Как найти одз функции с логарифмом

Краткая история логарифма

Логарифм имеет много применений в науке и инженерии.

Естественный логарифм имеет констант в своем основании, его использование широко распространено в дискретной математике, особенно в исчислении. Двоичный логарифм использует базу и занимает видное место в информатике. Логарифмы были введены Джоном Нейпиром в начале XVII века, как средство упрощения расчетов. Они были легко приняты учеными, инженерами и другими, чтобы облегчать вычисления. Современное понятие логарифмов исходит от Леонарда Эйлера, который связал их с экспоненциальной функцией в XVIII веке

Определение логарифма

Логарифмы — это показатель степени: в какую степень надо возвести число, которое стоит в основании, чтобы получить число в выражении логарифма. Например, (log_28 ) в какую степень надо возвести (2), чтобы получить (8) это  (log_28 =3).  

Логарифм по снованию 2

Читается, как логарифм (8) по основанию (2) равен (3).

Определение логарифма:

Определение логарифма

 (log_ax=b)       (x=a^b)

Очень важно помнить, где находится аргумент, а где основание

Если (x=1), то (b) равен (o), так как ненулевое число в нулевой степени всегда равно единице  (x^0=1), (x) не равно (0).

Некоторые логарифмы в результате получают иррациональное число, пример (log_310) результат будет лежать на промежутке: (3^2 < 10< 3^3.)


ОДЗ логарифма

ОДЗ (область допустимых значений) логарифма – это множество всех действительных чисел, для которых определена данная функция. Для логарифмической функции с основанием a ОДЗ определяется следующим образом:

x > 0 (если a > 1) или x < 0 (если 0 < a < 1)

То есть аргумент логарифма должен быть положительным, если основание больше 1, и отрицательным, если основание меньше 1.

Область допустимых значений логарифма — главное:

  • Аргумент и основание не могут быть равны нулю и отрицательными числами.
  • Основание не может быть равно единице, поскольку единица в любой степени все равно остается единицей.
  • Число b может быть любым.
  • ОДЗ логарифма (log_a x = b ⇒ x > 0, a > 0, a ≠ 1).

Виды логарифмов

Существует два основных вида логарифмов: обычные (или десятичные) логарифмы и натуральные логарифмы.

  1. Обычный (десятичный) логарифм (log base 10): логарифм, основание которого равно 10. Обычный логарифм числа y обозначается как log(y) или lg(y) и определяется формулой:

log(y) = x, если 10^x = y

Например, log(100) = 2, так как 10^2 = 100.

  1. Натуральный логарифм (log base e): логарифм, основание которого равно числу e (приблизительно 2,71828). Натуральный логарифм числа y обозначается как ln(y) и определяется формулой:

ln(y) = x, если e^x = y

Например, ln(e) = 1, так как e^1 = e.

Обычные и натуральные логарифмы связаны друг с другом формулой:

log(y) = ln(y) / ln(10)

где ln(10) ≈ 2,3026.

Существуют также логарифмы с другими основаниями (например, логарифм по основанию 2), но они реже используются в практических расчетах.

Десятичные логарифмы

Десятичные логарифмы – логарифмы, в основании которых стоит (10). Пример (log_{10}10 =1),

Log10100 =2. Записывают их в виде (lg 10 = 1),  (lg 100 = 2.)

Десятичный логарифм

Натуральный логарифм

Натуральный логарифм – логарифм, в основании которого стоит (e). Что означает (e)? Это иррациональное число, бесконечное непериодическое десятичное число, математическая константа, которую надо запомнить:

(e = 2,718281828459…)

(ln x = log_e x)

Натуральный логарифм


Часто задаваемые вопросы

Как часто проходят занятия?

Мы предлагаем индивидуальный график занятий, который учитывает ваше расписание и потребности ребенка. Обычно занятия проходят один или два раза в неделю.

Какие материалы будут использоваться на занятиях?

Мы используем разнообразные материалы, такие как учебники, аудио и видео материалы, игры и тесты. Все материалы выбираются исходя из возраста и уровня владения языком ученика.

Как проходят занятия?

Наши занятия проводятся онлайн с помощью специальных программ для видео-конференций. Репетитор будет работать с вашим ребенком индивидуально. Мы стремимся сделать наши занятия интерактивными, увлекательными и полезными.

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

ОДЗ логарифма




ОДЗ логарифма следует непосредственно из определения логарифма.

По определению, логарифм — это показатель степени, в которую надо возвести основание, чтобы получить число знаком логарифма:

    [{log _a}b = c, Rightarrow b = {a^c}]

Основание степени должно быть положительным числом, отличным от единицы.

При возведении в любую степень такого числа всегда получается положительное число.

Таким образом, область допустимых значений логарифма (ОДЗ логарифма)

    [{log _{g(x)}}f(x)]

состоит из трёх условий:

1) Под знаком логарифма должно стоять положительное число:

    [f(x) > 0;]

2-3) В основании логарифма должно стоять положительное число, отличное от единицы:

    [g(x) > 0;]

    [g(x) ne 1.]

Все три условия должны быть выполнены одновременно.

Таким образом, чтобы найти ОДЗ логарифма

    [{log _{g(x)}}f(x),]

надо решить систему из трёх неравенств:

    [left{ begin{array}{l} f(x) > 0;\ g(x) > 0;\ g(x) ne 1. end{array} right.]

Если в основании логарифма стоит число: 

    [{log _a}f(x),]

ОДЗ логарифма содержит всего одно условие:

    [f(x) > 0.]

Если под знаком логарифма стоит число, а в основании — выражение с переменной:

    [{log _{g(x)}}b,]

то в область допустимых значений нужно записать два условия:

    [left{ begin{array}{l} g(x) > 0;\ g(x) ne 1 end{array} right.]

Примеры нахождения ОДЗ логарифма рассмотрим отдельно.

На этой странице вы узнаете

  • Что значит расти по экспоненте? 
  • Как быстро избавиться от логарифмов с одинаковым основанием?
  • Как не попасть в аварию в погоне за результатом?

Математики иногда скучают. Иначе как объяснить то, что для понимания этой пугающей многих учеников темы, нужно запомнить единственный факт: «Степень числа и логарифм — разная запись одного и того же математического события». В этой статье мы ближе познакомимся с логарифмами и увидим, что ничего экстремально сложного в них на самом деле нет.

Понятие логарифма

Математика очень интересная наука, действия в которой можно повернуть в обе стороны. Например, возведение в степень и извлечение корня — одно и то же действие, но совершаемое «в разные направления». Это как шарик-маятник, который качается туда-сюда. 

Однако помимо извлечения корня степень числа имеет еще одно противодействие: это логарифм. Разберемся, чем же они отличаются.

Итак, извлекая корень, мы находим первоначальное число, которое возвели в степень. Например, если мы вычислим, чему равно (4^3), то получим 64. А если извлечем (sqrt[3]{64}), то получим число, которое возводили в степень. Иными словами, извлекая корень, мы находим основание степени. 

Но что, если мы знаем основание степени и число, полученное при возведении, но при этом не знаем показатель степени? Можем ли мы как-нибудь найти, в какую именно степень возвели то или иное число? 

Ответ: да! Для этого и существуют логарифмы. Логарифм отвечает на вопрос: «В какую степень возвести число a, чтобы получилось число b

Например, мы возвели двойку в неизвестную степень и получили 4:

(2^x=4)

Зададим вопрос: в какую степень нужно возвести 2, чтобы получился такой результат? Ответ приходит сразу — это 2:

(2^2=4)

Эту же операцию можно записать значительно короче, если использовать логарифм. Запись будет выглядеть так: 

 (log_24=2)

Вот и всё!

Если понятие «степень» все еще звучит устрашающе, мы написали для вас статью «Действия с натуральными числами».

А теперь внедрим в нашу статью немного научности. Что такое логарифм во вселенной математики?

Логарифм — это число, в которое нужно возвести основание a, чтобы получить число b.

У каждого элемента любой математической функции есть название. Как называются элементы логарифма? 

Снова вспомним корни. Корень степени 2 мы записываем без показателя степени, например, (sqrt{25}). Это связано с его распространенностью и «особенностью». Так и в логарифмах существуют свои «краткие записи», применяемые для «особенных» логарифмов. Такими логарифмами являются десятичный и натуральный. Рассмотрим их чуть подробнее. 

Десятичный логарифм — это логарифм числа по основанию 10. 

Например, нам нужно узнать, в какую степень нужно возвести 10, чтобы получить 100. То есть мы находим (log_{10}100=2). Аналогично (log_{10}1000=3) или (log_{10}100000=5).

Для сокращения записи мы не пишем основание, а само название логарифма немного меняем. Выглядит запись десятичного логарифма следующим образом:

Запись такого логарифма нужно просто запомнить. Но не будет и ошибкой, если записать обычным способом. 

Что же с натуральным логарифмом? Аналогично десятичному, в его основании стоит особое число — экспонента. 

Экспонента — это такая математическая константа, постоянная (как, например, ускорение свободного падения в физике), которая примерно равна 2,72. 

Натуральный логарифм — это логарифм по основанию е (e ≈ 2,72). 

Такой логарифм тоже имеет «свою» запись, которую нужно запомнить: 

У натурального логарифма в основании стоит число e, которое называется числом Эйлера. На самом деле, это иррациональное число, которое имеет бесконечное количество знаков после запятой, но мы ограничиваемся краткой записью 2,72. Число e играет важную роль во многих разделах математики.

Что значит расти по экспоненте?

Экспонента — это показательная функция (y=e^x), где (e) — число Эйлера, равное примерно 2,72.

Особенность такой функции в том, что число Эйлера многократно умножается на само себя, а значит, неравномерно увеличивается. Примером такого увеличения может быть падение камушка: чем дольше он летит, тем выше его скорость. Другим примером может быть сложный процент, когда сумма вклада или долга увеличивается каждый год на определенное число процентов (про сложные проценты можно узнать в статье «Финансовые задачи. Проценты»). Такой рост называют ростом по экспоненте.

На самом деле, экспонента имеет множество интересных свойств, например, ее производная равна ей самой.

График экспоненты будет выглядеть как непрерывно и «неравномерно» возрастающая кривая. 

Нельзя обходить такую важную тему, как логарифмы, стороной. Они часто встречаются в заданиях 5, 12 и 14 профильного ЕГЭ по математике или в №17 ЕГЭ по базовой математике. При умелом использовании их свойств можно упростить выражение или заменить запись логарифма на более удобную.

Рассмотрим пример задания из номера 5 первой части ЕГЭ по профильной математике.

Найдите корень уравнения (log_5(x+121)=4).

Решение. Немного изменим запись: если возвести 5 в степень 4, то мы получим (x+121). Значит, мы можем составить и решить уравнение:

(x+121=5^4)
(x+121=625)
(x=504)

Ответ: 504

Может возникнуть вопрос: неужели при решении каждого логарифмического уравнения или неравенства придется прибегать к «переформулировке»? На самом деле, нет, ведь для упрощения решений существуют свои правила, а главное, свойства логарифмов. Рассмотрим их чуть подробнее. 

Основное логарифмическое тождество

Итак, какими свойствами обладает логарифм? Начнем с одного из самых важных, а именно — основного логарифмического тождества.

Возможно, вас смутило, что логарифм стоит в степени числа. На самом деле, логарифм — это тоже какое-то число, просто в другой записи. Так, (3^2) и (3^{log_24}=32) — одно и то же число, но в разных записях. 

Разберемся чуть подробнее, как работает тождество. Путь (a=2, b=4). Тогда получаем запись:

(2^{log_24}=4)

Решим отдельно левую часть: 

(2^{log_24}=2^2=4)

Получаем, что тождество верно. Но почему это так работает? 

Заметим, что при вычислении логарифма мы получаем значение степени x, в которую должны возвести основание а, чтобы получить аргумент b.

(log_ab=x), тогда (a^x=b)

После этого мы снова возводим то же основание а в ту же степень, и снова получаем аргумент b. То есть делаем одно и то же действие дважды. 

(a^{log_ab}=a^x=b)

Следовательно, это тождество позволяет сократить вычисление на несколько шагов. Важно: оно будет работать только в случае, когда основания степени и логарифма будут совпадать. Тогда совпадут и аргумент с ответом. 

Рассмотрим, почему это не работает при несовпадающих основаниях. Для этого найдем значение выражения (3^{log_24}). Итак, (log_24=2), значит, мы получаем выражение (3^2=9). Очевидно, что (9neq4), соответственно, применить основное тождество логарифмов мы здесь не можем (поскольку (3neq2)). 

Данное тождество часто используется для преобразований. 

Свойства логарифмов

Логарифмы, как и числа, можно складывать, умножать и делать множество действий с ними. Как не запутаться в них, не производить лишних вычислений и не ошибиться? Для этого нужно хорошо знать все свойства, которые представлены в таблице ниже. Каждое из рассмотренных в таблице свойств можно использовать для преобразований.

Рассмотрим каждое свойство чуть подробнее. 

Свойство 1. (log_ab^m=m*log_ab). 

Попробуем найти значение выражения (log_28^2) без применения свойства. Тогда возведем аргумент в степень и получим:

(log_28^2=log_264)

Воспользовавшись определение логарифма, заметим, что (log_264=6).
Но что делать, если числа окажутся большими, или, более того, у логарифма не будет точного значения — примером такого логарифма может служить (log_57). Да и вычисление в несколько действий с большими числами может занять много времени. 

Именно поэтому мы применяем это свойство! 

(log_28^2=2*log_28=2*3=6)

Свойство 2. (log_{a^n}b=frac{1}{n}*log_ab)

Рассмотрим на примере логарифма (log_{2^2}4). Посчитаем без свойства:

(log_{2^2}4=log_44=1)

Заметим, что:

  • в первом свойстве мы увеличивали аргумент логарифма (то есть конечный результат, который получается при возведении числа в степень);
  • в этот раз мы увеличиваем уже число, которое возводим в степень. 

Сравните:

(2^2=4) или (3^2=9)

Следовательно, когда мы будем производить «обратные» действия, то есть считать логарифм, то при увеличении основания степени (и сохранении результата возведения в степень), у нас должна уменьшиться сама степень, в которую мы возводим. 

Например:

(2^4=16) и (4^2=16)

Именно поэтому у нас появляется дробь: она уменьшает степень во столько раз, во сколько мы увеличили первоначальное число:

(log_{2^2}4=frac{1}{2}log_24=frac{1}{2}*2=1)

Свойство 3. (log_{a^n}b^m=frac{m}{n}*log_ab)

Это свойство вытекает из двух предыдущих, просто их соединили вместе. Иначе пришлось бы отдельно выносить степень из аргумента и отдельно из основания логарифма. Сравните:

(log_{2^3}5^7=7*log_{2^3}5=7*frac{1}{3}*log_25=frac{7}{3}log_25)
или
(log_{2^3}5^7=frac{7}{3}log_25)

Свойство 4. (log_ab+log_ac=log_a(b*c))

Найдем значение выражения (log_24+log_28):

(log_24+log_28=2+3=5)

Но в случае, когда числа не будут так легко считаться (или вовсе не будут считаться), на помощь придет это свойство:

(log_512,5+log_52=log_525=2)

Свойство 5. (log_ab-log_ac=log_afrac{b}{c})

Аналогично с предыдущим свойством это нужно для упрощения вычислений. 

Например:

(log_318-log_32=log_3frac{18}{2}=log_39=2)

Свойства 6 и 7. (log_aa=1) и (log_a1=0)

Эти свойства напрямую связаны с возведением числа в степень. Достаточно лишь ответить на два вопроса:

  • В какую степень нужно возвести число, чтобы получилось такое же число?
  • В какую степень нужно возвести любое число, чтобы получить 1?

Ответы на эти вопросы будут 1 и 0. Отсюда и эти свойства:

  • Число в степени 1 будет равно само себе: (log_aa=1).
  • Число в степени 0 будет равно 1: (log_a1=0).

Свойство 8. (log_ab=frac{log_cb}{log_ca})

Это свойство используется в случаях, когда нам нужно представить логарифм с любым другим основанием. 

Например:

(log_25=frac{log_35}{log_25})

Это свойство может пригодиться в решении уравнений и неравенств для упрощения выражений. 

Свойство 9. (log_ab=frac{1}{log_ba})

Что делать, если нам нужно представить логарифм с определенным основанием, которое равно аргументу этого логарифма? Все просто: мы можем поменять основание и аргумент местами, если воспользуемся свойством (log_ab=frac{1}{log_ba}).

Например:

(log_{27}3=frac{1}{log_327}=frac{1}{3})

Заметим, что это же выражение можно было решить немного по-другому:

(log_{27}3=log_{3^3}3=frac{1}{3}*log_33=frac{1}{3}).

В этом случае мы воспользовались свойствами 2 и 6.

Свойство 10. (a^{log_cb}=b^{log_ca})

Еще одно свойство, которое позволяет изменить аргумент логарифма, и при этом не менять значение выражения. 

Рассмотрим на примере (2^{log_24}):

 (2^{log_24}=2^2=4)
(2^{log_24}=4^{log_22}=4^1=4)

Для более простого запоминания свойств логарифмов предлагаем вам воспользоваться нашими забавными ассоциациями.  

Теперь, когда мы знаем свойства логарифмов, мы можем перейти к более сложным преобразованиям — к решениям уравнений и неравенств.

Простейшие логарифмические уравнения

В других статьях мы уже рассматривали разные виды уравнений: линейные, квадратные, показательные и т.п. Настало время узнать про логарифмические уравнения. 

Логарифмическое уравнение — это уравнение, в котором неизвестная стоит в аргументе или основании логарифмов. 

Иными словами, если в уравнении мы видим логарифм с неизвестной — это логарифмическое уравнение. 

Например, (log_2x=4) — логарифмическое уравнение. 

А вот (log_25+x=x^2) не будет логарифмическим уравнением, поскольку неизвестная не стоит ни в аргументе, ни в основании логарифма. 

Как решать логарифмические уравнения?
Логарифмическое уравнение нужно привести к такому виду:

(log_af(x)=log_ag(x)).

При решении таких уравнений нужно обязательно учитывать, что по определению аргумент логарифма всегда должен быть больше нуля, а основание больше нуля и не должно равняться единице. Эти ограничения называются областью допустимых значений или ОДЗ логарифма. 

Область допустимых значений — это те значения, которые может принимать переменная x (или другая буква латинского алфавита) в выражении.

(log_ab)
ОДЗ логарифма: a > 0, a ≠ 0, b> 0.

Как быстро избавиться от логарифмов с одинаковым основанием?

Это можно сделать, приравняв аргументы. Почему мы можем так сделать? Представим, что мы возводим некоторое число в степень, это число будет стоять в основании логарифма. Если два логарифма равны, то и степени, в которые мы возвели число, равны. Следовательно, будет равен и результат возведения в степень, то есть аргумент логарифма!

(a^x=b)
(log_ab=x)

Тогда пусть (log_ab=log_ac)
(x=log_ac)
(a^x=c => b=c)

При этом проверить ОДЗ можно только у одного из логарифмов, поскольку если один из них положителен, а второй равен первому, то и второй будет положительным.

Например, если b=2, то из равенства b=c получаем c=b=2.

В логарифмических уравнениях встречаются более сложные выражения, которые в дальнейшем мы будем выражать в виде функций — например, f(x) или g(x).


Например:
 

Алгоритм решения логарифмического уравнения:

1. Написать ОДЗ.
2. Упростить выражения слева и справа от знака равенства, используя свойства логарифмов, если это возможно.
3. Если основания логарифмов одинаковые, избавиться от логарифмов. В противном случае — используя свойства логарифмов, привести к одинаковому основанию, а уже потом совершить эти действия.
4. Решить уравнение и сравнить с ОДЗ, выписать в ответ корни.

Рассмотрим на примере:

(log_2(5x-4)=log_2(x+8))

  1. В первую очередь найдем ОДЗ. Для этого вспомним, что аргумент логарифма всегда строго положителен:

(5x-4>0) и (x+8>0)

Найдем возможные значения х:

(5x>4) и (x>-8)
(x>frac{4}{5}) и (x>-8)

Нанесем найденные промежутки на числовую прямую и определим, какие значения может принимать х. Для этого нам нужно будет найти промежутки, которые удовлетворяют обоим неравенствам: 

Теперь мы можем определить ОДЗ: (x in(frac{4}{5};+{infty}))

  1. Если в обеих частях уравнения находится логарифм по одинаковому основанию, то можно «скинуть» логарифмы и записать равенство аргументов. Поскольку и у первого, и у второго логарифма основания равны 2, то мы можем приравнять их аргументы: 

(5x-4=x+8)

  1. Решим полученное уравнение:

(5x-x=8+4)
(4x=12)
(x=3)

  1. Подставим в ОДЗ и проверим, подходит ли корень. Поскольку (3>frac{4}{5}), то корень нам подходит. 

Ответ: 3.

А теперь немного усложним задачу. Допустим, переменная будет стоять и в основании, и в аргументе логарифма. 

Рассмотрим еще одно уравнение: 

(log_2(x-4)=log_{4x}4+log_{4x}x)

  1. Найдем ОДЗ. Аргумент логарифма всегда строго больше 0, а основание больше 0 и не равно 1. Тогда получаем следующие неравенства для аргументов логарифмов:

(x>0)
(x-4>0)

И для оснований логарифмов:

(4x>0)
(4xneq1)

Решим неравенства:

(x>0)
(x>4)
(x>0)
(xneqfrac{1}{4})

Теперь отметим все ограничения на числовой прямой и найдем, чему равна ОДЗ:

Поскольку нам нужно, чтобы ограничение удовлетворяло всем полученным неравенствам и уравнениям, то (xin(4;+{infty})).

  1. Теперь перейдем к решению самого уравнения. По свойствам логарифма (свойства 4 и 6) преобразуем правую часть уравнения:

(log_2(x-4)=log_{4x}4x)
(log_2(x-4)=1)

  1. Чтобы отбросить логарифмы и перейти к уравнению с аргументами, необходимо, чтобы их основания были равны. Поскольку основание левого логарифма равно 2, то представим правую часть в виде логарифма с таким же основанием 2:

(log_2(x-4)=log_22)

  1. Отбросим логарифмы и перейдем к уравнению с ними:

(x-4=2)
(x=6)

Поскольку (6>4), то корень принадлежит ОДЗ, а значит, его можно записать в ответ. 

Ответ: 6.

Мы разобрали уравнения с логарифмами. Остался вопрос: а как решать неравенства с ними? 

Простейшие логарифмические неравенства

Логарифмическое неравенство это неравенство, в котором переменная стоит в аргументе или основании логарифма. 

Для решения логарифмических неравенств тоже можно избавляться от логарифмов.

Делается это уже известным способом — если основания равны, то можно перейти к неравенству с аргументами. При этом нужно обращать внимание на основание логарифма.

Важно!
Если (0<a<1), тогда знак неравенства меняется на противоположный.
Если (a>1), тогда знак неравенства не меняется.

Разберемся, почему это так работает. Рассмотрим два примера:

(log_24=2)
(log_{frac{1}{2}}4=log_{2^{-1}}4=-1*log_24=-2)

Как можно увидеть, если основание логарифма меньше 1, то результат вычислений отрицательный (в случае, если аргумент больше 1). Это связано с тем, что при возведении дробного числа в степень, большую 1, это число только уменьшается, например:

((frac{1}{3})^2=frac{1}{9})

Но если мы возведем такое число в отрицательную степень, то получим больший результат:

((frac{1}{3})^{-2}=3^2=9)

Именно поэтому ради избежания путаницы со знаками, при отбрасывании логарифмов с основанием (0<a<1) мы меняем знак на противоположный: тем самым мы сразу избавляемся от минуса. 

Например:

(log_{frac{1}{3}}9>0)
(log_{3^{-1}}9>0)
(-log_39>0 |*(-1))
(log_39<0)

А теперь чуть подробнее рассмотрим, как действовать с логарифмическими неравенствами:

Алгоритм решения логарифмического неравенства:

1. Написать ОДЗ.
2. Упростить выражения слева и справа от знака неравенства, используя свойства логарифмов, если это возможно.
3. Если основания логарифмов одинаковые, избавиться от логарифмов по схеме выше. В противном случае — используя свойства логарифмов, привести к одинаковому основанию, а уже потом совершить эти действия.
4. Решить неравенство, пересечь с ОДЗ, записать ответ.

Как не попасть в аварию в погоне за результатом?

Обратим ваше внимание еще раз. Решая как логарифмические уравнения, так и неравенства, можно разогнаться слишком сильно и вылететь с дороги…

Чтобы такого не случилось, есть специальный ограничитель неправильных ответов — ОДЗ.

Работая с логарифмами и избавляясь от них, всегда следите за показаниями ОДЗ, иначе в ответ попадут лишние корни.

Логарифмические неравенства могут встретиться в номере 14 ЕГЭ по профильной математике. Рассмотрим один из их примеров:

Решите неравенство: (log_3^2x-10log_3xgeq-21)

Решение. Первым делом, найдем ОДЗ. Поскольку переменная стоит только в аргументе логарифма, то и ограничения вводим лишь на аргумент:
(x>0)

Перейдем к решению. Заметим, что (log_3x) — повторяющееся выражение, а значит, мы можем сделать замену.

Обратим внимание, что у первого логарифма степень стоит именно у логарифма, а не у аргумента.

Пусть (log_3x=t), тогда:
(t^2-10tgeq-21)
(t^2-10t+21geq0)

Теперь слева у нас получилось квадратное неравенство. Для его решения найдем нули функции, приравняв левую часть к 0:
(t^2-10t+21=0)

Найдем корни уравнения с помощью дискриминанта:
(D=b^2-4ac=10^2-4*1*21=100-84=16)
(t_1=frac{-b+sqrt{D}}{2a}=frac{10+4}{2}=7)
(t_2=frac{-b-sqrt{D}}{2a}=frac{10-4}{2}=3)

Воспользуемся методом интервалов (подробнее об этом методе можно прочитать в одноименной статье). Отметим корни на числовой прямой, расставим знаки и найдем промежутки:

Получаем промежутки:

Сделаем обратную замену:

Представим правые части неравенства в виде логарифмов с основанием 3:

Теперь у нас справа и слева логарифмы с одинаковым основанием, соответственно, мы можем отбросить логарифмы и перейти к неравенствам с аргументами. Поскольку 3>1, то знаки неравенства менять не нужно:

Отметим на числовой прямой полученные промежутки, а также нанесем ОДЗ:

С учетом ОДЗ получаем промежутки: ((0;27]bigcup[2187;+{infty})). Это и будет ответ.

Ответ: ((0;27]bigcup[2187;+{infty}))

Теперь давайте рассмотрим решение неравенства с основанием, которое меньше 1.

(log_{frac{1}{5}}x^2geq log_{frac{1}{5}}x+2)

Шаг 1. Напишем ОДЗ. Аргумент логарифма должен быть строго больше 0, поэтому получаем два неравенства:

Шаг 2. Преобразуем правую часть. Для этого воспользуемся свойством логарифмов и вынесем степень аргумента перед логарифмом. 

Поскольку степень положительная, то мы должны поставить аргумент в модуль, чтобы не потерять отрицательные значения:

(2*log_{frac{1}{5}}|x|geq log_{frac{1}{5}}x+2)

Шаг 3. Раскроем модуль. По ОДЗ мы получили, что x>0, а значит, мы можем убрать модуль, поскольку под ним всегда будет стоять положительное число:

(2*log_{frac{1}{5}}xgeq log_{frac{1}{5}}x+2)

Шаг 4. Перенесем одно слагаемое влево и упростим: 

(2*log_{frac{1}{5}}x-log_{frac{1}{5}}xgeq 2)
(log_{frac{1}{5}}xgeq 2)

Представим правую часть в виде логарифма с основанием (frac{1}{5}):

(log_{frac{1}{5}}xgeq log_{frac{1}{5}}frac{1}{25})

Шаг 5. Отбросим логарифмы. Поскольку (frac{1}{5}<1), то знак неравенства меняется на противоположный:

(xgeq 125)

Шаг 6. Отметим полученный промежуток на числовой прямой и нанесем ОДЗ:

С учетом ОДЗ получаем промежуток ((0;frac{1}{25}]). 

Ответ: ((0;frac{1}{25}])

Мы рассмотрели логарифмы, уравнения и неравенства с ними. Научиться решать их не так сложно. Практикуйтесь побольше, тогда все обязательно получится. А чтобы продолжить освоение математической науки, рекомендуем вам познакомиться со статьей «Тригонометрическая окружность и графики функций». 

Термины

Дискриминант в квадратном уравнении — это выражение, которое ищется по формуле (D=b^2-4⋅a⋅c), где а, b и с берутся из уравнения. Подробнее о нем рассказано в статье «Линейные, квадратные и кубические уравнения».

Иррациональные числа это числа, которые нельзя представить в виде обыкновенной дроби, то есть они не имеют точного значения. 

Квадратное неравенство это такое неравенство, которое можно привести к виду (ax^2+bx+c ⋁ 0), где a, b и с — любые числа (причем a ≠ 0), x — неизвестная переменная, а ⋁ — любой из знаков сравнения (> , < , ≤ , ≥ ). Решение таких неравенств мы обсуждаем в статье «Метод интервалов».

Модуль числа — это его абсолютная величина. При взятии модуля мы не учитываем знак этого числа — положительное оно или отрицательное. Модуль числа всегда неотрицателен и обозначается с помощью модульных скобок: |a| ≥ 0. Этому математическому понятию посвящена отдельная статья Учебника.  

Нули функции — это значения аргумента, при которых функция равна нулю.

Показательная функция — это функция, у которой неизвестная находится в показателе степени. Например, (y = 2^x). Подробнее о ней мы рассказываем в одноименной статье.

Производная функции — это математическое понятие, показывающее скорость изменения функции в определенной точке. Подробнее про производные можно прочесть в статье «Исследование функции с помощью производной».

Фактчек

  • Логарифм — это степень, в которую возводится основание логарифма, чтобы получить аргумент.
  • Десятичный логарифм — это логарифм числа по основанию 10. Записывается так: lg a.
  • Натуральный логарифм — это логарифм по основанию е (e ≈ 2,72). Записывается как ln a.
  • Основное логарифмическое тождество: (a^{log_ab}=b), при (a >0, a ≠ 1, b>0).
  • Существуют специальные свойства логарифмов, благодаря которым можно совершать преобразования.
  • При решении уравнений и неравенств нельзя забывать про ОДЗ на аргумент и основание логарифма: основание больше нуля и не равно единице, аргумент больше нуля.
  • В логарифмических неравенствах при переходе к неравенству аргументов логарифмов знак меняется на противоположный, если значение основания логарифма находится на промежутке от 0 до 1.

Проверь себя

Задание 1.
Решите уравнение (log_3(x^2+4)=log_3(4x)).

  1. 1 и -1
  2. 2 и -2
  3. 2
  4. -1

Задание 2.
Решите уравнение (log_28=log_{16}(x)+2).

  1. 16
  2. 12
  3. 1
  4. 8

Задание 3.
Решите уравнение (log_2(2x^2)-5=log_2(x) +log_2(x-5)).

  1. 0 и (frac{16}{3})
  2. 0 и (frac{32}{3})
  3. 32
  4. (frac{16}{3})

Задание 4.
Решите неравенство (log_9(x+4)geq log_9(2x)^2).  

  1. ([-frac{4}{3};0)bigcup(0;4])
  2. ((0;4])
  3. ([-frac{4}{3};0))
  4. ([-frac{4}{3};4])

Задание 5.
Решите неравенство (log_{500}500geq log_2(1+3x)). 

  1. ((0;frac{1}{3}])
  2. ((-frac{1}{3};frac{1}{3}])
  3. ([-frac{1}{3};frac{1}{3}])
  4. ((-frac{1}{3};0)

Ответы:1. — 3; 2. — 1; 3. — 4; 4. — 1; 5. — 2.

Логарифмическое неравенство: решение на примерах

Логарифмическое неравенство может встретиться вам в 13 задании ЕГЭ по математике. При решении логарифмического неравенства важно правильно определить область допустимых значений (ОДЗ). Как же решить логарифмическое неравенство? Давайте разберем основные правила.

Как найти ОДЗ (область допустимых значений) логарифмического неравенства

Простейшее логарифмическое неравенство можно записать в виде:знак можно заменить на 1, то знак неравенства не меняется.

Если у логарифма в неравенстве 0 0

Решаем это простейшее неравенство и получаем х > -2.

Таким образом область допустимых значений данного неравенства х > -2.

Далее решаем непосредственно логарифмическое неравенство. Так как основание логарифмов (основание = 2) в неравенстве больше единицы, знак неравенства сохраняется:Так как логарифмы в неравенстве имеют одинаковое основание, то мы их можем просто отбросить и решить неравенство вида

Теперь вспоминаем про нашу ОДЗ и определяем окончательный ответ.Отметим полученные значения на числовой оси:

Решение логарифмического неравенства с основанием от 0 до 1

Теперь разберем то же самое неравенство, только основание логарифма будет равно ½. Таким образом, получим:

Определяем ОДЗ, как и в прошлом примере, х > -2.

Далее смотрим на основание логарифма. В данном случае основание равно ½, т.е. находится в области от 0 1 или 0 , -4½

Логарифмические неравенства

Решая логарифмические неравенства, мы пользуемся свойством монотонности логарифмической функции. Также мы используем определение логарифма и основные логарифмические формулы.

Давайте повторим, что такое логарифмы:

Логарифм положительного числа по основанию — это показатель степени, в которую надо возвести , чтобы получить .

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)

(Формула для логарифма степени)

Формула перехода к новому основанию:

Алгоритм решения логарифмических неравенств

Можно сказать, что логарифмические неравенства решаются по определенному алгоритму. Нам нужно записать область допустимых значений (ОДЗ) неравенства. Привести неравенство к виду Знак здесь может быть любой: Важно, чтобы слева и справа в неравенстве находились логарифмы по одному и тому же основанию.

И после этого «отбрасываем» логарифмы! При этом, если основание степени , знак неравенства остается тем же. Если основание такое, что знак неравенства меняется на противоположный.

Конечно, мы не просто «отбрасываем» логарифмы. Мы пользуемся свойством монотонности логарифмической функции. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает, и тогда большему значению х соответствует большее значение выражения .

Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. Большему значению аргумента х будет соответствовать меньшее значение

Важное замечание: лучше всего записывать решение в виде цепочки равносильных переходов.

Перейдем к практике. Как всегда, начнем с самых простых неравенств.

1. Рассмотрим неравенство log3x > log35.
Поскольку логарифмы определены только для положительных чисел, необходимо, чтобы x был положительным. Условие x > 0 называется областью допустимых значений (ОДЗ) данного неравенства. Только при таких x неравенство имеет смысл.

Что делать дальше? Стандартный ответ, который дают школьники, — «Отбросить логарифмы!»

Что ж, эта формулировка лихо звучит и легко запоминается. Но почему мы все-таки можем это сделать?

Мы люди, мы обладаем интеллектом. Наш разум устроен так, что все логичное, понятное, имеющее внутреннюю структуру запоминается и применяется намного лучше, чем случайные и не связанные между собой факты. Вот почему важно не механически вызубрить правила, как дрессированная собачка-математик, а действовать осознанно.

Так почему же мы все-таки «отбрасываем логарифмы»?

Ответ простой: если основание больше единицы (как в нашем случае), логарифмическая функция монотонно возрастает, значит, большему значению x соответствует большее значение y и из неравенства log3x1 > log3x2 следует, что x1 > x2.

Обратите внимание, мы перешли к алгебраическому неравенству, и знак неравенства при этом — сохраняется.

Следующее логарифмическое неравенство тоже простое.

Начнём с области допустимых значений. Логарифмы определены только для положительных чисел, поэтому

Решая эту систему, получим: x > 0.

Теперь от логарифмического неравенства перейдем к алгебраическому — «отбросим» логарифмы. Поскольку основание логарифма больше единицы, знак неравенства при этом сохраняется.

А что же будет, если основание логарифма меньше единицы? Легко догадаться, что в этом случае при переходе к алгебраическому неравенству знак неравенства будет меняться.

3.

Запишем ОДЗ. Выражения, от которых берутся логарифмы, должны быть положительно, то есть

Решая эту систему, получим: x > 4,5.

Поскольку , логарифмическая функция с основанием монотонно убывает. А это значит, что большему значению функции отвечает меньшее значение аргумента:

И если , то
2x − 9 ≤ x.

Получим, что x ≤ 9.

Учитывая, что x > 4,5, запишем ответ:

В следующей задаче показательное неравенство сводится к квадратному. Так что тему «квадратные неравенства» рекомендуем повторить.

Теперь более сложные неравенства:

4. Решите неравенство

5. Решите неравенство

Если , то . Нам повезло! Мы знаем, что основание логарифма больше единицы для всех значений х, входящих в ОДЗ.

Обратите внимание, что сначала мы полностью решаем неравенство относительно новой переменной t. И только после этого возвращаемся к переменной x. Запомните это и не ошибайтесь на экзамене!

6.

Запомним правило: если в уравнении или неравенстве присутствуют корни, дроби или логарифмы — решение надо начинать с области допустимых значений. Поскольку основание логарифма должно быть положительно и не равно единице, получим систему условий:

Упростим эту систему:

Это область допустимых значений неравенства.

Мы видим, что переменная содержится в основании логарифма. Перейдем к постоянному основанию. Напомним, что

В данном случае удобно перейти к основанию 4.

Сделаем замену

Упростим неравенство и решим его методом интервалов:

Вернемся к переменной x:

Мы добавили условие x > 0 (из ОДЗ).

Ответ:

7. Следующая задача тоже решается с помощью метода интервалов

Как всегда, решение логарифмического неравенства начинаем с области допустимых значений. В данном случае

0″ src=»https://latex.codecogs.com/png.latex?%5Cfrac%3C2-3x%3E%3Cx%3E%3E0″ />Это условие обязательно должно выполняться, и к нему мы вернемся. Рассмотрим пока само неравенство. Запишем левую часть как логарифм по основанию 3:

Правую часть тоже можно записать как логарифм по основанию 3, а затем перейти к алгебраическому неравенству:

Видим, что условие 0″ src=»https://latex.codecogs.com/png.latex?%5Cfrac%3C2-3x%3E%3Cx%3E%3E0″ /> (то есть ОДЗ) теперь выполняется автоматически. Что ж, это упрощает решение неравенства.

Решаем неравенство методом интервалов:

Ответ:

Получилось? Что же, повышаем уровень сложности:

8. Решите неравенство:

Неравенство равносильно системе:

9. Решите неравенство:

Выражение 5 — x 2 навязчиво повторяется в условии задачи. А это значит, что можно сделать замену:

Поскольку показательная функция принимает только положительные значения, t > 0. Тогда

Неравенство примет вид:

Уже лучше. Найдем область допустимых значений неравенства. Мы уже сказали, что t > 0. Кроме того, ( t − 3) (5 9 · t − 1) > 0

Если это условие выполнено, то и частное будет положительным.

А еще выражение под логарифмом в правой части неравенства должно быть положительно, то есть (625 t − 2) 2 .

Это означает, что 625 t − 2 ≠ 0, то есть

Аккуратно запишем ОДЗ

и решим получившуюся систему, применяя метод интервалов.

Итак,

Ну что ж, полдела сделано — разобрались с ОДЗ. Решаем само неравенство. Сумму логарифмов в левой части представим как логарифм произведения:

«Отбросим» логарифмы. Знак неравенства сохраняется.

Перенесем все в левую часть и разложим по известной формуле разности квадратов:

0;» src=»https://latex.codecogs.com/png.latex?(t-3)%5E%3C2%3E-(625t-2)%5E%3C2%3E%3E0;» />
0;» src=»https://latex.codecogs.com/png.latex?(t-3-625t+2)(t-3+625t-2)%3E0;» />
0.» src=»https://latex.codecogs.com/png.latex?(-624t-1)(626t-5)%3E0.» />
Вспомним, что (это ОДЗ неравенства) и найдем пересечение полученных промежутков.

Получим, что

Вернемся к переменной x

Поскольку

9;» src=»https://latex.codecogs.com/gif.latex?x%5E%3C2%3E%3E&space;9;» /> 0″ src=»https://latex.codecogs.com/png.latex?(x-3)(x+3)%3E0″ />Ответ:

10. Еще один прием, упрощающий решение логарифмических неравенств, — переход к постоянному основанию. Покажем, как использовать переход к другому основанию и обобщенный метод интервалов.

Воспользуемся формулой и перейдем к основанию 10:

Применим обобщенный метод интервалов. Выражение в левой части неравенства можно записать как функцию

Эта функция может менять знак в точках, где она равна нулю или не существует.

Выражение lg | x − 3| равно нулю, если | x − 3| = 1, то есть x = 4 или x = 2.

Выражение lg (| x| − 2) равно нулю, если | x| = 3, то есть в точках 3 и −3.

Отметим эти точки на числовой прямой, с учетом ОДЗ неравенства.

Найдем знак функции g(x) на каждом из промежутков, на которые эти точки разбивают область допустимых значений. Точно так же мы решали методом интервалов обычные рациональные неравенства.

Ответ:

11. А в следующей задаче спрятаны целых две ловушки для невнимательных абитуриентов.

Запишем ОДЗ:

0\ x+2neq 1\ 36+16x-x^<2>>0\ xneq 18 endright. : : : : : : : : Leftrightarrow : : : : : left <beginx>-2\ xneq -1\ xin (-2;18) endright.» src=»https://latex.codecogs.com/png.latex?%5Cleft%5C%3C%5Cbegin%3Cmatrix%3E&space;x+2%3E0%5C%5C&space;x+2%5Cneq&space;1%5C%5C&space;36+16x-x%5E%3C2%3E%3E0%5C%5C&space;x%5Cneq&space;18&space;%5Cend%3Cmatrix%3E%5Cright.&space;%5C:&space;%5C:&space;%5C:&space;%5C:&space;%5C:&space;%5C:&space;%5C:&space;%5C:&space;%5CLeftrightarrow&space;%5C:&space;%5C:&space;%5C:&space;%5C:&space;%5C:&space;%5Cleft%5C%3C%5Cbegin%3Cmatrix%3E&space;x%3E-2%5C%5C&space;x%5Cneq&space;-1%5C%5C&space;x%5Cin&space;(-2;18)&space;%5Cend%3Cmatrix%3E%5Cright.» />
Итак, Это ОДЗ.

Обратите внимание, что .

Это пригодится вам при решении неравенства.

Упростим исходное неравенство:

Теперь главное – не спешить. Мы уже говорили, что задача непростая – в ней расставлены ловушки. В первую вы попадете, если напишете, что Ведь выражение в данном случае не имеет смысла, поскольку x x — 18) 2 =(18 — x) 2 . Тогда:

Вторая ловушка – попроще. Запись означает, что сначала надо вычислить логарифм, а потом возвести полученное выражение в квадрат. Поэтому:

Дальше – всё просто. Сделаем замену

Выражение в левой части этого неравенства не может быть отрицательным, поэтому t = 2. Тогда

— не удовлетворяет ОДЗ;

Мы рассмотрели основные приемы решения логарифмических неравенств — от простейших до сложных, которые решаются с помощью обобщенного метода интервалов. Однако есть еще один интересный метод, помогающий справиться и показательными, и с логарифмическими, и с многими другими видами неравенств. Это метод рационализации (замены множителя). О нем — в следующей статье.

Логарифмические уравнения и неравенства

Логарифмическим уравнениям и неравенствам в вариантах ЕГЭ по математике посвящена задача C3. Научиться решать задания C3 из ЕГЭ по математике должен каждый ученик, если он хочет сдать предстоящий экзамен на «хорошо» или «отлично». В данной статье представлен краткий обзор часто встречающихся логарифмических уравнений и неравенств, а также основных методов их решения.

Итак, разберем сегодня несколько примеров логарифмических уравнений и неравенств, которые предлагались учащимся в вариантах ЕГЭ по математике прошлых лет. Но начнет с краткого изложение основных теоретических моментов, которые нам понадобятся для их решения.

Логарифмическая функция

Определение

0,, ane 1 ]» title=»Rendered by QuickLaTeX.com»/>

называют логарифмической функцией.

Основные свойства

Основные свойства логарифмической функции y = loga x:


a > 1 0 0,, b>0,, c>0,, ane 1. ]» title=»Rendered by QuickLaTeX.com»/>

• Логарифм частного двух положительных чисел равен разности логарифмов этих чисел:

0,, b>0,, c>0,, ane 1. ]» title=»Rendered by QuickLaTeX.com»/>

• Если a и b — положительные числа, причем a ≠ 1, то для любого числа r справедливо равенство:

0,, b>0,, ane 1. ]» title=»Rendered by QuickLaTeX.com»/>

• Если a, b, c — положительные числа, причем a и c отличны от единицы, то имеет место равенство (формула перехода к новому основанию логарифма):

0,, b>0,, c>0,, ane 1,, cne 1. ]» title=»Rendered by QuickLaTeX.com»/>

Решение логарифмических уравнений и неравенств

Пример 1. Решите уравнение:

Решение. В область допустимых значений входят только те x, при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:

0, \ 8+5x > 0 end Leftrightarrow begin x^2 > 6, \ x>-1,6. end Leftrightarrow ]» title=»Rendered by QuickLaTeX.com»/>

С учетом того, что

-sqrt<6>, ]» title=»Rendered by QuickLaTeX.com»/>

получаем промежуток, определяющий область допустимых значений данного логарифмического уравнения:

На основании теоремы 1, все условия которой здесь выполнены, переходим к следующему равносильному квадратичному уравнению:

В область допустимых значений входит только первый корень.

Ответ: x = 7.

Пример 2. Решите уравнение:

Решение. Область допустимых значений уравнения определяется системой неравенств:

0, \ -x-31>0 endLeftrightarrow begin -1

Очевидно, что эти два условия противоречат друг другу. То есть нет ни одного такого значения x, при котором одновременно выполнялись бы оба неравенства. Область допустимых значений уравнения является пустым множеством, а значит решений у данного логарифмического уравнения нет.

Ответ: корней нет.

Обратите внимание, что в этом задании нам вообще не пришлось искать корни уравнения. Достаточно оказалось определить, что его область допустимых значений не содержит ни одного действительно числа. Это одно из преимуществ такой последовательности решения логарифмических уравнений и неравенств (начинать с определения области допустимых значений уравнения, а затем решать его путем равносильных преобразований).

Примет 3. Решите уравнение:

Решение. Область допустимых значений уравнения определяется здесь легко: x > 0.

Уравнение принимает вид:

Оба ответа входят в область допустимых значений уравнения, поскольку являются положительными числами.

Пример 4. Решите уравнение:

Решение. Вновь начнем решение с определения области допустимых значений уравнения. Она определяется следующей системой неравенств:

0, \ x+3>0, \ 1-x>0 endLeftrightarrow begin x>-2, \ x>-3, \ x

Воспользовавшись правилом сложения логарифмов, переходим к равносильному в области допустимых значений уравнению:

Основания логарифмов одинаковы, поэтому в области допустимых значений можно перейти к следующему квадратному уравнению:

Первый корень не входит в область допустимых значений уравнения, второй — входит.

Ответ: x = -1.

Пример 5. Решите уравнение:

Решение. Будем искать решения в промежутке x > 0, x≠1. Преобразуем уравнение к равносильному:

Оба ответа входят в область допустимых значений уравнения.

Пример 6. Решите уравнение:

Решение. Система неравенств, определяющая область допустимых значений уравнения, имеет на этот раз вид:

0, \ x>0, \ xne 1 endLeftrightarrow x>0,, xne 1. ]» title=»Rendered by QuickLaTeX.com»/>

Используя свойства логарифма, преобразуем уравнение к равносильному в области допустимых значений уравнению:

Используя формулу перехода к новому основанию логарифма, получаем:

В область допустимых значений входит только один ответ: x = 4.

Перейдем теперь к логарифмическим неравенствам. Это как раз то, с чем вам придется иметь дело на ЕГЭ по математике. Для решения дальнейших примеров нам потребуется следующая теорема:

Теорема 2. Если f(x) > 0 и g(x) > 0, то:
при a > 1 логарифмическое неравенство log a f(x) > log a g(x) равносильно неравенству того же смысла: f(x) > g(x);
при 0 log a g(x) равносильно неравенству противоположного смысла: f(x)

Решение. Начнем с определения области допустимых значений неравенства. Выражение, стоящее под знаком логарифмической функции, должно принимать только положительные значения. Это значит, что искомая область допустимых значений определяется следующей системой неравенств:

0, \ x+4>0 endLeftrightarrow begin xin(-mathcal<1>;-3)cup(2;+mathcal<1>), \ x>-4 end ]» title=»Rendered by QuickLaTeX.com»/>

Так как в основании логарифма стоит число, меньшее единицы, соответствующая логарифмическая функция будет убывающей, а потому равносильным по теореме 2 будет переход к следующему квадратичному неравенству:

Окончательно, с учетом области допустимых значений получаем ответ:

Пример 8. Решите неравенство:

Решение. Вновь начнем с определения области допустимых значений:

0, \ frac<(x-9)^<11>>>0 endLeftrightarrow xin(-mathcal<1>;3)cup(9;+mathcal<1>). ]» title=»Rendered by QuickLaTeX.com»/>

На множестве допустимых значений неравенства проводим равносильные преобразования:

После сокращения и перехода к равносильному по теореме 2 неравенству получаем:

С учетом области допустимых значений получаем окончательный ответ:

Пример 9. Решите логарифмическое неравенство:

Решение. Область допустимых значений неравенства определяется следующей системой:

0, \ x+1ne 1,\ x(x+1)(x+2)>0 endLeftrightarrow xin (0;+mathcal<1>). ]» title=»Rendered by QuickLaTeX.com»/>

Видно, что в области допустимых значений выражение, стоящее в основании логарифма, всегда больше единицы, а потому равносильным по теореме 2 будет переход к следующему неравенству:

С учетом области допустимых значений получаем окончательный ответ:

Пример 10. Решите неравенство:

Решение.

Область допустимых значений неравенства определяется системой неравенств:

0, \ x^2>0, \ x^2ne 1 endLeftrightarrow xin(-mathcal<1>;-1)cup(-1;0)cup(4;+mathcal<1>). ]» title=»Rendered by QuickLaTeX.com»/>

I способ. Воспользуемся формулой перехода к новому основанию логарифма и перейдем к равносильному в области допустимых значений неравенству:

Неравенство будет равносильно двум системам. Первой:

Итак, окончательный ответ:

II способ. Решаем методом интервалов. Преобразуем неравенство к виду:

Вычтем из знаменателя Это ничего не изменит, поскольку

С учетом того, что выражения и — одного знака при 0,» title=»Rendered by QuickLaTeX.com» height=»18″ width=»74″ style=»vertical-align: -4px;»/> в области допустимых значений имеет место следующий равносильный переход:

Множество решений данного неравенства

Итак, а с учетом области допустимых значений получаем тот же результат:

Итак, что нужно для того, чтобы решать логарифмические уравнения и неравенства?

  • Во-первых, внимание. Не допускайте ошибок в проводимых преобразованиях. Следите за тем, чтобы каждое ваше действие не расширяло и не сужало область допустимых значений неравенства, то есть не приводило ни к потере, ни к приобретению посторонних решений.
  • Во-вторых, умение мыслить логически. Составители ЕГЭ по математике заданиями C3 проверяют умение учащихся оперировать такими понятиями, как система неравенств (пересечение множеств), совокупность неравенств (объедение множеств), осуществлять отбор решений неравенства, руководствуясь его областью допустимых значений.
  • В-третьих, четкое знание свойств всех элементарных функций (степенных, рациональных, показательных, логарифмических, тригонометрических), изучаемых в школьном курсе математики и понимание их смысла.

Главное же требование — это настойчивость в достижении своей цели. Учитесь, тренируйтесь, если нужно — ежедневно, изучайте и запоминайте на примерах основные способы решения неравенств и их систем, анализируйте возникающие ошибки и не допускайте их в будущем. За помощью в этом нелегком деле вы можете обратиться к своему школьному учителю по математике, репетитору, родителям, друзьям и знакомым, книгам, а также огромному количеству материалов, доступных на просторах Интернета. Желаю вам успехов в подготовке к Единому государственному экзамену по математике.

источники:

http://ege-study.ru/logarifmicheskie-neravenstva-1/

Логарифмические уравнения и неравенства

Как решать логарифмические неравенства?

Решение неравенств с логарифмами похоже на решение обычных логарифмических уравнений. Но есть несколько моментов, которые необходимо учитывать.

Для начала вспомним, что такое логарифм (log_{a}b) — это в какую степень нужно возвести число (a), чтобы получить (b). Кстати, число (a) называют основанием логарифма, а число (b) — аргументом. Например:
$$log_{3}(27)=3;$$
$$log_{frac{1}{3}}(9)=log_{frac{1}{3}}((frac{1}{3})^{-2})=-2;$$
$$log_{2}(sqrt{2})=log_{2}(2^{frac{1}{2}})=frac{1}{2};$$

Если у вас возникают сложности с вычислением логарифмов настоятельно рекомендую сначала почитать про логарифмы и их свойства.

При этом нужно помнить про ограничения, которые накладываются на логарифм (log_{a}b):
$$ begin{cases}
b>0, \
a>0, \
a neq 1.
end{cases}$$

Начнем изучение неравенств с небольшого примера:
$$log_{2}x>log_{2}4;$$
Сравниваются два логарифма с ОДИНАКОВЫМ основанием, значит вполне логично предположить, что (log_{2}x) будет больше (log_{2}4), при условии, что (x>4). Это и будет решением нашего простого неравенства.

Действительно, согласно определению логарифма, чем больше (х), тем в бОльшую степень нужно возвести (2-ку) в основании логарифма, а значит, и тем больше будет сам логарифм. Подставим в неравенство (х=16) — число большее (4):
$$log_{2}16>log_{2}4;$$
Посчитаем получившиеся логарифмы:
$$4>2;$$
Получили верное неравенство.

И подставляя любые числа большие (4), вы всегда будете получать верное неравенство. Некоторые логарифмы мы не можем посчитать, как например (log_{2}15), но логика сохраняется, если подставлять (x>4), неравенство будет верным. Кстати, калькулятор вам любезно подскажет, что (log_{2}15=3,907>log_{2}4), что нас устраивает.

Ответ: (x>4).

Теперь рассмотрим другой пример:
$$log_{frac{1}{2}}(x)>log_{frac{1}{2}}(4);$$
Обратите внимание, я поменял основания на (frac{1}{2}). Интересно, изменится ли логика рассуждений? Подставим (х=16>4):
$$log_{frac{1}{2}}(16)>log_{frac{1}{2}}(4);$$
$$log_{frac{1}{2}}(2^4)>log_{frac{1}{2}}(2^2);$$
$$log_{frac{1}{2}}((frac{1}{2})^{-4})>log_{frac{1}{2}}((frac{1}{2})^{-2});$$
Посчитаем логарифмы слева и справа:
$$-4>-2;$$

Опа! Получилось неверное неравенство! (-4) конечно же не больше (-2). Мы подставили под левый логарифм число большее, чем у правого, но получили, что значение логарифма меньше.
Другими словами, если основание логарифма будет меньше единицы, то чем бОльший аргумент мы подставляем, тем меньший логарифм будем получать.

Оказывается, если основание у логарифма больше единицы, то логарифм будет возрастающей функцией: чем БОЛЬШЕЕ значение аргумента, тем БОЛЬШЕ сам логарифм. Если основание логарифма меньше единицы, то логарифм будет убывающей функцией: чем БОЛЬШЕЕ значение аргумента, тем МЕНЬШЕ значение логарифма.

Для примера на рисунке показан график логарифмов (log_{2}(x)) с основанием 2 (красным цветом) — возрастающая функция. И (log_{frac{1}{2}}(x)) с основанием 0,5 — синим цветом (убывающая функция).

Находим пересечение указанных областей. И видим, что все (x>8) удовлетворяют ОДЗ, записываем ответ.

Ответ: (x>8.)

Пример 2
$$log_{3}(x+3)>log_{3}(2x-4);$$

Любой пример начинаем с ОДЗ:
$$ begin{cases}
x+3>0, \
2x-4>0. \
end{cases}$$
$$ begin{cases}
x>-3, \
x>2. \
end{cases}$$
Итого ОДЗ получается (x>2).
Теперь приступаем к решению самого неравенства. Слева и справа стоят логарифмы с одинаковыми основаниями большими единицы. Значит просто избавляемся от логарифмов:
$$x+3>2x-4;$$
$$x-2x>-4-3;$$
$$-x>-7;$$
$$x lt 7.$$
Сверяем с ОДЗ ((x>2)) — получается (хin(2;7)).

Ответ: (xin(2;7)).

В примере 2 был важный момент в ОДЗ, на который стоит отдельно обратить внимание. Мы накладывали условия, что оба выражения под логарифмами должны быть больше нуля:
$$ begin{cases}
x+3>0, \
2x-4>0. \
end{cases}$$
Но на самом деле, в этом случае в ОДЗ можно рассмотреть только (2x-4>0). А условие (x+3>0) необязательно! Это следует из простой логики, что если (2x-4>0), то (x+3>0) выполняется автоматически, так как, когда при решении примера избавляемся от логарифмов, мы ищем такие значения (х), при которых (x+3>2x-4>0).

Конкретно в этом примере это не критично, но дальше, когда будут гораздо более сложные примеры, решение дополнительных неравенств в ОДЗ может существенно усложнить жизнь. Особенно это касается заданий с параметром. Настоятельно рекомендую думать, а не просто по схеме накладывать ОДЗ на все подряд.

Пример 3
$$ log_{0,1}(x^2-x-2)>log_{0,1}(3-x);$$
ОДЗ:
$$ begin{cases}
x^2-x-2>0, \
3-x>0. \
end{cases}$$

Для того, чтобы решить первое неравенство в ОДЗ, необходим метод интервалов. Через дискриминант или по теореме Виета (как кому удобно) находим корни квадратного многочлена:
$$D=1-4*(-2)=9;$$
$$x_1=frac{1+3}{2}=2;$$
$$x_2=frac{1-3}{2}=-1;$$
Раскладываем на множители по формуле:
$$ax^2+bx+c=a(x-x_1)(x-x_2);$$
$$x^2-x-2=(x-2)(x+1);$$
$$(x-2)(x+1)>0;$$
Рисуем ось (х), расставляем знаки, отмечаем подходящие промежутки и на этой же оси отмечаем решение второго неравенства в ОДЗ:
$$3-х>0;$$
$$x lt 3;$$

Метод замены переменной в неравенствах с логарифмом

Еще один очень популярный тип неравенств — это неравенства, которые решаются при помощи замены переменной. Как всегда, проще разобраться с этим на примерах:

Пример 5
$$log_{3}^{2}(x)+2>3log_{3}(x);$$
Сперва найдем ОДЗ, здесь оно крайне простое:
$$x>0.$$
Очень легкий пример, который решается при помощи замены. Действительно, обратите внимание, что логарифмы в неравенстве абсолютно одинаковые. Заменим их на какую-нибудь переменную (t):
$$Пусть t=log_{3}(x)$$
Тогда неравенство примет вид:
$$t^2+2>3t;$$
$$t^2-3t+2>0;$$
Получили обыкновенное квадратное неравенство, только относительно переменной не (х), а (t).
Находим корни (t), раскладываем на множители и решаем методом интервалов:
$$(t-1)(t-2)>0;$$
$$tin(-infty;1)cup(2;+infty);$$
То же самое можно переписать в виде совокупности неравенств, смысл остается такой же:
$$left[
begin{gathered}
t lt 1, \
t gt 2. \
end{gathered}
right.$$
Не путайте совокупность и систему! Знак системы используется, когда нужно найти значения (х), удовлетворяющие ОДНОВРЕМЕННО всем неравенствам, входящим в систему.

А знак совокупности используется, когда нужно объединить решение каждого неравенства — то есть решением совокупности будут все корни, полученные в каждом неравенстве по отдельности.

В данном примере мы используем совокупность, так как нас устраивают и (t<1), и (t>2). И то, и то является решением нашего неравенства.

Понимание разницы между совокупностью и системой — принципиальный момент при решении логарифмических и показательных неравенств. С совокупностью мы познакомились в этом примере, а когда используется система, поговорим чуть позже.

Итак, у нас совокупность из двух неравенств относительно переменной (t). Время сделать обратную замену — вместо (t) подставляем выражение, на которое мы его заменяли. Напоминаю (t=log_{3}(x)):
$$left[
begin{gathered}
log_{3}(x) lt 1, \
log_{3}(x) gt 2. \
end{gathered}
right.$$
Ну вот, перед нами два простеньких логарифмических неравенства, которые мы уже научились решать выше:
$$log_{3}(x)<1;$$
$$log_{3}(x)<log_{3}(3);$$
$$x<3.$$

$$log_{3}(x)>2;$$
$$log_{3}(x)>log_{3}(3^2);$$
$$x>9.$$
С учетом ОДЗ ((x>0)), и не забыв про совокупность, получаем:
Ответ: (xin(0;3),cup ,(9;+infty)).

Пример 6
$$frac{log_{4}(64x)}{log_{4}(x)-3}+frac{log_{4}(x)-3}{log_{4}(64x)}geqfrac{log_{4}(x^4)+16}{log_{4}^{2}(x)-9}.$$
Неравенство, на первый взгляд, выглядит немного страшно. Но именно такой пример был на ЕГЭ 2017 года, да и на самом деле оно совсем не страшное.

Запишем ОДЗ:
$$ begin{cases}
x>0, \
log_{4}(x)-3neq 0, \
log_{4}(64x)neq 0, \
log_{4}^{2}(x)-9 neq 0.
end{cases}$$

$$ begin{cases}
x>0, \
log_{4}(x)neq log_{4}(4^3), \
log_{4}(64x)neq log_{4}(4^0), \
(log_{4}(x)-3)(log_{4}(x)+3) neq 0.
end{cases}$$

$$ begin{cases}
x>0, \
log_{4}(x)neq log_{4}(4^3), \
log_{4}(64x)neq log_{4}(4^0), \
log_{4}(x)neq log_{4}({4}^{-3}).
end{cases}$$

В итоге, ОДЗ получается: (xin (0;frac{1}{64}) , cup , (frac{1}{64};64) , cup , (64;+infty).)

Главное помнить про правило: мы должны стараться сделать так, чтобы все логарифмы были с одинаковым основанием, и, по возможности, привести их к одинаковым аргументам.
Здесь у каждого логарифма основание (4) — с этим тут все в порядке. А вот подлогарифмические функции постараемся сделать одинаковыми, воспользовавшись свойствами логарифмов. А именно, нам понадобятся следующие формулы:

$$a=log_{b}(b^a);$$
$$log_{a}(bc)=log_{a}(b)+log_{a}(c);$$
$$log_{a}(b^n)=n*log_{a}(b);$$

Воспользуемся ими для преобразования логарифмов в неравенстве:
$$frac{log_{4}(64)+log_{4}(x)}{log_{4}(x)-3}+frac{log_{4}(x)-3}{log_{4}(64)+log_{4}(x)}geqfrac{4*log_{4}(x)+16}{log_{4}^{2}(x)-9};$$

Заметим, что (log_{4}(64)=3)
$$frac{3+log_{4}(x)}{log_{4}(x)-3}+frac{log_{4}(x)-3}{3+log_{4}(x)}geqfrac{4*log_{4}(x)+16}{log_{4}^{2}(x)-9};$$
Теперь у нас везде одинаковые логарифмы, можно сделать замену. Пусть (t=log_{4}(x):)
$$frac{3+t}{t-3}+frac{t-3}{3+t}geqfrac{4*t+16}{t^2-9};$$
Получилось обыкновенное неравенство из 9-го класса, которое решается методом интервалов. Для этого перекинем все налево, приведем к общему знаменателю, приведем подобные и разложим на множители:
$$frac{3+t}{t-3}+frac{t-3}{3+t}geqfrac{4*t+16}{(t-3)(t+3)};$$
$$frac{(3+t)(t+3)}{(t-3)(t+3)}+frac{(t-3)(t-3)}{(t+3)(t-3)}-frac{4*t+16}{(t-3)(t+3)}geq0;$$
$$frac{9+6t+t^2+t^2-6t+9-4t-16}{(t-3)(t+3)}geq 0;$$
$$frac{2*t^2-4t+2}{(t-3)(t+3)}geq 0;$$
$$frac{2(t-1)^2}{(t-3)(t+3)}geq 0;$$
Воспользуемся методом интервалов, для этого нарисуем ось (х) и расставим знаки:

Обратите внимание, на точку (t=1), она нас устраивает, ведь при этом значении (t) все выражение равно нулю. В ЕГЭ очень часто попадаются отдельные точки, про которые надо не забыть.

$$left[
begin{gathered}
t lt -3, \
t=1, \
t gt 3.\
end{gathered}
right.$$

Сделаем обратную замену (t=log_{4}(x)):
$$left[
begin{gathered}
log_{4}(x)<-3, \
log_{4}(x)=1, \
log_{4}(x)>3. \
end{gathered}
right.$$
Решаем получившиеся простенькие логарифмические неравенства и, неожиданно, одно уравнение. Обратите внимание, что мы решаем опять не систему, а совокупность. Нас устраивают все решения, полученные в каждом уравнениинеравенстве по отдельности.

$$log_{4}(x)<log_{4}({4}^{-3});$$
$$x<{4}^{-3};$$
$$x<frac{1}{64}.$$

$$log_{4}(x)=1;$$
$$log_{4}(x)=log_{4}(4^1);$$
$$x=4.$$

$$log_{4}(x)>3;$$
$$log_{4}(x)>log_{4}(4^3);$$
$$x>64.$$

C учетом ОДЗ записываем ответ:
Ответ: (xin(-infty;frac{1}{64}) , cup , [1] , cup , (64;+infty).)

С основными стандартными типами логарифмических неравенств мы познакомились. Теперь обсудим «подводные камни», которые часто встречаются при решении логарифмических неравенств.

ОДЗ в логарифмических неравенствах. Как сделать проще?

Иногда можно немного упростить себе жизнь при поиске ОДЗ в неравенствах. Для этого нам понадобится немного логики. Разберем на примере:

Пример 7
$$1+log_{6}(4-x)leqlog_{6}(16-x^2).$$
Выпишем ОДЗ, но не будем его решать — да, так можно делать!

ОДЗ:
$$ begin{cases}
4-x>0, \
16-x^2>0.
end{cases}$$

ОДЗ выписали, теперь преобразуем исходное неравенство. Для этого (1) представим в виде логарифма с основанием (6): (1=log_{6}(6)). И воспользуемся формулой:
$$log_{a}(bc)=log_{a}(b)+log_{a}(c).$$
$$log_{6}(6)+log_{6}(4-x)leqlog_{6}(16-x^2).$$
$$log_{6}(6*(4-x))leqlog_{6}(16-x^2).$$
Сравниваются два логарифма с одинаковым основанием, можем смело избавляться от логарифмов, сохраняя знак неравенства:
$$6*(4-x)leq16-x^2;$$

И вот здесь остановимся и поговорим.
Согласно ОДЗ
$$begin{cases}
4-x>0, \
16-x^2>0.
end{cases}$$
Обратите внимание! Что если: (6*(4-x)geq0), то и (16-x^2) будем больше (0) автоматически, так как мы решаем неравенство (6*(4-x)leq16-x^2).

Для нас это означает радостную новость — оказывается необязательно решать все ОДЗ. В данном примере достаточно соблюдать условие (6*(4-x)geq0), а все остальное ОДЗ будет выполняться автоматически, исходя из логики примера. Таким образом, наш пример сводится к решению системы:
$$ begin{cases}
6*(4-x)leq16-x^2, \
6*(4-x)>0.
end{cases}$$

Что избавляет нас от необходимости решать (16-x^2>0), это будет лишним действием.
Конкретно в этом примере нет большой трудности решить все условия из ОДЗ и не думать. Но часто встречаются примеры, в которых выше представленная логика поможет вам не запутаться, ведь иногда это спасает от необходимости решения очень сложных неравенств. Особенно это касается решения заданий с параметрами в профильном ЕГЭ по математике. Вот там каждое лишнее условие в разы увеличивает объем работы.

Дорешаем пример:
$$ begin{cases}
6*(4-x)leq16-x^2, \
6*(4-x)>0.
end{cases}$$

$$ begin{cases}
24-6xleq16-x^2, \
4-x>0.
end{cases}$$

$$ begin{cases}
x^2-6x+8leq0, \
x>4.
end{cases}$$

$$ begin{cases}
2 leq x leq 4, \
4-x>0.
end{cases}$$

Ответ: (x in [2;4).)

Запишем эти правила в общем виде:

$$log_{a}(f(x)>log_{a}(g(x));$$
Эквивалентно
При (a>1):

$$ begin{cases}
f(x)>g(x), \
g(x)>0.
end{cases}$$

При (0 lt a lt 1:)

$$ begin{cases}
f(x) lt g(x), \
f(x) gt 0.
end{cases}$$

Неравенства с логарифмами по переменному основанию

Что, если в основании логарифма будет стоять не положительное число, а некоторое выражение, зависящее от (х — log_{g(x)}(f(x)))? Такие логарифмы называются логарифмами с переменным основанием.

Разберемся, как решать, на примере:

Пример 8
$$ log_{frac{x}{3}}(3x^2-2x+1) ge 0);$$

Начнем решение с ОДЗ. Обратите внимание, что условия накладываются еще и на основание логарифма — оно должно быть больше нуля и не равно единице:
$$ begin{cases}
3x^2-2x+1>0;, \
frac{х}{3}>0; ,\
frac{x}{3}neq1.
end{cases}$$

Заметим, что данный квадратный многочлен больше нуля при любых значениях (х). Второе неравенство имеет решения при (х>0). А третье дает нам (xneq 1).
Объединяя все решения, получаем итоговое ОДЗ:
$$xin(0;3)cup(3;+infty);$$

Приступим к решению.
Мы знаем, чтобы решить неравенство, нужно представить (0) справа в виде логарифма с таким же основанием. Но проблема в том, что основание логарифма слева не число, а выражение, зависящее от (х). Нас не должно это смущать, продолжаем решать точно так же, как если бы в основании было число, то есть, приводим к одинаковому основанию:
$$ log_{frac{x}{3}}(3x^2-2x+1) ge log_{frac{x}{3}}((frac{x}{3})^0);$$
$$ log_{frac{x}{3}}(3x^2-2x+1) ge log_{frac{x}{3}}(1);$$

Получилось, что сравниваются два логарифма с одинаковым основанием. Вот только это основание может быть совершенно любым. Это важно, если вспомнить, как решать классические логарифмические неравенства: знак неравенства должен меняться, если в основании логарифмов стоит число от нуля до единицы, и оставаться таким же, если основание больше единицы. У нас в основании стоит (frac{x}{3}) — выражение, зависящее от (х). Оно может принимать значения, как больше единицы, так и меньше. Поэтому логично было бы рассмотреть два случая, когда основание больше (1), и когда от (0) до (1).

Рассмотрим первый случай:

$$ frac{x}{3}>1;$$
$$ frac{x}{3}-1>0;$$
$$frac{x-3}{3}>0;$$
$$x>3.$$

То есть при (х>3) основание будет больше (1) и знак неравенства должен сохраняться:

$$ begin{cases}
3x^2-2x+1 ge 1, \
х>3.
end{cases}$$

$$ begin{cases}
3x^2-2x ge 0, \
х>3.
end{cases}$$

$$ begin{cases}
x(3x-2) ge 0, \
х>3.
end{cases}$$

Решаем методом интервалов первое неравенство в системе и находим пересечения с условием (x>3):

Метод сужения ОДЗ в логарифмических неравенствах

Эта неприятная штука часто встречается в ЕГЭ по профильной математике и приводит к множеству ошибок и потерянным баллам.

Оказывается, при решении логарифмических неравенств не всегда можно применять формулы из свойств логарифмов (вынесение степени, логарифм от произведения или частного и т.д.). Это связано с изменением области определения логарифмов.

Что это все значит? Проще обсудить на примерах. Рассмотрим простое неравенство с логарифмом:

Пример 11
$$log_{3}(x^2)>4;$$

Как обычно, начинаем с ОДЗ:
$$x^2>0;$$
$$x neq 0.$$

Решаем сам пример, для этого представим (4)-ку справа в виде логарифма с основанием (3).
$$log_{3}(x^2)>log_{3}(3^4);$$
$$x^2>3^4;$$
Разложим в разность квадратов и методом интервалов решим:
$$(x-9)(x+9)>0;$$
$$xin(-infty;-9)cup(9;+infty);$$

А теперь обратите внимание, что этот же самый пример можно было решить по-другому. Согласно формуле вынесения степени из-под логарифма (log_{a}(b^n)=n*log_{a}(b)), можно вынести 2-ю степень. Сделаем это и посмотрим, к чему все это приведет.

$$log_{3}(x^2)>4;$$
$$2*log_{3}(x)>4;$$
Сократим на (2):
$$log_{3}(x)>2;$$
Отдельно обратим внимание на то, как изменилось ОДЗ неравенства после вынесения степени.
$$ОДЗ: x>0;$$
Продолжаем решать неравенство:
$$log_{3}(x)>log_{3}(3^2);$$
$$x>9;$$

Итак, мы решили одно и то же неравенство двумя способами, но ответ получился разный. Как вы думаете, почему? Какое из решений будет верным?

На самом деле, все очень просто. Напоминаю, что логарифм существует только от положительных чисел. Значит, когда под логарифмом стоит (x^2), то вместо (x) можно подставлять любые значения, кроме 0. Вторая степень будет превращать подлогарифмическое выражение в положительное, что нас устраивает. Поэтому могут существовать отрицательные значения (x), при подстановке которых ничего не нарушается. Собственно говоря, у нас так и получилось в первом случае: (xin(-infty;-9)cup(9;+infty)). Есть отрицательные корни, которые удовлетворяют ОДЗ.

А во втором случае, как только мы вынесли из-под логарифма четную степень, отрицательные корни (x) больше не подходят, ведь логарифм не будет существовать, и положительные корни — единственные, которые могут получиться. Другими словами, наше ОДЗ СУЗИЛОСЬ!
И, как мы увидели, ответ получился другой, без отрицательных промежутков. Что, разумеется, неправильно.

Очень важное общее правило. Нельзя с логарифмами производить такие преобразования, при которых происходит сужение области допустимых значений ВСЕГО ПРИМЕРА. Если ОДЗ после преобразования остается прежним или увеличивается, то такое преобразование разрешено.

Отдельная очень важная оговорка про то, что ОДЗ не должно сужаться у всего примера. Посмотрите еще раз на разобранный выше пример 6. Там в одном из логарифмов была четная четвертая степень, которую мы не постеснялись вынести, и ни про какое сужение ОДЗ даже речи не было. Неужели неправильно решили пример? Нет, все абсолютно верно, ведь ОДЗ всего неравенства не сузилось, а значит, можно было пользоваться формулой.

Кстати, все эти размышления касаются не только формул вынесения степени, а всех свойств логарифма (суммы, разности и т.д.), нужно быть внимательными! Но чаще всего встречаются ловушки, связанные с вынесением четной степени.

Пример 12
$$9*log_{7}(x^2+x-2)leq10+log_{7}left(frac{(x-1)^9}{x+2}right).$$
Найдем ОДЗ:
$$ begin{cases}
x^2+x-2>0, \
frac{(x-1)^9}{x+2}>0.
end{cases}$$

$$ begin{cases}
(x+2)(x-1)>0, \
frac{(x-1)^9}{x+2}>0.
end{cases}$$

Решаем методом интервалов:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как исправить код ошибки 0x80070091
  • Как найти уменьшаемое вычитаемое разность делимое делитель
  • Dark souls remastered fatal error недостаточно памяти как исправить
  • Как найти формулу сечения проводника формула
  • Как найти угол параллелограмма через стороны

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии