

Данная запись означает следующее: найти экстремум целевой функции задачи и соответствующие ему переменные X = (Линейное программирование - основные понятия с примерами решения). при условии, что эти переменные удовлетворяют системе ограничений и условиям неотрицательности.

Допустимым решением (планом) задачи линейного программирования называется любойX = (Линейное программирование - основные понятия с примерами решения). удовлетворяющий системе ограничений и условиям неотрицательности. Множество допустимых решений (планов) задачи образует область допустимых решений.

Оптимальным решением (планом) задачи линейного программирования называется такое допустимое решение задачи, при котором целевая функция достигает экстремума.

Задача линейного программирования

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися. В случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической. Каноническая задача линейного программирования в координатной форме записи имеет вид:

Линейное программирование - основные понятия с примерами решения

Линейное программирование - основные понятия с примерами решения

Используя знак суммирования эту задачу можно записать следующим образом:

Линейное программирование - основные понятия с примерами решения

Каноническая задача линейного программирования в векторной форме имеет вид:

Линейное программирование - основные понятия с примерами решения

В данном случае введены векторы:

Линейное программирование - основные понятия с примерами решения

Здесь С — X — скалярное произведение векторов С и X.

Каноническая задача линейного программирования в матричной форме записи имеет вид:

Линейное программирование - основные понятия с примерами решения

где:

Линейное программирование - основные понятия с примерами решения

Здесь А — матрица коэффициентов системы уравнений, X -матрица-столбец переменных задачи; Линейное программирование - основные понятия с примерами решения — матрица-столбец правых частей системы ограничений.

Нередко используются задачи линейного программирования, называемые симметричными, которые в матричной форме записи имеют вид:

Линейное программирование - основные понятия с примерами решения

Приведение общей задачи линейного программирования к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако, при составлении математических моделей экономических задач ограничения в основном формулируются системы неравенств, поэтому возникает необходимость перехода от системы неравенств к системе уравнений. Это может быть сделано следующим образом. К левой части линейного неравенства:

Линейное программирование - основные понятия с примерами решенияприбавляется величина Линейное программирование - основные понятия с примерами решения такая, что переводит неравенство в равенство Линейное программирование - основные понятия с примерами решения, где: Линейное программирование - основные понятия с примерами решения

Неотрицательная переменная Линейное программирование - основные понятия с примерами решения называется дополнительной переменной.

Основания для возможности такого преобразования дает следующая теорема.

Теорема. Каждому решению Линейное программирование - основные понятия с примерами решения неравенства Линейное программирование - основные понятия с примерами решения соответствует единственное решение Линейное программирование - основные понятия с примерами решения уравнения: Линейное программирование - основные понятия с примерами решенияи неравенства Линейное программирование - основные понятия с примерами решения и, наоборот, каждому решению Линейное программирование - основные понятия с примерами решения уравнения:Линейное программирование - основные понятия с примерами решения и неравенства Линейное программирование - основные понятия с примерами решения соответствует единственное решение Линейное программирование - основные понятия с примерами решения неравенства: Линейное программирование - основные понятия с примерами решения

Доказательство. Пусть Линейное программирование - основные понятия с примерами решения — решение неравенстваЛинейное программирование - основные понятия с примерами решения. Тогда:Линейное программирование - основные понятия с примерами решения

Если в уравнение Линейное программирование - основные понятия с примерами решения вместо переменных подставить значения Линейное программирование - основные понятия с примерами решения, получится:

Линейное программирование - основные понятия с примерами решения

Таким образом, решение Линейное программирование - основные понятия с примерами решения удовлетворяет уравнению: Линейное программирование - основные понятия с примерами решения и неравенству Линейное программирование - основные понятия с примерами решения.

Доказана первая часть теоремы.

Пусть Линейное программирование - основные понятия с примерами решения удовлетворяет уравнению Линейное программирование - основные понятия с примерами решения и неравенству Линейное программирование - основные понятия с примерами решения, т.е. Линейное программирование - основные понятия с примерами решения. Отбрасывая в левой части равенства неотрицательную величину Линейное программирование - основные понятия с примерами решения, получим:Линейное программирование - основные понятия с примерами решения

т.е. Линейное программирование - основные понятия с примерами решения удовлетворяет неравенству: Линейное программирование - основные понятия с примерами решениячто и требовалось доказать.

Если в левую часть неравенств системы ограничений вида Линейное программирование - основные понятия с примерами решения

добавить переменную Линейное программирование - основные понятия с примерами решения, то получится система ограничений — уравнений Линейное программирование - основные понятия с примерами решения Линейное программирование - основные понятия с примерами решения В случае, если система неравенств-ограничений имеет вид Линейное программирование - основные понятия с примерами решения, то из левой части неравенств-ограничений нужно вычесть соответствующую неотрицательную дополнительную переменную Линейное программирование - основные понятия с примерами решения

Полученная таким образом система уравнений-ограничений, вместе с условиями неотрицательности переменных, т.е. Линейное программирование - основные понятия с примерами решенияЛинейное программирование - основные понятия с примерами решения и целевой функцией является канонической формой записи задачи линейного программирования.

Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому не влияют на ее значения.

В реальных практических задачах дополнительные неизвестные имеют определенный смысл. Например, если левая часть ограничений задачи отражает расход ресурсов на производство продукции в объемах Линейное программирование - основные понятия с примерами решения, а правые части — наличие производственных ресурсов, то числовые значения дополнительных неизвестных Линейное программирование - основные понятия с примерами решенияи означают объем неиспользованных ресурсов i-го вида.

Иногда возникает также необходимость перейти в задаче от нахождения минимума к нахождению максимума или наоборот. Для этого достаточно изменить знаки всех коэффициентов целевой функции на противоположные, а в остальном задачу оставить без изменения. Оптимальные решения полученных таким образом задач на максимум и минимум совпадают, а значения целевых функций при оптимальных решениях отличаются только знаком.

Множества допустимых решений

Множество точек называется выпуклым, если оно вместе с любыми двумя своими точками содержит их произвольную выпуклую линейную комбинацию.

Выпуклой линейной комбинацией произвольных точек Линейное программирование - основные понятия с примерами решенияЕвклидова пространства Линейное программирование - основные понятия с примерами решения называется сумма Линейное программирование - основные понятия с примерами решения — произвольные неотрицательные числа, сумма которых равна 1.

Геометрически это означает, что если множеству с любыми двумя его произвольными точками полностью принадлежит и отрезок, соединяющий эти точки, то оно будет выпуклым. Например, выпуклыми множествами являются прямолинейный отрезок, прямая, круг, шар, куб, полуплоскость, полупространство и др.

Точка множества называется граничной, если любая окрестность этой точки сколь угодно малого размера содержит точки, как принадлежащие множеству, так и не принадлежащие ему.

Граничные точки множества образуют его границу. Множество называется замкнутым, если оно содержит все свои граничные точки.

Ограниченным называется множество, если существует шар с радиусом конечной длины и центром в любой точке множества, содержащий полностью в себе данное множество. В противном случае множество будет неограниченным.

Пересечение двух или более выпуклых множеств будет выпуклым множеством, так как оно отвечает определению выпуклого множества.

Точка выпуклого множества называется угловой, если она не может быть представлена в виде выпуклой линейной комбинации двух других различных точек этого множества.

Так, угловые точки треугольника — его вершины, круга — точки окружности, ее ограничивающие, а прямая, полуплоскость, плоскость, полупространство, пространство не имеют угловых точек.

Выпуклое замкнутое ограниченное множество на плоскости, имеющее конечное число угловых точек, называется выпуклым многоугольником, а замкнутое выпуклое ограниченное множество в трехмерном пространстве, имеющее конечное число угловых точек, называется выпуклым многогранником.

Теорема. Любая тонка многоугольника является выпуклой линейной комбинацией его угловых точек.

Теорема. Область допустимых решений задачи линейного программирования является выпуклым множеством.

Уравнение целевой функции при фиксированных значениях самой функции является уравнением прямой линии (плоскости, гиперплоскости и т.д.). Прямая, уравнение которой получено из целевой функции при равенстве ее постоянной величине, называется линией уровня.

Линия уровня, имеющая общие точки с областью допустимых решений и расположенная так, что область допустимых решений находится целиком в одной из полуплоскостей, называется опорной прямой.

Теорема. Значения целевой функции в точках линии уровня увеличиваются, если линию уровня перемещать параллельно начальному положению в направлении нормали и убывают при перемещении в противоположном направлении.

Теорема. Целевая функция задачи линейного программирования достигает экстремума в угловой точке области допустимых решений; причем, если целевая функция достигает экстремума в нескольких угловых точках области допустимых решений, она также достигает экстремума в любой выпуклой комбинации этих точек.

Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками

Каноническая задача линейного программирования в векторной форме имеет вид:

Линейное программирование - основные понятия с примерами решения

Положительным координатам допустимых решений ставятся в соответствие векторы условий. Эти системы векторов зависимы, так как число входящих в них векторов больше размерности векторов.

Базисным решением системы называется частное решение, в котором неосновные переменные имеют нулевые значения. Любая система уравнений имеет конечное число базисных решений, равное Линейное программирование - основные понятия с примерами решения, где n — число неизвестных, r- ранг системы векторов условий. Базисные решения, координаты которых удовлетворяют условию неотрицательности, являются опорными.

Опорным решением задачи линейного программирования называется такое допустимое решение Линейное программирование - основные понятия с примерами решения, для которого векторы условий, соответствующие положительным координатам Линейное программирование - основные понятия с примерами решения линейно независимы.

Число отличных от нуля координат опорного решения не может превосходить ранга r системы векторов условий (т.е. числа линейно независимых уравнений системы ограничений).

Если число отличных от нуля координат опорного решения равно m, то такое решение называется невырожденным, в противном случае, если число отличных от нуля координат опорного решения меньше т, такое решение называется вырожденным.

Базисом опорного решения называется базис системы векторов условий задачи, в состав которой входят векторы, соответствующие отличным от нуля координатам опорного решения.

Теорема. Любое опорное решение является угловой точкой области допустимых решений.

Теорема. Любая угловая точка области допустимых решений является опорным решением.

Пример:

Графический метод решения задачи линейной оптимизации рассмотрим на примере задачи производственного планирования при n = 2.

Предприятие изготавливает изделия двух видов А и В. Для производства изделий оно располагает сырьевыми ресурсами трех видов С, D и Е в объемах 600, 480 и 240 единиц соответственно. Нормы расхода ресурсов на единицу продукции каждого вида известны и представлены в табл. 14.1

Прибыль от реализации изделия А составляет 40 млн. руб., а изделия В — 50 млн.руб. Требуется найти объемы производства изделий А и В, обеспечивающие максимальную прибыль.

Линейное программирование - основные понятия с примерами решения

Построим математическую модель задачи, для чего обозначим Линейное программирование - основные понятия с примерами решения — объемы производства изделий А и В соответственно.

Тогда прибыль предприятия от реализацииЛинейное программирование - основные понятия с примерами решения изделий А и Линейное программирование - основные понятия с примерами решенияизделий В составит:

Линейное программирование - основные понятия с примерами решения

Ограничения по ресурсам будут иметь вид:

Линейное программирование - основные понятия с примерами решения

Естественно, объемы производства должны быть неотрицательными Линейное программирование - основные понятия с примерами решения

Решение сформулированной задами найдем, используя геометрическую интерпретацию. Определим сначала многоугольник решений, для чего систему ограничений неравенств запишем в виде уравнений и пронумеруем их:

Линейное программирование - основные понятия с примерами решения

Каждое из записанных уравнений представляет собой прямую на плоскости, причем 4-я и 5-я прямые являются координатными осями.

Чтобы построить первую прямую, найдем точки ее пересечения с осями координат: Линейное программирование - основные понятия с примерами решения а при Линейное программирование - основные понятия с примерами решения.

Далее нас интересует, по какую сторону от прямой будет находиться полуплоскость, соответствующая первому неравенству. Чтобы определить искомую полуплоскость, возьмем точку O(0,0) подставив ее координаты в неравенство, видим, что оно удовлетворяется. Так как точка O(0,0) лежит левее первой прямой, то и полуплоскость будет находиться левее прямой

Линейное программирование - основные понятия с примерами решения. На рис 14 , расположение полуплоскости относительно первой прямой отмечено стрелками.

Аналогично построены 2-я и 3-я прямые и найдены полуплоскости, соответствующие 2-му и 3-му неравенству. Точки, удовлетворяющие ограничениям Линейное программирование - основные понятия с примерами решения, находятся в первом квадранте. Множество точек, удовлетворяющих всем ограничениям одновременно, является ОДР системы ограничений. Такой областью на графике (рис. 14.1) является многоугольник ОАВС.

Любая точка многоугольника решений удовлетворяет системе ограничений задачи и, следовательно, является ее решением. Это говорит о том, что эта задача линейной оптимизации имеет множество допустимых решений, т.е. моговариантпа. Нам же необходимо найти решение, обеспечивающее максимальную прибыль.

Чтобы найти эту точку, приравняем функцию к нулю и построим соответствующую ей прямую. Вектор-градиент прямой функции

Линейное программирование - основные понятия с примерами решения имеет координаты Линейное программирование - основные понятия с примерами решения

Линейное программирование - основные понятия с примерами решения

Рис. 14.1

Изобразим вектор на графике и построим прямую функции перпендикулярно вектору на рис. 14.1. Перемещая прямую функции параллельно самой себе в направлении вектора, видим, что последней точкой многоугольника решений, которую пересечет прямая функции, является угловая точка В. Следовательно, в точке В функция достигает максимального значения. Координаты точки В находим, решая систему уравнений, прямые которых пересекаются в данной точке.

Линейное программирование - основные понятия с примерами решения

Решив эту систему, получаем, что Линейное программирование - основные понятия с примерами решения

Следовательно, если предприятие изготовит изделия в найденных объемах, то получит максимальную прибыль, равную:

Линейное программирование - основные понятия с примерами решения

Алгоритм решения задачи линейного программирования графическим методом таков:

  1. Строится область допустимых решений;
  2. Строится вектор нормали к линии уровня с точкой приложении в начале координат;
  3. Перпендикулярно вектору нормали проводится одна из линий уровня, проходящая через начало координат;
  4. Линия уровня перемещается до положения опорной прямой. На этой прямой и будут находиться максимум или минимум функции.

В зависимости от вида области допустимых решений и целевой функции задача может иметь единственное решение, бесконечное множество решений или не иметь ни одного оптимального решения. Линейное программирование - основные понятия с примерами решения

На рис. 14.3 показан случай, когда прямая функции параллельна отрезку АВ, принадлежащему ОДР. Максимум функции Z достигается в точке А и в точке В, а, следовательно, и в любой точке отрезка АВ, т.к. эти точки могут быть выражены в виде линейной комбинации угловых точек А и В.

На рисунке 14.4 изображен случай, когда система ограничений образует неограниченное сверху множество. Функция Z в данном случае стремится к бесконечности, так как прямую функции можно передвигать в направлении вектора градиента как угодно далеко, а на рисунке 14.5 представлен случай несовместной системы ограничений.

Линейное программирование - основные понятия с примерами решения

Основные понятия симплексного метода решения задачи линейного программирования.

Среди универсальных методов решения задач линейного программирования наиболее распространен симплексный метод (или симплекс-метод), разработанный американским ученым Дж.Данцигом. Суть этого метода заключается в том, что вначале получают допустимый вариант, удовлетворяющий всем ограничениям, но необязательно оптимальный (так называемое начальное опорное решение); оптимальность достигается последовательным улучшением исходного варианта за определенное число этапов (итераций). Нахождение начального опорного решения и переход к следующему опорному решению проводятся на основе применения рассмотренного выше метода Жордана-Гаусса для системы линейных уравнений в канонической форме, в которой должна быть предварительно записана исходная задача линейного программирования; направление перехода от одного опорного решения к другому выбирается при этом на основе критерия оптимальности (целевой функции) исходной задачи.

Симплекс-метод основан на следующих свойствах задачи линейного программирования:

  • Не существует локального экстремума, отличного от глобального. Другими словами, если экстремум есть, то он единственный.
  • Множество всех планов задачи линейного программирования выпукло.
  • Целевая функция ЗЛП достигает своего максимального (минимального) значения в угловой точке многогранника решений (в его вершине). Если целевая функция принимает свое оптимальное значение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.
  • Каждой угловой точке многогранника решений отвечает опорный план ЗЛП.

Рассмотрим две разновидности симплексного метода: симплекс-метод с естественным базисом и симплекс-метод с искусственным базисом (или М-метод).

  • Заказать решение задач по высшей математике

Симплекс-метод с естественным базисом

Для применения этого метода задача линейного программирования должна быть сформулирована в канонической форме, причем матрица системы уравнений должна содержать единичную подматрицу размерностью mхm. В этом случае очевиден начальный опорный план (неотрицательное базисное решение).

Для определенности предположим, что первые m векторов матрицы системы составляют единичную матрицу. Тогда очевиден первоначальный опорный план: Линейное программирование - основные понятия с примерами решения

Проверка на оптимальность опорного плана проходит с помощью критерия оптимальности, переход к другому опорному плану — с помощью преобразований Жордана-Гаусса и с использованием критерия оптимальности.

Полученный опорный план снова проверяется на оптимальность и т.д. Процесс заканчивается за конечное число шагов, причем на последнем шаге либо выявляется неразрешимость задачи (конечного оптимума нет), либо получаются оптимальный опорный план и соответствующее ему оптимальное значение целевой функции.

Признак оптимальности заключается в следующих двух теоремах.

Теорема 1. Если для некоторого вектора, не входящего в базис, выполняется условие:

Линейное программирование - основные понятия с примерами решения

то можно получить новый опорный план, для которого значение целевой функции будет больше исходного; при этом могут быть два случая:

  1. если все координаты вектора, подлежащего вводу в базис, неположительны, то задача линейного программирования не имеет решения;
  2. если имеется хотя бы одна положительная координата у вектора, подлежащего вводу в базис, то можно получить новый опорный план.

Теорема 2. Если для всех векторов выполняется условие Линейное программирование - основные понятия с примерами решениято полученный план является оптимальным.

На основании признака оптимальности в базис вводится вектор Ак, давший минимальную отрицательную величину симплекс-разности: Линейное программирование - основные понятия с примерами решения

Чтобы выполнялось условие неотрицательности значений опорного плана, выводится из базиса вектор Линейное программирование - основные понятия с примерами решения, который дает минимальное положительное отношение:

Линейное программирование - основные понятия с примерами решения

Строка Линейное программирование - основные понятия с примерами решения называется направляющей, столбец Линейное программирование - основные понятия с примерами решенияи элемент Линейное программирование - основные понятия с примерами решениянаправляющими (последний называют также разрешающим элементом).

Элементы вводимой строки, соответствующей направляющей строке, в новой симплекс-таблице вычисляются по формулам:

Линейное программирование - основные понятия с примерами решения

а элементы любой другой i-й строки пересчитываются по формулам:

Линейное программирование - основные понятия с примерами решения

Значения базисных переменных нового опорного плана (показатели графы «план») рассчитываются по формулам:

Линейное программирование - основные понятия с примерами решения

Если наименьшее значение Q достигается для нескольких базисных векторов, то чтобы исключить возможность зацикливания (повторения базиса), можно применить следующий способ.

Вычисляются частные, полученные от деления всех элементов строк, давших одинаковое минимальное значение Q на свои направляющие элементы. Полученные частные сопоставляются по столбцам слева направо, при этом учитываются и нулевые, и отрицательные значения. В процессе просмотра отбрасываются строки, в которых имеются большие отношения, и из базиса выводится вектор, соответствующий строке, в которой раньше обнаружится меньшее частное.

Для использования приведенной выше процедуры симплекс -метода к минимизации линейной формы Линейное программирование - основные понятия с примерами решения следует искать максимум функции Линейное программирование - основные понятия с примерами решения затем полученный максимум взять с противоположным знаком. Это и будет искомый минимум исходной задачи линейного программирования.

Симплексный метод с искусственным базисом (М-метод)

Симплексный метод с искусственным базисом применяется в тех случаях, когда затруднительно найти первоначальный опорный план исходной задачи линейного программирования, записанной в канонической форме.

М-метод заключается в применении правил симплекс-метода к так называемой М-задаче. Она получается из исходной добавлением к левой части системы уравнений в канонической форме исходной задачи линейного программирования таких искусственных единичных векторов с соответствующими неотрицательными искусственными переменными, чтобы вновь полученная матрица содержала систему единичных линейно-независимых векторов. В линейную форму исходной задачи добавляется в случае её максимизации слагаемое, представляющее собой произведение числа (-М) на сумму искусственных переменных, где М — достаточно большое положительное число.

В полученной задаче первоначальный опорный план очевиден. При применении к этой задаче симплекс-метода оценки А, теперь будут зависеть от числа М. Для сравнения оценок нужно помнить, что М — достаточно большое положительное число, поэтому из базиса будут выводиться в первую очередь искусственные переменные.

В процессе решения M-задачи следует вычеркивать в симплекс-таблице искусственные векторы по мере их выхода из базиса. Если все искусственные векторы вышли из базиса, то получаем исходную задачу. Если оптимальное решение М-задачи содержит искусственные векторы или М-задача неразрешима, то исходная задача также неразрешима.

Путем преобразований число вводимых переменных, составляющих искусственный базис, может быть уменьшено до одной.

Теория двойственности

Любой задаче линейного программирования можно сопоставить сопряженную или двойственную ей задачу. Причем, совместное исследование этих задач дает, как правило, значительно больше информации, чем исследование каждой из них в отдельности.

Любую задачу линейного программирования можно записать в виде:

Линейное программирование - основные понятия с примерами решения

Первоначальная задача называется исходной или прямой.

Модель двойственной задачи имеет вид:

Линейное программирование - основные понятия с примерами решения

Переменные двойственной задачи Линейное программирование - основные понятия с примерами решения называют объективно обусловленными оценками или двойственными оценками.

Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.

Двойственная задача по отношению к исходной составляется согласно следующим правилам:

  1. Целевая функция исходной задачи формулируется на максимум, а целевая функция двойственной задачи — на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид <, а в задаче на минимум — вид Линейное программирование - основные понятия с примерами решения
  2. Матрица Линейное программирование - основные понятия с примерами решения, составленная из коэффициентов при неизвестных в системе ограничении исходной задачи, и аналогичная матрица Линейное программирование - основные понятия с примерами решения , в двойственной задаче получаются друг из друга транспонированием;
  3. Число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи — числу переменных в исходной задаче;
  4. Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи — коэффициенты при неизвестных в целевой функции исходной задачи;
  5. Каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записанному в виде неравенства <, соответствует переменная, связанная условием неотрицательности.

Если функциональное ограничение исходной задачи является равенством, то соответствующая переменная двойственной задачи может принимать как положительные, так и отрицательные значения.

Математические модели пары двойственных задач могут быть симметричными и несимметричными. В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной — в виде неравенств, причем переменные в двойственной задаче могут быть и отрицательными. В симметричных двойственных задачах система ограничений как исходной, так и двойственной задачи задается в виде неравенств, причем на двойственные переменные налагается условие неотрицательности.

Линейное программирование - основные понятия с примерами решения

где:

Линейное программирование - основные понятия с примерами решения

Рассмотрим пример, показывающий, как в реальной экономической ситуации появляются взаимно двойственные задачи линейного программирования.

На некотором предприятии после выполнения годового плана возник вопрос: как поступить с остатками сырья? Из оставшегося сырья можно наладить производство продукции и реализовать его или продать сырье.

Предположим, что имеется два вида сырья Линейное программирование - основные понятия с примерами решения, остатки которого составляют соответственно 35 и 20 единиц. Из этого сырья можно наладить производство трех видов товаров: Линейное программирование - основные понятия с примерами решения

Линейное программирование - основные понятия с примерами решения

При исследовании первой возможности (наладить выпуск товаров Линейное программирование - основные понятия с примерами решения) возникает вопрос о плане выпуска, который задается тремя переменными Линейное программирование - основные понятия с примерами решения, которые соответствуют количеству произведенного товара. Эти переменные должны удовлетворять условиям:

Линейное программирование - основные понятия с примерами решения

Прибыль, которую получит предприятие от реализации товара, составит:

Линейное программирование - основные понятия с примерами решения

В интересах предприятия эту прибыль максимизировать.

Это прямая задача.

Объективно обусловленными оценками двойственной задачи Линейное программирование - основные понятия с примерами решения будут цены, по которым целесообразно продавать излишки сырья, т.е. при продаже сырья по ценам ниже Линейное программирование - основные понятия с примерами решения предприятие будет терпеть убытки.

Справедливое требование со стороны продающего предприятия состоит в следующем: если взять сырье, идущее на производство единицы товара Линейное программирование - основные понятия с примерами решения то выручка от его продажи должна быть не меньше, чем прибыль от реализации готового изделия (в противном случае нет смысла продавать сырье — целесообразнее изготовить товар и получить прибыль от его реализации).

Это требование можно представить в виде системы неравенств: Линейное программирование - основные понятия с примерами решения

В левой части каждого неравенства предполагаемая выручка от продажи сырья, необходимого для производства единицы товара Линейное программирование - основные понятия с примерами решения а в правой — прибыль от реализации этой единицы товара.

Что касается покупателя, то он заинтересован в минимизации расходов на покупку сырья, т.е. величины Линейное программирование - основные понятия с примерами решения

Теоремы двойственности

Теоремы двойственности позволяют установить взаимосвязь между оптимальными решениями пары двойственных задач: можно либо найти оптимальное решение другой задачи, не решая ее, либо установить его отсутствие.

Возможны следующие случаи:

  • обе задачи из пары двойственных имеют оптимальные решения;
  • одна из задач не имеет решения ввиду неограниченности целевой функции, а другая — ввиду несовместности системы ограничений.

Первая теорема двойственности.

Для двойственных задач линейного программирования имеет место один из взаимоисключающих случаев:

  1. В прямой и двойственной задачах имеются оптимальные решения, при этом значения целевых функций на оптимальных решениях совпадают: Линейное программирование - основные понятия с примерами решения
  2. В прямой задаче допустимое множество не пусто, а целевая функция на этом множестве не ограничена сверху. При этом у двойственной задачи будет пустое допустимое множество.
  3. В двойственной задаче допустимое множество не пусто, а целевая функция на этом множестве не ограничена снизу. При этом у прямой задачи допустимое множество оказывается пустым;
  4. Обе из рассматриваемых задач имеют пустые допустимые множества.

Вторая теорема двойственностн (теорема о дополняющей нежесткости):

Пусть Линейное программирование - основные понятия с примерами решения— допустимое решение прямой задачи, а Линейное программирование - основные понятия с примерами решения допустимое решение двойственной задачи.

Для того, чтобы они были оптимальными решениями соответствующих взаимодвойственных задач, необходимо и достаточно, чтобы выполнялись следующие соотношения:

Линейное программирование - основные понятия с примерами решения

Эти условия устанавливают связь между оптимальными значениями прямой и двойственной задач и позволяют, зная решение одной из них, находить решение другой задачи.

Теорема об оценках:

Значения переменных Линейное программирование - основные понятия с примерами решения в оптимальном решении двойственной задачи представляют собой оценки влияния свободных членов Линейное программирование - основные понятия с примерами решения системы ограничений — неравенств прямой задачи на величину Линейное программирование - основные понятия с примерами решения:

Линейное программирование - основные понятия с примерами решения

Диапазон изменения компонент вектора В, в котором сохраняется оптимальный базис, называется областью устойчивости оптимальных оценок.

Экономический смысл первой теоремы двойственности следующий. План производства X и набор ресурсов Y оказываются оптимальными тогда и только тогда, когда прибыль от реализации продукции, определенная при известных заранее ценах продукции Линейное программирование - основные понятия с примерами решения, равна затратам на ресурсы по «внутренним» (определяемым только из решения задачи) ценам ресурсов Линейное программирование - основные понятия с примерами решения Для всех других планов прибыль от продукции всегда меньше или равна стоимости затраченных ресурсов Линейное программирование - основные понятия с примерами решения, т.е. ценность выпущенной продукции не превосходит суммарной оценки затраченных ресурсов. Значит, величина Z(X)~ F(Y) характеризует производственные потери в зависимости от рассмотренной производственной программы и выбранных оценок ресурсов.

  • Дифференциальное исчисление функций одной переменной
  • Исследование функции
  • Пространство R»
  • Неопределённый интеграл
  • Линейный оператор — свойства и определение
  • Многочлен — виды, определение с примерами
  • Квадратичные формы — определение и понятие
  • Системы линейных уравнений с примерами

Каноническая задача линейного программирования в векторной форме имеет вид:

Положительным координатам допустимых решений ставятся в соответствие векторы условий. Эти системы векторов зависимы, так как число входящих в них векторов больше размерности векторов.

Базисным решением системы называется частное решение, в котором неосновные переменные имеют нулевые значения. Любая система уравнений имеет конечное число базисных решений, равное , где – число неизвестных, – ранг системы векторов условий. Базисные решения, координаты которых удовлетворяют условию неотрицательности, являются опорными.

Опорным решением задачи линейного программирования называется такое допустимое решение , для которого векторы условий, соответствующие положительным координатам , линейно независимы.

Число отличных от нуля координат опорного решения не может превосходить ранга Системы векторов условий (т. е. числа линейно независимых уравнений системы ограничений).

Если число отличных от нуля координат опорного решения равно , то такое решение называется Невырожденным, в противном случае, если число отличных от нуля координат опорного решения меньше , такое решение называется Вырожденным.

Базисом опорного решения называется базис системы векторов условий задачи, в состав которой входят векторы, соответствующие отличным от нуля координатам опорного решения.

Теорема. Любое опорное решение является угловой точкой области допустимых решений.

Теорема. Любая угловая точка области допустимых решений является опорным решением.

Пример.

Графический метод решения задачи линейной оптимизации рассмотрим на примере задачи производственного планирования при
= 2.

Предприятие изготавливает изделия двух видов А и В. Для производства изделий оно располагает сырьевыми ресурсами трех видов С, D и Е в объемах 600, 480 и 240 единиц соответственно. Нормы расхода ресурсов на единицу продукции каждого вида известны и представлены в табл. 14.1

Решение:

 

Таблица 14.1

Ресурсы

Изделия

А

В

C

24

8

D

8

8

E

3

8

Прибыль от реализации изделия А составляет 40 млн. руб., а изделия В — 50 млн. руб. Требуется найти объемы производства изделий А и В, обеспечивающие максимальную прибыль.

Построим математическую модель задачи, для чего обозначим и — объемы производства изделий А и В соответственно.

Тогда прибыль предприятия от реализации изделий А и изделий В составит:

.

Ограничения по ресурсам будут иметь вид:

Естественно, объемы производства должны быть неотрицательными .

Решение сформулированной задачи найдем, используя геометрическую интерпретацию. Определим сначала многоугольник решений, для чего систему ограничений неравенств запишем в виде уравнений и пронумеруем их:

Каждое из записанных уравнений представляет собой прямую на плоскости, причем 4-я и 5-я прямые являются координатными осями.

Чтобы построить первую прямую, найдем точки ее пересечения с осями координат: при , а при . Далее нас интересует, по какую сторону от прямой будет находиться полуплоскость, соответствующая первому неравенству. Чтобы определить искомую полуплоскость, возьмем точку и, подставив ее координаты в неравенство, видим, что оно удовлетворяется. Так как точка лежит левее первой прямой, то и полуплоскость будет находиться левее прямой . На рис. 14.1 расположение полуплоскости относительно первой прямой отмечено стрелками.

Аналогично построены 2-я и 3-я прямые и найдены полуплоскости, соответствующие 2-му и 3-му неравенству. Точки, удовлетворяющие ограничениям , находятся в первом квадранте.

Множество точек, удовлетворяющих всем ограничениям одновременно, является ОДР системы ограничений. Такой областью на графике (рис. 14.1) является многоугольник .

Любая точка многоугольника решений удовлетворяет системе ограничений задачи и, следовательно, является ее решением. Это говорит о том, что эта задача линейной оптимизации имеет множество допустимых решений, т. е. многовариантна. Нам же необходимо найти решение, обеспечивающее максимальную прибыль.

Чтобы найти эту точку, приравняем функцию к нулю и построим соответствующую ей прямую. Вектор–градиент прямой функции имеет координаты .

Рис. 14.1

Изобразим вектор на графике и построим прямую функции перпендикулярно вектору на рис. 14.1. Перемещая прямую функции параллельно самой себе в направлении вектора, видим, что последней точкой многоугольника решений, которую пересечет прямая функции, является угловая точка В. Следовательно, в точке В функция достигает максимального значения. Координаты точки В находим, решая систему уравнений, прямые которых пересекаются в данной точке.

Решив эту систему, получаем, что .

Следовательно, если предприятие изготовит изделия в найденных объемах, то получит максимальную прибыль, равную:

(млн. руб.).

Алгоритм решения задачи линейного программирования графическим методом таков:

1. Строится область допустимых решений;

2. Строится вектор нормали к линии уровня с точкой приложении в начале координат;

3. Перпендикулярно вектору нормали проводится одна из линий уровня, проходящая через начало координат;

4. Линия уровня перемещается до положения опорной прямой. На этой прямой и будут находиться максимум или минимум функции.

В зависимости от вида области допустимых решений и целевой функции задача может иметь единственное решение, бесконечное множество решений или не иметь ни одного оптимального решения.

На рис. 14.3 показан случай, когда прямая функции параллельна отрезку АВ, принадлежащему ОДР. Максимум функции достигается в точке А и в точке В, а, следовательно, и в любой точке отрезка АВ, т. к. эти точки могут быть выражены в виде линейной комбинации угловых точек А и В.

Основные понятия симплексного метода решения задачи линейного программирования.

Среди универсальных методов решения задач линейного программирования наиболее распространен симплексный метод (или симплекс-метод), разработанный американским ученым Дж. Данцигом. Суть этого метода заключается в том, что вначале получают допустимый вариант, удовлетворяющий всем ограничениям, но необязательно оптимальный (так называемое начальное опорное решение); оптимальность достигается последовательным улучшением исходного варианта за определенное число этапов (итераций). Нахождение начального опорного решения и переход к следующему опорному решению проводятся на основе применения рассмотренного выше метода Жордана-Гаусса для системы линейных уравнений в канонической форме, в которой должна быть предварительно записана исходная задача линейного программирования; направление перехода от одного опорного решения к другому выбирается при этом на основе критерия оптимальности (целевой функции) исходной задачи.

Симплекс-метод основан на следующих свойствах задачи линейного программирования:

· Не существует локального экстремума, отличного от глобального. Другими словами, если экстремум есть, то он единственный.

· Множество всех планов задачи линейного программирования выпукло.

· Целевая функция ЗЛП достигает своего максимального (минимального) значения в угловой точке многогранника решений (в его вершине). Если целевая функция принимает свое оптимальное значение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.

· Каждой угловой точке многогранника решений отвечает опорный план ЗЛП.

Рассмотрим две разновидности симплексного метода: симплекс-метод с естественным базисом и симплекс-метод с искусственным базисом (или М-метод).

Симплекс-метод с естественным базисом

Для применения этого метода задача линейного программирования должна быть сформулирована в канонической форме, причем матрица системы уравнений должна содержать единичную подматрицу размерностью . В этом случае очевиден начальный опорный план (неотрицательное базисное решение).

Для определенности предположим, что первые Т Векторов матрицы системы составляют единичную матрицу. Тогда очевиден первоначальный опорный план: .

Проверка на оптимальность опорного плана проходит с помощью критерия оптимальности, переход к другому опорному плану — с помощью преобразований Жордана-Гаусса и с использованием критерия оптимальности.

Полученный опорный план снова проверяется на оптимальность и т. д. Процесс заканчивается за конечное число шагов, причем на последнем шаге либо выявляется неразрешимость задачи (конечного оптимума нет), либо получаются оптимальный опорный план и соответствующее ему оптимальное значение целевой функции.

Признак оптимальности заключается в следующих двух теоремах.

Теорема 1. Если для некоторого вектора, не входящего в базис, выполняется условие:

, где ,

То можно получить новый опорный план, для которого значение целевой функции будет больше исходного; при этом могут быть два случая:

1. Если все координаты вектора, подлежащего вводу в базис, неположительны, то задача линейного программирования не имеет решения;

2. Если имеется хотя бы одна положительная координата у вектора, подлежащего вводу в базис, то можно получить новый опорный план.

Теорема 2. Если для всех векторов выполняется условие , то полученный план является оптимальным.

На основании признака оптимальности в базис вводится вектор , давший минимальную отрицательную величину симплекс-разности: .

Чтобы выполнялось условие неотрицательности значений опорного плана, выводится из базиса вектор Г, Который дает минимальное положительное отношение:

; , .

Строка Называется Направляющей, Столбец и элемент
Направляющими (последний называют также Разрешающим Элементом).

Элементы вводимой строки, соответствующей направляющей строке, в новой симплекс-таблице вычисляются по формулам:

,

А элементы любой другой Строки пересчитываются по формулам:

,,

Значения базисных переменных нового опорного плана (показатели графы «план») рассчитываются по формулам:

для ; , для .

Если наименьшее значение достигается для нескольких базисных векторов, то чтобы исключить возможность зацикливания (повторения базиса), можно применить следующий способ.

Вычисляются частные, полученные от деления всех элементов строк, давших одинаковое минимальное значение на свои направляющие элементы. Полученные частные сопоставляются по столбцам слева направо, при этом учитываются и нулевые, и отрицательные значения. В процессе просмотра отбрасываются строки, в которых имеются большие отношения, и из базиса выводится вектор, соответствующий строке, в которой раньше обнаружится меньшее частное.

Для использования приведенной выше процедуры симплекс-метода к минимизации линейной формы следует искать максимум функции , затем полученный максимум взять с противоположным знаком. Это и будет искомый минимум исходной задачи линейного программирования.

Симплексный метод с искусственным базисом (М-метод)

Симплексный метод с искусственным базисом применяется в тех случаях, когда затруднительно найти первоначальный опорный план исходной задачи линейного программирования, записанной в канонической форме.

М-метод заключается в применении правил симплекс-метода к так называемой М-задаче. Она получается из исходной добавлением к левой части системы уравнений в канонической форме исходной задачи линейного программирования таких искусственных единичных векторов с соответствующими неотрицательными искусственными переменными, чтобы вновь полученная матрица содержала систему единичных линейно-независимых векторов. В линейную форму исходной задачи добавляется в случае её максимизации слагаемое, представляющее собой произведение числа (–М) на сумму искусственных переменных, где М – достаточно большое положительное число.

В полученной задаче первоначальный опорный план очевиден. При применении к этой задаче симплекс-метода оценки теперь будут зависеть от числа М. Для сравнения оценок нужно помнить, что М – достаточно большое положительное число, поэтому из базиса будут выводиться в первую очередь искусственные переменные.

В процессе решения М–Задачи следует вычеркивать в симплекс-таблице искусственные векторы по мере их выхода из базиса. Если все искусственные векторы вышли из базиса, то получаем исходную задачу. Если оптимальное решение М–Задачи содержит искусственные векторы или М–Задача неразрешима, то исходная задача также неразрешима.

Путем преобразований число вводимых переменных, составляющих искусственный базис, может быть уменьшено до одной.

< Предыдущая   Следующая >

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Радиус галактики как найти
  • Как исправить картавость отзывы
  • Как найти свой штраф за маску
  • Как составить акт залива квартиры если нет управляющей компании
  • Как пройти доп 2 уровень исправь оценку

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии