Как найти одз arcsin

Область определения функции

Каждая функция имеет свою собственную область определения. Целью этого материала является объяснение этого понятия и описание способов ее вычисления. Сначала мы введем основное определение, а потом на конкретных примерах покажем, как выглядит область определения основных элементарных функций (степенной, постоянной и др.) Разбирать случаи с более сложными функциями мы пока не будем.

В рамках данной статьи мы рассмотрим область определения функций, включающих в себя только одну переменную.

Понятие и обозначение области определения функции

Самое простое определение этого понятия дается в учебниках тогда, когда впервые вводится понятие функции как таковой. На этом этапе термином «область определения» обозначают множество всех возможных значений аргумента.

По мере углубления знаний о функциях определение сужается и усложняется. Так, в одном из учебников можно встретить следующую формулировку:

Используя это определение, охарактеризуем нужное нам понятие более четко:

Областью определения функции называется множество значений аргумента, на котором можно задать эту функцию.

Как найти области определения для основных элементарных функций

Прочитав определения выше, легко понять, что понятие области определения очень важно для любой функции. Это ее неотъемлемая часть, которую задают вместе с самой функцией. То есть когда мы вводим какую-либо функцию, то мы сразу указываем и область ее определения. Обычно в рамках школьного курса основные функции изучаются последовательно: сначала прямые пропорциональности, затем линейные функции, потом y = x 2 и т.д., а их области определения указываются в качестве основных свойств.

В этом пункте мы расскажем, какие области определения имеют основные элементарные функции.

Область определения постоянной функции

Область определения функции с корнем

Область определения таких функций будет зависеть от того, является ли показатель четным или нечетным числом.

Область определения степенной функции

Перечислим возможные варианты.

Поясним нашу мысль несколькими примерами.

Область определения показательной функции

Область определения логарифмической функции

Область определения тригонометрических функций

Чтобы узнать, на каком промежутке будут определены тригонометрические функции, нужно вспомнить, как именно они задаются и как называются.

Область определения тригонометрических функций

К обратным тригонометрическим относятся функции арксинуса, арккосинуса, арктангенса и арккотангенса.

Области определения основных функций в табличном виде

Чтобы запомнить или легко найти нужные нам области, правила вычисления которых мы объяснили выше, представим всю информацию в табличном виде. Не лишним будет оформить ее на отдельном листе и держать под рукой, так же, как и таблицу простых чисел, квадратов и др. Она очень пригодится при работе с функциями, пока вы не выучите ее содержимое наизусть.

y = sin x y = cos x y = t g x y = c t g x

y = a r c sin x y = a r c cos x y = a r c t g x y = a r c c t g x

Подводя итоги статьи, следует отметить, что в рамках школьного курса изучаются не только основные элементарные функции, но и их различные сочетания. Задачи такого типа встречаются очень часто. Области определения таких комбинированных функций указываются далеко не всегда. Авторы задач подразумевают, что в таких случаях областью определения функции можно считать множество таких значений аргумента, при которых она будет иметь смысл. Это позволяет нам приблизиться к ответу на вопрос, как именно вычисляется область определения функции в подобных случаях.

Источник

Область определения функции

5feb767f3f125512584509

Понятие области определения функции

Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.

Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.

Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так: y = f(x).

Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.

Из понятия функции сформулируем определение области определения функции.

Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох.

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

Чтобы обозначить область определения некоторой функции f, используют запись D(f). При этом нужно помнить, что у некоторых функций есть собственные обозначения. Например, у тригонометрических. Поэтому в учебниках можно встретить такие записи: D(sin) — область определения функции синус, D(arcsin) — область определения функции арксинус.

Можно также записать D(f), где f — функция синуса или арксинуса. Если функция f определена на множестве значений x, то можно использовать формулировку D(f) = X. Так, например, для того же арксинуса запись будет выглядеть так: D (arcsin) = [-1, 1].

Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:

Например, все действительные числа от 2 до 5 включительно можно записать так:

Все положительные числа можно описать так:

Ноль не положительное число, поэтому скобка возле него круглая.

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x2 и другие. А области их определения изучаем, как свойства.

Рассмотрим области определения основных элементарных функций.

Область определения постоянной функции

Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа.

Смысл функции — в том, что каждому значению аргумента соответствует значение, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.

Константная функция — функция, которая для любого элемента из области определения возвращает одно и то же заданное значение. Множество значений такой функции состоит из одного единственного элемента.

Область определения функции с корнем

Функцию с корнем можно определить так: y = n √x, где n — натуральное число больше единицы.

Рассмотрим две вариации такой функции.

Область определения корня зависит от четности или нечетности показателя:

Значит, область определения каждой из функций y = √x, y = 4 √x, y = 6 √x,… есть числовое множество [0, +∞). А область определения функций y = 3 √x, y = 5 √x, y = 7 √x,… — множество (−∞, +∞).

Пример

Найти область определения функции: 5feb774e6c680610766230

Так как подкоренное выражение должно быть положительным, то решим неравенство x 2 + 4x + 3 > 0.

Разложим квадратный трёхчлен на множители:

Дискриминант положительный. Ищем корни:

5feb77b05f9e8116228932

Значит парабола a(x) = x 2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x 2 + 4x + 3 2 + 4x + 3 > 0).

Область определения степенной функции

Область определения степенной функции зависит от значения показателя степени.

Перечислим возможные случаи:

Рассмотрим несколько примеров.

Область определения показательной функции

Область определения показательной функции — это множество R.

Примеры показательных функций:

Область определения каждой из них (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.

Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:

Рассмотрим примеры логарифмических функций:

Область определения этих функций есть множество (0, +∞).

Пример

Укажите, какова область определения функции: 5feb78992273f987822086

Составим и решим систему:

5feb78df1e994429456861

5feb78f4e09f2729171503

Область определения тригонометрических функций

Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.

Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что 5feb794539695276815377и x ∈ r, x ≠ πk, k ∈ Z соответственно.

Пример

Найдите область определения функции f(x) = tg2x.

Так как a(x) = 2x, то в область определения не войдут следующие точки:

5feb797c6bbd8219952037

Перенесем 2 из левой части в знаменатель правой части:

5feb799740f05250651320

В результате 5feb79b766075638713380. Отразим графически:

5feb79dcf0454760676675

Ответ: область определения: 5feb79f7c3cf5427006692.

Область определения обратных тригонометрических функций

Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.

Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.

Таблица областей определения функций

Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.

И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните.

Функция

Область определения функции

Источник

Как найти область определения функции?

Что значит найти область определения

После того, как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y = f ( x ) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.

Ограничение области определения

Правила нахождения области определения

При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.

Область определения суммы, разности и произведения функций

Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно, чтобы имело место следующее утверждение:

Поэтому при решении рекомендуется использование фигурной скобки при записи условий, так как это является удобным способом для понимания перечисления числовых множеств.

Найти область определения функции вида y = x 7 + x + 5 + t g x .

Для нахождения области определения произведения функций необходимо применять правило:

Ответ: область определения y = 3 · a r c t g x · ln x – множество всех действительных чисел.

Необходимо рассмотреть как разность двух функций f 1 и f 2 .

Для нахождения области определения функции y = log 3 x − 3 · 2 x получим, что

Область определения сложной функции

Видно, что область определения сложной функции вида y = f 1 ( f 2 ( x ) ) находится на пересечении двух множеств таких, где x ∈ D ( f 2 ) и f 2 ( x ) ∈ D ( f 1 ) . В стандартном обозначении это примет вид

x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 )

Рассмотрим решение нескольких примеров.

Тогда получим систему неравенств вида

Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.

Преобразуем систему вида

Заданная функция может быть расписана, как y = f 1 ( f 2 ( f 3 ( x ) ) ) , где имеем f 1 – функция синуса, f 2 – функция с корнем 4 степени, f 3 – логарифмическая функция.

При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.

Область определения дроби

x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0

Область определения логарифма с переменной в основании

x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1

А аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:

x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 log a f 2 ( x ) ≠ 0 = x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1

Область определения показательно-степенной функции

В общем случае

Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.

Таблицы основных результатов

Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.Ф

Сумма, разность, произведение функций

Расположим функции и их области определения.

Прямая пропорциональность y = k · x

Обратная пропорциональность y = k x

Дробная y = f 1 ( x ) f 2 ( x )

y = log f 2 ( x ) f 1 ( x )

В частности, y = log a f 1 ( x )

В частности, y = log f 2 ( x ) a

Источник

Обратные тригонометрические функции и их графики

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a — такое число с, что

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения — это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения — иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

%D0%A123 2

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

А вторая серия решений нашего уравнения — это

Подробнее о решении тригонометрических уравнений — здесь.

Повторим определение еще раз:

%D0%A123 1

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Значит, областью определения функции y = arcsin x является отрезок

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

Строим график функции

%D1%80%D0%B8%D1%81222 1

1. Область определения

2. Область значений

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса — отрезок Область значений — отрезок

%D0%A124 1

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Заполним таблицу, пользуясь определением арккосинуса.

Вот график арккосинуса:

%D1%80%D0%B8%D1%81222 2

1. Область определения

2. Область значений

Эта функция общего вида — она не является ни четной, ни нечетной.

5. Функции и являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

%D0%A125 1

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? — Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке — график функции

%D1%80%D0%B8%D1%81223 1

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными — конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

%D1%80%D0%B8%D1%81223 2

1. Область определения

2. Область значений

4. Функция является строго убывающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Источник

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Для четкого понимания рассмотрим пример.

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Таблица синусов основных углов предлагает такие результаты значений углов:

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

Области определения функций
Функиця Ее область определения
Постоянная y = C R
Корень y = x n — π 2 — π 3 — π 4 — π 6 0 π 6 π 4 π 3
в г р а д у с а х — 90 ° — 60 ° — 45 ° — 30 ° 0 ° 30 ° 45 ° 60 °
a r c sin α к а к ч и с л о — π 2 — π 3 — π 4 — π 6 0 π 6 π 4 π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

Следуя из таблицы, находим значения арккосинуса:

π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0 в г р а д у с а х 180 ° 150 ° 135 ° 120 ° 90 ° 60 ° 45 ° 30 ° 0 ° a r c cos α к а к ч и с л о π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α — 3 — 1 — 3 3 0 3 3 1 3
a r c t g a к а к у г о л в р а д и а н а х — π 3 — π 4 — π 6 0 π 6 π 4 π 3
в г р а д у с а х — 60 ° — 45 ° — 30 ° 0 ° 30 ° 45 ° 60 °
a r c t g a к а к ч и с л о — π 3 — π 4 — π 6 0 π 6 π 4 π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

image010 bmKZ1IK

image011 p59d3De

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

image012 eyl9kBt

Нахождение значения arcsin, arccos, arctg и arcctg

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

image013 NGfZVtT

image014 2FlYAHT

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Источник

  1. Понятие арксинуса
  2. График и свойства функции y=arcsinx
  3. Уравнение sin⁡x=a
  4. Примеры

Определение синуса через отношение сторон прямоугольника и с помощью числовой окружности – см. §2 данного справочника.
Свойства функции y=sinx на всей области определения (xinmathbb{R}) — см. §4 данного справочника.
Определение и свойства взаимно обратных функций — см. §2 справочника для 9 класса.

п.1. Понятие арксинуса

В записи (y=sinx) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если (sinx=1), то (x=fracpi2+2pi k, kinmathbb{Z}); если (sinx=0), то (x=pi k, kinmathbb{Z}) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: (-fracpi2 leq xleq fracpi2) (правая половина числовой окружности).

Арксинусом числа (a |a|leq 1) называется такое число (xin[-fracpi2; fracpi2]), синус которого равен (a). $$ begin{cases} arcsina=x\ |a|leq 1 end{cases} Leftrightarrow begin{cases} sinx=a\ -fracpi2leq xleq fracpi2 end{cases} $$

Например:

(arcsinfrac12=fracpi6, arcsinleft(-frac{sqrt{3}}{2}right)=-frac{pi}{3})
(arcsin2) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arcsinx

График и свойства функции y=arcsin x
1. Область определения (-1leq xleq1).
2. Функция ограничена сверху и снизу (-fracpi2leq arcsinxleq fracpi2). Область значений (yin[-fracpi2; fracpi2])
3. Максимальное значение (y_{max}=fracpi2) достигается в точке x=1
Минимальное значение (y_{min}=-fracpi2) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: (arcsin(-x)=-arcsin(x)).

п.3. Уравнение sin⁡x=a

Уравнение sinx=a Значениями арксинуса могут быть только углы от (-fracpi2) до (fracpi2) (от -90° до 90°). А как выразить другие углы через арксинус?

Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.

Например:

1) Решим уравнение (sinx=frac12).
Найдем точку (frac12) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (fracpi6) и (frac{5pi}{6}) — это базовые корни.
Если взять корень справа (fracpi6) и прибавить к нему полный оборот (fracpi6+2pi=frac{13pi}{6}), синус полученного угла (sinfrac{13pi}{6}=frac12), т.е. (frac{13pi}{6}) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi6+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (frac{5pi}{6}+2pi k).
Получаем ответ: (x_1=fracpi6+2pi k) и (x_2=frac{5pi}{6}+2pi k)
Заметим, что (arcsinfrac12=fracpi6). Полученный ответ является записью вида
(x_1=arcsinfrac12+2pi k) и (x_2=pi-arcsinfrac12+2pi k)
А т.к. арксинус для (frac12) точно известен и равен (fracpi6), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.

2) Решим уравнение (sinx=0,8)

Уравнение sin⁡x=a Найдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению правая точка – это угол, равный arcsin0,8.
Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
(x_1=arcsin0,8+2pi k,)
(x_2=pi-arcsin0,8+2pi k)

В общем случае:

Если (|a|leq 1), то уравнение (sinx=a) имеет решения $$ left[ begin{array} {l l} x=arcsina+2pi k\ x=pi-arcsina+2pi k end{array} right. Leftrightarrow x=(-1)^k arcsina+pi k, kinmathbb{Z} $$ Если (|a|gt 1) уравнение решений не имеет.

Докажем, что семейства решений для корней справа и слева можно записать одним выражением (x=(-1)^k arcsina+pi k).
Действительно, для чётных (k=2n) получаем: $$ x=(-1)^{2n} arcsina+pi cdot 2n=arcsina+2pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных (k=2n+1):
$$ x=(-1)^{2n+1} arcsina+pi cdot (2n+1)=-arcsina+2pi n +pi=pi-arcsina+2pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+pi kLeftrightarrow left[ begin{array} {l l} x=arcsina+2pi n\ x=pi-arcsina+2pi n end{array} right. $$ Что и требовалось доказать.

Для примеров, решённых выше, можем записать: $$ 1) left[ begin{array} {l l} x_1=fracpi6+2pi k\ x_2=frac{5pi}{6}+2pi k end{array} right. Leftrightarrow x=(-1)^kfracpi6 +pi k $$
$$ 2) left[ begin{array} {l l} x_1=arcsin0,8+2pi k\ x_2=pi-arcsin0,8+2pi k end{array} right. Leftrightarrow x=(-1)^karcsin0,8 +pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.

п.4. Примеры

Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.

Для (y=arcsinx) область определения (-1leq xleq 1), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=sinx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) и область значений (-1leq yleq 1).
Строим графики:
Пример 1
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (sin x=-1)
Пример 2
(x=-fracpi2+2pi k)
б) (sin x=frac{sqrt{2}}{2})
Пример 2
$$ left[ begin{array} {l l} x_1=fracpi4+2pi k\ x_2=frac{3pi}{4}+2pi k end{array} right. Leftrightarrow x=(-1)^frac{pi}{4} +pi k $$
в) (sin x=0)
Пример 2
(x=pi k)
г) (sin x=sqrt{2})
Пример 2
(sqrt{2}gt 1, xinvarnothing)
Решений нет
д) (sin x=0,7)
Пример 2
begin{gather*} left[ begin{array} {l l} x_1=arcsin(0,7)+2pi k\ x_2=pi-arcsin(0,7)+2pi k end{array} right. Leftrightarrow\ Leftrightarrow x=(-1)^k arcsin(0,7) +pi k end{gather*}
e) (sin x=-0,2)
Пример 2
Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: begin{gather*} left[ begin{array} {l l} x_1=-arcsin(0,2)+2pi k\ x_2=pi+arcsin(0,7)+2pi k end{array} right. Leftrightarrow\ Leftrightarrow x=(-1)^{k+1}arcsin(0,2) +pi k end{gather*}

Пример 3. Запишите в порядке возрастания: $$ arcsin0,2; arcsin(-0,7); arcsinfracpi4 $$

Пример 3 Способ 1. Решение с помощью числовой окружности

Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; (fracpi4approx 0,79)
Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от (-fracpi2) до (fracpi2)).
Получаем: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$

Пример 3 Способ 2. Решение с помощью графика (y=arcsinx)

Отмечаем на оси OY аргументы 0,2; -0,7; (fracpi4approx 0,79). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$

Способ 3. Аналитический
Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; (fracpi4).
И записываем арксинусы по возрастанию: (arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4)

Пример 4*. Решите уравнения:
(a) arcsin(x^2-3x+3)=fracpi2) begin{gather*} x^2-3x+3=sinfracpi2=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end{gather*} Ответ: {1; 2}

(б) arcsin^2x-arcsinx-2=0)
( text{ОДЗ:} -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: $$ t^2-t-2=0Rightarrow (t-2)(t+1)=0Rightarrow left[ begin{array} {l l} t_1=2gt fracpi2 — text{не подходит}\ t_2=-1 end{array} right. $$ Возвращаемся к исходной переменной: begin{gather*} arcsinx=-1\ x=sin(-1)=-sin1 end{gather*} Ответ: -sin1

(в) arcsin^2x-pi arcsinx+frac{2pi^2}{9}=0)
( text{ОДЗ:} -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: begin{gather*} t^2-pi t+frac{2pi^2}{9}=0\ D=(-pi)^2-4cdot frac{2pi^2}{9}=frac{pi^2}{9}, sqrt{D}=fracpi3 Rightarrow left[ begin{array} {l l} t_1=frac{pi-fracpi3}{2}=fracpi3\ t_2=frac{pi+fracpi3}{2}=frac{2pi}{3}gt fracpi2 — text{не подходит} end{array} right. end{gather*} Возвращаемся к исходной переменной:
begin{gather*} arcsinx=fracpi3\ x=sinfracpi3=frac{sqrt{3}}{2} end{gather*} Ответ: (frac{sqrt{3}}{2})

Уравнения и неравенства, содержащие обратные тригонометрические функции

Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.

Вначале напомним важнейшие свойства обратных тригонометрических функций.

1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];

arcsin (– x) = – arcsin x (x О [– 1; 1]);

2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];

3 Функция y = arctg x определена и монотонно возрастает на R;

arctg (– x) = – arctg x (x О R);

4 Функция y = arcctg x определена и монотонно убывает на R;

5

Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.

I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями

Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.

1 .

2 .

3 .

4 .

Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).

Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).

Решение. Уравнение равносильно системе

Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.

Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).

Решение. Неравенство равносильно следующему:

Пример 3. Решить неравенство 3arcsin 2x

Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).

Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .

Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:

arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы

Аналогичные равносильные преобразования используются и при решении задач с параметрами.

Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.

Решение. Уравнение равносильно уравнению

Рассмотрим два случая:

1) a = 0. В этом случае система примет вид:

2) a № 0. В этом случае уравнение системы является квадратным. Его корни:
Так как | x | Ј 1, то . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.

Ответ: при при a = – 1 и a = 0 x = 1; при прочих a решений нет.

Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).

Решение. Неравенство равносильно системе

Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > первое неравенство системы равносильно неравенству x і 1, при a – неравенству x Ј 1, при a = решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.

Ответ: при | a | > решений нет; при a = – x = 1;

II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями

При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)

Рассуждая аналогично, можно получить следующие переходы:

Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.

Пример 9. Решить уравнение

Корень является посторонним.

Пример 10. Решить уравнение

Корень x = – 2 является посторонним.

Ответ: .

Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).

Корни вида являются посторонними.

Ответ:

При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.

Пример 12. Решить неравенство

Решение. Рассмотрим функцию

и решим неравенство f(x) Ј 0 методом интервалов.

1) Найдем D(f). Для этого решим систему

2) Найдем нули f(x). Для этого решим уравнение

Корень x = – 2 является посторонним.

3) Решим неравенство f(x) Ј 0 методом интервалов.

Замечание 4. Заметим, что найдя корень уравнения можно было не обращаться к методу интервалов, а воспользоваться тем, что функция является монотонно возрастающей, а функция монотонно убывающей на отрезке . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.

При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,

Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2xa).

Решение. Данное уравнение равносильно системе

Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень

Ответ: при любом a

III. Замена переменной

Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.

Пример 14. Решить уравнение

Решение. Обозначим После преобразований получим уравнение

Поскольку

откуда

Ответ:

Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.

Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда

Поскольку откуда

Ответ: [– 1; cos 2] И [cos 1; 1].

Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества

Пример 16. Решить уравнение

Решение. Данное уравнение равносильно следующему:

Пусть arcsin x = t,

Тогда

IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций

Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.

Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.

Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.

Теорема 3. Если то на множестве X уравнение f(x) = g(x) равносильно
системе

Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.

Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.

Пример 18. Решить уравнение

Решение. Пусть x 2 + x = t. Тогда уравнение примет вид

Функции являются монотонно возрастающими. Поэтому функция также является монотонно возрастающей. В силу теоремы 1 уравнение имеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0

Пример 19. Решить неравенство

Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке функцию Уравнение в силу теоремы 1 имеет не более одного корня. Очевидно, что – корень этого уравнения. Поэтому решением неравенства является отрезок

Ответ:

Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .

Решение. Поскольку arcsin то левая часть уравнения не превосходит Знак равенства возможен, лишь если каждое слагаемое левой части равно . Таким образом, уравнение равносильно системе:

Решение последней системы не представляет труда.

Решение уравнений и неравенств, содержащих обратные тригонометрические функции

Уроки 1-2 в 10 академическом классе на тему

«Решение уравнений и неравенств,

содержащих обратные тригонометрические функции»

· Правильно определяет вид уравнения;

· Распознает уравнения, содержащие переменную под знаком обратной тригонометрической функции из множества уравнений других видов;

· Решает простейшие уравнения через определение «арктермина»;

· Определяет метод решения конкретного уравнения в знакомой ситуации;

· Решает более сложные уравнения знакомым методом: графическим, функционально-графическим, сведением к алгебраическому;

· Правильно выделяет уравнения, решаемые новыми методами: применением тождества, взятием удобной тригонометрической функции обеих частей уравнения, по свойствам монотонных функций;

· Определяет метод решения конкретного уравнения в знакомой ситуации;

· Решает неравенства знакомым методом: графическим, функционально-графическим.

· Знают вид уравнения;

· Умеют выделять уравнения из уравнений других видов;

· Применяют известные методы для решения уравнений с аркфункциями в знакомой ситуации.

Наглядные пособия и раздаточный материал:

— Раздаточный материал для диктанта;

— Презентация к уроку.

Урок изучения нового материала.

Частично-поисковый и проблемный.

1. Организационный момент и постановка целей.

2. Актуализация знаний через подготовку домашнего задания и постановку вопросов (с использованием презентации) на знание:

— определения обратных тригонометрических функций и «арктерминов»;

— некоторых свойств обратных тригонометрических функций;

— тождеств с обратными тригонометрическими функциями и способов их доказательства;

— алгоритмов решения уравнений и неравенств функционально-графическим методом;

— основных видов уравнений и неравенств;

— основных методов решения уравнений и неравенств.

2. Введение нового материала через проверку домашнего задания и постановку новой проблемы в этом задании, которая приведет к введению определения уравнения, содержащего переменную под знаком обратной тригонометрической функции.

3. Этап промежуточного контроля с целью выявления уровня усвоения метода решения простейших уравнений с проверкой с помощью презентации.

4. Изучение новых методов в новых ситуациях через сравнение с известными ситуациями из других тем методов решения уравнений.

5. Подведение итогов через рефлексию деятельности учащихся, оценку, самооценку и определение целей следующего урока. Задание на дом.

«Что значит решить задачу?

(советский математик, профессор МГУ,

Эпиграф урока: «Функция, как правило, определяется

для тех значений аргумента, какие для

данной задачи представляют реальное

I. На перемене до урока.

Просмотреть выполнение учащимися домашних работ. Вызвать к доске для оформления заданий 1-3 домашней работы трех учеников.

Задание №1. Доказать тождества (13), (20), (25);

Задание №2. Вывести из тождеств новые (учесть ОДЗ): (1, (18).

Задание №3 (Задание дома оформить на одной странице, вторую оставив свободной для последующих записей на уроке). Графически найти сумму координат точек пересечения графиков функций (а) ;

(б)

I этап. Организационный момент.

— (Учитель) Здравствуйте, ребята! Начинаем урок.

Чему мы научились с вами на прошлых уроках?

· (ученик) Изучили обратные тригонометрические функции, научились строить их графики, рассмотрели свойства;

· Научились вычислять значения обратных тригонометрических функций; сравнивать значения выражений;

· Вывели тождества, содержащие обратные тригонометрические функции, помогающие вычислениям значений функций или выражений.

— И чем планировали заниматься сегодня на уроке? Чему должны научиться?

· Сегодня мы познакомимся с уравнениями и неравенствами, содержащими обратные тригонометрические функции;

· Выведем формулы для решения простейших уравнений и неравенств;

· Попробуем использовать известные методы для решения уравнений и неравенств, содержащих аркфункции;

· Познакомимся с новыми специальными методами решения.

— Какие знания из нашего опыта попробуем применить? Определения арксинуса, арккосинуса, арктангенса и арккотангенса;

· Определения обратных тригонометрических функций;

· Тождества, содержащие тригонометрические функции;

· Методы решения уравнений и неравенств, основные и специальные.

— Какие умения будем использовать?

· Строить графики и их читать;

· Решать уравнения и неравенства известными методами.

— Итак, открыли тетради (напоминаю, страница с заданием №3 осталась свободной). Тема урока – «Решение уравнений и неравенств, содержащих обратные тригонометрические функции».

· (Работаем с презентацией)

Слайд 1(тема урока)

Слайд 3 (Эпиграф темы)

— Работаем устно. Какие функции называем обратными тригонометрическими функциями?

· (Слайд 5) Функции вида у=arcsin x, y=arccos x, y=arctg x, y=arcctg x называются обратными тригонометрическими функциями или аркфункциями.

— При формировании определения «arcsin a» что понимали под «а»? Под «arcsin a»?

· «а» — это число, «arcsin a» — это угол.

— Сформулируйте определения arcsin a, arccos a, arctg a, arcctg a.

· Арксинус числа — такой угол , синус которого равен а.

· Арккосинус числа — такой угол , косинус которого равен а.

· Арктангенс числа — такой угол , синус которого равен а.

· Арккотангенс числа — такой угол , котангенс которого равен а.

— Используя определения, найдите значения выражений (Слайд 8):

— Какие свойства арксинуса и арккосинуса можно использовать при вычислении в последних случаях?

· arcsin(-a)=-arcsin a; arccos(-a)=-a

— Какова связь между арксинусом и арккосинусом одного и того же числа?

·

— Используя определения, найдите значения выражений (Слайд 9):

— Какие свойства арктангенса и арккотангенса можно использовать при вычислении в последних случаях?

· arctg(-a)=-arctg a; arcctg(-a)=-a

— Какова связь между арктангенсом и арккотангенсом одного и того же числа?

— Итак, получили знакомые нам тождества. (Слайд 10) Имеют ли смысл выражения ?

· Первое, второе – нет, так как числа 2 и не входят в отрезок . Третье – имеет смысл, так как арктангенс определен на множестве всех действительных чисел.

— Может ли значение выражения быть равно 5, , -10?

· Углы в 5 и -10 радиан не входят в область значений ни одной аркфункции. Угол в радиан может быть значением арккосинуса числа, так как в данном случае .

— Найдите значения выражений (Слайд 11):

· Ответ: (учащиеся обосновывают

ответы. Если потребуется, то проговорить и показать в презентации свойства аркфункций, а именно (слайд 50):

— Проверяем домашнее задание.

Задание №1. Доказать тождества (13), (20), (25);

· (13)

Доказательство: , ч. т.д.

(20)

, ч. т.д.

(25)

Так как

При доказательстве каждого тождества можно использовать соотношения в прямоугольном треугольнике, с учетом знаков тригонометрических функций, например, докажем, что . Пусть arcsin x=, тогда sin =х, то есть отношение противолежащего катета к гипотенузе равно .

, найдем соs по теореме Пифагора (смотри рисунок). Тогда tg равен отношению противолежащего катета к прилежащему, то есть .

Задание №2. Вывести из тождеств новые (учесть ОДЗ): (13), (6), (18).

(13)

ОДЗ левой и правой частей равенства есть промежуток , . Пусть угол arcsin x=t, t . Имеем тригонометрическое уравнение tg t =,

t= , то есть .

(6) равносильно на ОДЗ .

(18) равносильно на ОДЗ .

II этап. Изучение нового материала.

Задание №3. Графически найти сумму координат точек пересечения графиков функций (а) ;

(б)

· Ответ (а): +1; (б) . (Учащиеся проверяют ответы задания в тетради).

— Работаем с решением (а).

— Что конкретно требовалось найти по условию задачи?

· Сумму соответствующих абсцисс и ординат точек пересечения графиков функций или сумму абсциссы и ординаты точки пересечения (если она единственная).

— Как мы поступали согласно требованиям задачи?

· В одной системе координат строили графики соответствующих функций, находили координаты их точек (точки) пересечения, находили сумму.

— А если бы требовалось найти абсциссу точки пересечения графиков, как можно было бы переформулировать задачу?

· Решить уравнение .

— Можно ли данное уравнение отнести к какому-либо известному виду?

— Перечислите, пожалуйста, известные вам виды уравнений.

— Какая, на ваш взгляд, функция могла бы определить вид данного уравнения?

— Действительно, данное уравнение – это уравнение, содержащее переменную под знаком обратной тригонометрической функции (Учитель акцентирует внимание учащихся на запись на доске темы урока, учащиеся записывают в тетрадях)

— Каким методом в данном случае мы его решили?

— Перечислите основные шаги этого метода применительно к данному уравнению.

— Заменим знак равенства на знак неравенства, например, (учитель цветным мелом на доске, а учащиеся цветной ручкой в тетради делают исправления). Какое неравенство по виду получили?

· Неравенство, содержащее переменную величину под знаком обратной тригонометрической функции.

— Решите его, используя предыдущее уравнение, и перечислите основные шаги графического метода решения неравенств. (Учитель приглашает желающего ученика к доске для комментария, учащиеся оформляют решение в тетради).

— Внимание, пример (б). Найдем абсциссу общих точек (точки) графиков функций. Ответ?

— Составьте уравнение, соответствующее этой задаче и определите его вид.

· , это уравнение, содержащее обратную тригонометрическую функцию.

— Можно ли было бы сразу оговорить количество корней уравнения? Почему?

· Да, не более одного корня, так как в левой части уравнения функция монотонно убывает на своей области определения, а в правой – возрастает.

— Можно ли было тогда обойтись без построения графиков при решении?

· Подобрать корень уравнения, используя функционально-графический метод.

Проговорите и запишите решение на доске. (Ученик проговаривает решение данным методом и записывает, учащиеся записывают в тетрадях).

— Можно ли было этим методом решить уравнение (а)? Обоснуйте.

· Нет, так как функции, стоящие в обеих частях уравнения, имеют одинаковый характер монотонности (возрастающие).

— Меняем знак равенства на знак «>» и решаем полученное неравенство. Метод – функционально-графический. Можем ли мы использовать решение уравнения для решения неравенства и почему?

· Корень уравнения будет делить область определения (!) уравнения на промежутки, в каждом из которых монотонные функции, стоящие в обеих частях уравнения, будут сохранять постоянный знак. Нам останется только выбрать промежуток, на котором график левой функции лежит выше (л. ч. > пр. ч.) графика правой.

— Решим и прокомментируем запишем в тетради.

— Попробуйте решить функционально-графическим методом уравнение arcsin x =. (Слайд 17). Обоснуйте решение.

· Слева – возрастающая функция, справа – постоянная. Уравнение имеет не более одного корня. Находим подбором.

— А как проще решить уравнение?

· По определению: arcsin x – это угол, синус которого равен х, то есть x=sin() = -1.

— Составьте простейшие по виду уравнения с обратными тригонометрическими функциями, которые можно решать по определению.

— Итак, уравнения такого вида мы будем называть простейшими уравнениями, содержащими обратные тригонометрические функции.

Пользуясь определениями, составим формулы для решения уравнений (у каждого ученика на столе лежат заготовки, их дополняем. Ученики проговаривают, работает презентация).

(Слайд 18)

— Работаем устно. Решить простейшие уравнения по формулам или определению:

· (1) Нет решений, так как не входит в область значений арксинуса промежуток .

· (3) x =, так как 2х=tg=1.

· (4) x=0, так как tg =0.

III этап. Этап промежуточного контроля

— Проверим себя. Небольшой диктант (5-7 минут) по простейшим уравнениям, содержащим обратные тригонометрические функции. (У каждого ученика — листочки с текстом. Работаем на тех же листочках, вписывая решения). (Слайд 20).

— (Листочки собираем для проверки, предварительно ученики прописывают ответы себе в тетрадь). Проверим. Оценку за диктант можете себе предварительно выставить: 4 верных — «5», 3 верных – «4», 2 верных – «3», 1-0 – «2».

1 вариант 2 вариант

— Продолжаем работу. Итак, с какими по виду уравнениями мы познакомились?

· (Слайд 22, виды) С уравнениями, содержащими переменную величину под знаком обратной тригонометрической функции.

— Выберите из представленных уравнений те, которые можно отнести к этому виду. (К слайду 47).

· Это уравнения (4), (5), (6) из первого столбика и все уравнения из второго.

— Какие из них можно отнести к простейшим?

· Уравнения(2), (5) из первого столбика.

— Каким методом вы можете их решить?

· По определению (по формулам).

— Можете ли вы назвать корни второго уравнения?

IV этап. Изучение новых методов

— Пробуем решить другие уравнения. Какие методы решения мы можем попробовать применить?

(Внимание учащихся — на второй столбик)(Слайд 36 в презентации)

· функционально-графический и графический, по определению, оценка обеих частей уравнения, сведение к квадратному…

— Какие уравнения мы можем решить перечисленными методами?

(Ребята обязательно догадаются, как можно решить, например, уравнения (2) – к квадратному, (5) – использовать свойства аркфункций).

(Выявляем новые методы решения уравнений данного типа) Обратимся к простейшим (Слайд 19).

Второе уравнение arccos x =

— 1 подход: через определение: arccos x – это угол, косинус которого равен х, то есть x=cos() = 0.

— 2 подход: Что значит «решить уравнение?» — найти х…

— Где находиться х?

· Под знаком арккосинуса.

— Вспомните, как мы поступали, когда х был «спрятан», например, под знаком арифметического квадратного корня в уравнении вида и его нужно было «освободить».

· Возводили обе части уравнения в квадрат при условии, что правая часть неотрицательна, применяя свойство .

— Возможно ли выполнить соответствующие действия (как при решении иррационального уравнения) в данной ситуации?

· Можно применить свойство причем к обеим частям уравнения, то есть cos( arccos x) =cos , получим х=0.

— Говорят, «возьмем косинусы обеих частей уравнения» или «возьмем удобную тригонометрическую функцию обеих частей уравнения». Какие уравнения можно попробовать решить этим способом?

— Но где «опасность»?

· Посторонние корни. Нужно сделать проверку или найти ОДЗ уравнения.

— Осталось найти методы решения уравнений (6) и (13). Как поступим? Результаты какого из домашних заданий мы еще не использовали?

· Не использовали тождества. Например, в уравнении (13) одну из аркфункций можно выразить через другую, зная, что arcsinx+arccosx=.

— Какой прием применить?

— Или что применили?

— Можно ли, используя тождество, решить уравнение (6)? Если можно, то какое тождество применить?

· Тождество, полученное в домашней работе из тождества

.

(В процессе выявления методов учитель прописывает напротив каждого уравнения название метода решения)

Класс делится на 6 групп, каждой – по одному уравнению (повторить названия методов). 3 минуты решают на местах, по мере получения ответов выходят к доске представители групп и оформляют решение. Затем обсуждаем решения, каждый прописывает недостающее решение у себя в тетради, обязательно указывая метод решения.

Заключительный этап. Итоги урока и домашнее задание.

— Чем мы занимались сегодня на уроке, что нового узнали, чему научились?

· Определили вид уравнений с обратными тригонометрическими функциями, вывели формулы для решения простейших уравнений данного типа, установили возможность применения основных методов к решению уравнений, таких как графический, функционально-графический, по определению, с помощью замены, а также познакомились с новыми, специальными методами решения уравнений данного типа: «взять удобную тригонометрическую функцию обеих частей уравнения», применить тождество с обратными тригонометрическими функциями.

— Какой метод пока не рассмотрели в применении?

— Хорошо. Чем будем заниматься на следующих уроках?

· Отрабатывать умения распознавать необходимый для решения уравнения метод, непосредственно решать уравнения этим методом.

· От уравнений перейдем к неравенствам, выявим особенности их решения тем или иным методом.

— Молодцы! Домашнее задание. Используя «методички» (раздаются каждому ученику в качестве дидактического материала), решить уравнения I (1; 3; 4); II (1; 3; 7); V (2; 4). В группах уравнений I, II изменить знак равенства на любой знак неравенства и решить полученное неравенство. (Объявляются оценки за работу).

-Урок закончен. Спасибо за урок!

Уроки 3-4 в 10 академическом классе на тему

«Решение уравнений и неравенств,

содержащих обратные тригонометрические функции»

· Правильно определяет вид уравнения и неравенства;

· Распознает уравнения и неравенства, содержащие переменную под знаком обратной тригонометрической функции из множества уравнений и неравенств других видов;

· Решает простейшие уравнения через определение «арктермина» или взятием обратной тригонометрической функции обеих частей уравнения, решает простейшие неравенства соответственными методами с учетом характера монотонности функций;

· Распознает и определяет изученные методы решения более сложных конкретных уравнений и конкретных неравенств в знакомой ситуации;

· Решает уравнения и неравенства и уравнения с обратными тригонометрическими функциями и неравенства смешанного типа всеми известными методами.

· Знают виды уравнения и неравенства;

· Умеют выделять уравнения и неравенства из уравнений и неравенств других видов;

· Применяют известные методы для решения уравнений и неравенств с аркфункциями в знакомой ситуации.

Наглядные пособия и раздаточный материал:

— Презентация к уроку.

Тип урока: урок №3 комбинированный – урок закрепления знаний (по методам решения уравнений и некоторым методам решения неравенств), одновременного изучения нового материала (методы решения неравенств);

Урок №4 – урок обобщения и систематизации знаний.

1. Организационный момент и постановка целей.

2. Актуализация знаний через подготовку домашнего задания и постановку вопросов (с использованием презентации) на знание:

— определения уравнений и неравенств с обратными тригонометрическими функциями;

— алгоритмов решения простейших уравнений;

— алгоритмов решения уравнений и неравенств с аркфункциями методами: функционально-графическим, сведением к алгебраическому (метод интервалов для неравенств), с помощью тождеств;

— основных методов решения уравнений, рассмотренных на прошлом уроке и, соответственно, неравенств.

2. Отработка и закрепление изученного через проверку домашнего задания и практическую (индивидуальную, групповую работу на уроке), а именно: решение уравнений из списка с определением метода решения. Изучение нового материала (методы и приемы решения неравенств) через постановку новой проблемы («А как поступаем, если знак равенства поменять на знак неравенства?») в выполняемых заданиях по решению уравнений, которая приведет к получению знаний и приобретению навыков по решению неравенств с обратными тригонометрическими функциями.

3. Этап обобщения и систематизации методов решения уравнений и неравенств с обратными тригонометрическими функциями через рефлексию по выполненным упражнениям, дидактические материалы «Методы решения» и дидактические материалы, в которых метод решения не указан.

4. Подведение итогов через рефлексию деятельности учащихся, оценку, самооценку и определение целей следующего урока (урока контроля знаний). Задание на дом.

Наглядные пособия и раздаточный материал:

— Дидактические материалы «Методы решения», «Доказать тождества»;

— Презентация к уроку.

Замечания по содержательной части 3-4 уроков

1. На этапе актуализации знаний можно использовать слайды (18), (20) презентации, изменив численные значения.

2. Основные этапы прошлого урока также можно повторить, воспользовавшись презентаций («Что изучали на прошлом уроке?», «Что нового для себя открыли?»)

3. По слайду (23) повторить и обобщить основные и специальные методы решения уравнений и неравенств.

4. По слайдам (32), (33) повторить, а с помощью (34), (35) проверить решение уравнения и неравенства с помощью свойств монотонных функций.

5. Работу по основной части урока лучше начать со списка уравнений на доске, решаемых различными методами (учитель заранее выбирает из «методички»), распознавания метода их решения (и метода решения соответственного неравенства) с прописыванием на доске.

6. Формы работы (по группам, поочередно с выходом ученика к доске, самостоятельно за рабочим столом и последующей проверкой) учитель определяет, исходя и уровня подготовки класса, ситуации и своего видения хода урока.

7. Домашнее задание можно организовать как домашнюю самостоятельную работу (С-12, №6) по дидактическим материалам , , Алгебра и начала анализа 10-11, при этом самостоятельно превратив уравнение в неравенство (метод решения ученикам предлагается определить самостоятельно), либо по дидактическим материалам «Методы решения», где шаг определения метода уже не требуется (для менее подготовленных учащихся), либо по учебнику. Домашнюю работу можно дифференцировать, используя те же «методички», либо комбинировать источники заданий.

По тематическому планированию время на контрольную работу предусмотрено по всей теме «Обратные тригонометрические функции», поэтому проверочную самостоятельную работу можно провести на уроке-паре закрепления знаний и подготовке к контрольной работе, включив в нее, например, два уравнения и два неравенства, решаемые различными методами.

уравнений (неравенств), содержащих обратные тригонометрические функции

(Поменяйте знак «=» на знак и решите полученное неравенство)

I . Используем определение

1.

2.

3.

II. Используем функционально-графический метод

1.

III. Применим тождество

IV. Используем свойства одноименных монотонных функций (не забудьте учесть ОДЗ!)

V. Сведем к квадратному (алгебраическому)

VI. Возьмем «удобную тригонометрическую функцию» обеих частей уравнения (неравенства)

VII. Оценим обе части

Задание №1. Доказать тождества (на ОДЗ):

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Задание №2. Используя тождества 5-25, составить новые, верные на ОДЗ, например:

имеем тождество ;

тождество верно на R.

1)

Решение простейших тригонометрических уравнений с помощью аркфункций

Готовиться с нами — ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Задача 1

Решите уравнение [sin x=-a, quad 0

Решение

(arcsin(-a)) – это такой угол из отрезка (left[-dfrac<pi>2; dfrac<pi>2right]) , синус которого равен (-a) :
Следовательно, одна серия решений данного уравнения – это (x=arcsin(-a)+2pi n, ninmathbb) .
Но на окружности есть еще одна точка, синус в которой равен (-a) – угол (alpha) :
Заметим, что (alpha=pi+(-arcsin(-a))) . Так как (arcsin(-a)=-arcsin a) , то (alpha=pi+arcsin a) . Следовательно, ответ в нашем уравнении: [left[beginbegin &x=-arcsin a+2pi n, ninmathbb\[2ex] &x=pi+arcsin a+2pi k, kinmathbbendendright.]

Задача 2

Решите уравнение [cos x=-a, quad 0

Решение

(arccos(-a)) – это такой угол из отрезка (left[0; piright]) , косинус которого равен (-a) :
Следовательно, одна серия решений данного уравнения – это (x=arccos(-a)+2pi n, ninmathbb) .
Но на окружности есть еще одна точка, косинус в которой равен (-a) – угол (alpha) :
Заметим, что (alpha=-arccos(-a)) . Так как (arccos(-a)=pi-arccos a) , то (alpha=-pi+arccos a) . Следовательно, ответ в нашем уравнении: [left[beginbegin &x=pi-arccos a+2pi n, ninmathbb\[2ex] &x=-pi+arccos a+2pi k, kinmathbbendendright.]

Задача 3

Решите уравнение [mathrm, x=-a, a>0]

Решение

(mathrm,(-a)) – это такой угол из промежутка (left(-dfrac<pi>2;dfrac<pi>2right)) , тангенс которого равен (-a) :
Следовательно, одна серия решений данного уравнения – это (x=mathrm,(-a)+2pi n, ninmathbb) .
Но на окружности есть еще одна точка, тангенс в которой равен (-a) – угол (alpha) :
Заметим, что (alpha=mathrm,(-a)+pi) . Так как (mathrm,(-a)=-mathrm, a) , то (alpha=pi-mathrm, a) . Следовательно, ответ в нашем уравнении: [left[beginbegin &x=-mathrm, a+2pi n, ninmathbb\[2ex] &x=pi-mathrm, a+2pi k, kinmathbbendendright.] Заметим, что так как углы (-mathrm, a) и (pi-mathrm, a) отличаются друг от друга на (pi) , то ответ можно записать в виде одной серии корней с периодом (pi) : [x=-mathrm, a+pi m, minmathbb]

Задача 4

Решите уравнение [mathrm, x=-a, a>0]

Решение

(mathrm,(-a)) – это такой угол из промежутка (left(0;piright)) , котангенс которого равен (-a) :
Следовательно, одна серия решений данного уравнения – это (x=mathrm,(-a)+2pi n, ninmathbb) .
Но на окружности есть еще одна точка, котангенс в которой равен (-a) – угол (alpha) :
Заметим, что (alpha=mathrm,(-a)+pi) . Так как (mathrm,(-a)=pi-mathrm, a) , то (alpha=2pi-mathrm, a) . Следовательно, ответ в нашем уравнении: [left[beginbegin &x=pi-mathrm, a+2pi n, ninmathbb\[2ex] &x=2pi-mathrm, a+2pi k, kinmathbbendendright.] Заметим, что так как углы (2pi-mathrm, a) и (pi-mathrm, a) отличаются друг от друга на (pi) , то ответ можно записать в виде одной серии корней с периодом (pi) : [x=pi-mathrm, a+pi m, minmathbb]

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

источники:

http://pandia.ru/text/78/328/25516.php

http://shkolkovo.net/theory/reshenie_prostejshih_trigonometricheskih_uravnenij_s_pomoschyu_arkfunkcij

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти сайт с которого скачана картинка
  • Как составить резюме для помощника воспитателя
  • Как срочно найти то что потерял
  • Как найти годовые осадки
  • Не работает домофон пишет error как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии