Как найти область определения функции через производную

Исследовать функцию — это значит установить её свойства: указать её область определения и область значений; промежутки возрастания и убывания; промежутки, на которых функция приобретает положительные значения, на которых — отрицательные; выяснить, не является ли данная функция чётной или нечётной и т. д.

Содержание:

Что такое исследование функции

Одна из важных задач исследования функции — определение промежутков её возрастания и убывания. Как отмечалось, в тех точках, в которых функция возрастает, её производная (угловой коэффициент касательной) положительная, а в точках убывания функции её производная отрицательная {рис. 70).

Применение производной к исследованию функции с примерами решения

Правильными будут следующие утверждения.

  • Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке возрастает.
  • Если производная в каждой точке промежутка отрицательная, то функция на этом промежутке убывает.
  • Если производная в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

Строгое доказательство этого утверждения достаточно громоздкое, поэтому мы его не приводим. Заметим только, что в нём выражается достаточный признак возрастания или убывания функции, но не необходимый. Поэтому функция может возрастать и на промежутке, в некоторых точках которого она не имеет производной. Например, функция Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Из сказанного следует, что два соседних промежутка, на одном из которых функция возрастает, а на другом — убывает, могут разделяться только такой точкой, в которой производная функции равна нулю или не существует.

Внутренние точки области определения функции, в которых её производная равна нулю или не существует, называют критическими точками функции.

Следовательно, чтобы определить промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения нужно решить неравенства Применение производной к исследованию функции с примерами решения или найти все критические точки функции,разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких — убывает.    

Пример:

Найдите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Уравнение Применение производной к исследованию функции с примерами решения имеет корни Применение производной к исследованию функции с примерами решения Это — критические точки. Область определения данной функции — множество Применение производной к исследованию функции с примерами решения — они разбивают на три промежутка: Применение производной к исследованию функции с примерами решения (рис. 72). Производная функции на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, данная функция на промежутках Применение производной к исследованию функции с примерами решения возрастает, а на Применение производной к исследованию функции с примерами решения убывает.

Замечание: Если функция непрерывна в каком-нибудь конце промежутка возрастания или убывания, то эту точку можно присоединить к рассматриваемому промежутку. Поскольку функция Применение производной к исследованию функции с примерами решения в точках 0 и 2 непрерывна, то можно утверждать, что она возрастает на промежутках  Применение производной к исследованию функции с примерами решения на Применение производной к исследованию функции с примерами решения — убывает.

Пример:

Найдите промежутки убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Критические точки: Применение производной к исследованию функции с примерами решения Они всю область определения функции разбивают на интервалы: Применение производной к исследованию функции с примерами решения (рис. 73). Производная Применение производной к исследованию функции с примерами решения на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, функция убывает на промежутках Применение производной к исследованию функции с примерами решения Поскольку в точках Применение производной к исследованию функции с примерами решения данная функция непрерывна, то ответ можно записать и так: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример:

Найдите критические точки функции Применение производной к исследованию функции с примерами решения 

Решение:

Применение производной к исследованию функции с примерами решения Найдем произвольную функции: Применение производной к исследованию функции с примерами решения
Найдём точки, в которых производная равна нулю или не существует: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения — не существует, если знаменатель равен нулю, отсюда Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точка Применение производной к исследованию функции с примерами решения не входит в область определения функции. Следовательно, функция имеет две критические точки: Применение производной к исследованию функции с примерами решения

Ответ. 0 и 4.

Пример:

Докажите, что функция Применение производной к исследованию функции с примерами решения возрастает на Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения При любом значении Применение производной к исследованию функции с примерами решения выражение Применение производной к исследованию функции с примерами решения имеет положительное значение. Следовательно, данная функция возрастает на всей области определения, т.е. на множестве Применение производной к исследованию функции с примерами решения

Пример:

Установите, на каком промежутке функция Применение производной к исследованию функции с примерами решения возрастает, а на каком убывает.

Решение:

Способ 1. Применение производной к исследованию функции с примерами решения Найдём производную функции:

Применение производной к исследованию функции с примерами решения

Найдём критические точки функции:

Применение производной к исследованию функции с примерами решения

Эта точка разбивает область определения функции на два промежутка (рис. 74). Определим знак производной на каждом из них. 

Применение производной к исследованию функции с примерами решения

Следовательно, функция Применение производной к исследованию функции с примерами решения возрастает на промежутке Применение производной к исследованию функции с примерами решения а убывает на Применение производной к исследованию функции с примерами решения

Способ 2. Решим неравенство Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Ответ. Возрастает, если Применение производной к исследованию функции с примерами решения убывает если Применение производной к исследованию функции с примерами решения

Применение второй производной к исследованию функций и построению их графиков

При помощи первой производной можно исследовать функцию на монотонность и экстремумы и схематично построить график. Оказывается, что поведение некоторых функций не всегда можно охарактеризовать, используя первую производную. Более детальное исследование проводится при помощи второй производной. Вспомним, что такое вторая производная.

Пусть функция Применение производной к исследованию функции с примерами решения является дифференцируемой, Применение производной к исследованию функции с примерами решения её производная Применение производной к исследованию функции с примерами решения — функция, которая также дифференцируема. Тогда можно найти производную Применение производной к исследованию функции с примерами решения Это производная второго порядка, или вторая производная функции Применение производной к исследованию функции с примерами решения

Например, найти производную 2-го порядка функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решенияозначает найти производную этой функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и полученную функцию продифференцировать: Применение производной к исследованию функции с примерами решения

Кривая Применение производной к исследованию функции с примерами решения называется выпуклой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат ниже произвольной её касательной на этом интервале (на рис. 86 — 1).

Кривая Применение производной к исследованию функции с примерами решения называется вогнутой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат выше произвольной её касательной на этом интервале (на рис. 86 — 2).

Применение производной к исследованию функции с примерами решения

Точкой перегиба называется такая точка кривой, которая отделяет её выпуклую часть от вогнутой.

Интервалы выпуклости и вогнутости находят при помощи такой теоремы.

Теорема. Если вторая производная дважды дифференцируемой функции Применение производной к исследованию функции с примерами решения отрицательна Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения то кривая Применение производной к исследованию функции с примерами решениявыпуклая на данном интервале; если вторая производная функции Применение производной к исследованию функции с примерами решенияположительная Применение производной к исследованию функции с примерами решения то кривая вогнутая на Применение производной к исследованию функции с примерами решения

Из теоремы следует, что точками перегиба кривой Применение производной к исследованию функции с примерами решения могут быть только точки, в которых вторая производная Применение производной к исследованию функции с примерами решения равна нулю или не существует. Такие точки называют критическими точками второго рода.

Установим до статочное условие существования точки перегиба.

Теорема. Пусть Применение производной к исследованию функции с примерами решения — критическая точка второго рода функции Применение производной к исследованию функции с примерами решения Если при переходе через точку Применение производной к исследованию функции с примерами решения производная Применение производной к исследованию функции с примерами решения меняет знак, то точка Применение производной к исследованию функции с примерами решенияявляется точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Для нахождения промежутков выпуклости и точек перегиба графика функции целесообразно пользоваться следующей схемой:

  1. найти область определения функции;
  2. найти критические точки второго рода;
  3. определить знак второй производной на образованных интервалах. Если Применение производной к исследованию функции с примерами решения то кривая выпуклая; если Применение производной к исследованию функции с примерами решения — кривая вогнутая;
  4. если производная Применение производной к исследованию функции с примерами решения меняет знак при переходе через точку Применение производной к исследованию функции с примерами решения то точка Применение производной к исследованию функции с примерами решения является точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Пример №1

Найдите интервалы выпуклости, вогнутости и точки перегиба кривой Применение производной к исследованию функции с примерами решения

Решение:

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Найдём вторую производную: Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решенияКритические точки второго рода: Применение производной к исследованию функции с примерами решения Других критических точек нет.

3)    Разбиваем область определения на интервалы Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и определяем знак второй производной на каждом из них.

Если Применение производной к исследованию функции с примерами решения поэтому кривая вогнутая.

Если Применение производной к исследованию функции с примерами решения поэтому кривая выпуклая.

Если Применение производной к исследованию функции с примерами решения — кривая вогнутая.

Следовательно, точки Применение производной к исследованию функции с примерами решения — точки перегиба кривой. Рассмотрим ещё один компонент в исследовании функций, благодаря которому упрощается построение некоторых графиков. Это асимптоты. В предыдущих параграфах рассматривались горизонтальные и вертикальные асимптоты. Повторим, расширим и обобщим это понятие. Асимптоты бывают вертикальные, наклонные и горизонтальные (рис. 87).

Применение производной к исследованию функции с примерами решения

Напомним, что прямая Применение производной к исследованию функции с примерами решения будет вертикальной асимптотой кривой Применение производной к исследованию функции с примерами решения если при Применение производной к исследованию функции с примерами решения (справа или слева) значение функции Применение производной к исследованию функции с примерами решения стремится к бесконечности, т.е. выполняется одно из условий: Применение производной к исследованию функции с примерами решения

Уравнение наклонной асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Если записанные пределы существуют, то существует наклонная асимптота; если хотя бы один из них не существует или равен Применение производной к исследованию функции с примерами решения то кривая наклонной асимптоты не имеет.

Если Применение производной к исследованию функции с примерами решения поэтому Применение производной к исследованию функции с примерами решенияуравнение горизонтальной асимптоты.

Замечание: Рассмотренные пределы могут быть односторонними, а под символом Применение производной к исследованию функции с примерами решения следует понимать и Применение производной к исследованию функции с примерами решения При этом указанные пределы могут быть разными при Применение производной к исследованию функции с примерами решения

Пример №2

Найдите асимптоты кривых:

Применение производной к исследованию функции с примерами решения

Решение:

а) Применение производной к исследованию функции с примерами решения Найдём вертикальные асимптоты. Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вертикальные асимптоты.

Найдём наклонную асимптоту: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения Кривая имеет горизонтальную асимптоту, её уравнение: Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет три асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Найдем вертикальные асимптоты.

Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вергикальные асимптоты.

Для наклонной асимптоты Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Значит прямая Применение производной к исследованию функции с примерами решения — наклонная асимптота. Горизонтальной асимптоты нет.

Итак, асимптоты кривой: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Будем искать наклонные асимптоты:

Применение производной к исследованию функции с примерами решения

Следовательно, Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

2) если Применение производной к исследованию функции с примерами решения (проверьте самостоятельно), отсюда Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет две асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Определение точек перегиба, интервалов выпуклости и асимптот существенно помогает в построении графиков различных функций.

Нахождение промежутков возрастания и убывания функции

Интервалы возрастания и убывания функции

возрастающая функция

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения то на этом промежутке функция возрастающая.

убывающая

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения на этом промежутке функция убывающая.

Связь промежутков возрастания и убывания функции с угловым коэффициентом секущей можно выразить следующим образом.

Если на заданном промежутке угловой коэффициент любой секущей положителен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения возрастает.

Применение производной к исследованию функции с примерами решения

Если на заданном промежутке угловой коэффициент любой секущей отрицателен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения убывает.

Применение производной к исследованию функции с примерами решения

Промежутки возрастания и убывания функции

Пусть на определенном промежутке производная функции Применение производной к исследованию функции с примерами решения положительна, т. е. Применение производной к исследованию функции с примерами решения Так как Применение производной к исследованию функции с примерами решения то угловой коэффициент касательной будет положительным. А это значит, что касательная с положительным направлением оси абсцисс образует острый угол и на заданном промежутке график «поднимается «, т. е. функция возрастает. Если Применение производной к исследованию функции с примерами решения тогда касательная с положительным направлением оси абсцисс образует тупой угол, график «спускается», т. е. функция убывает.

Теорема. Если функция Применение производной к исследованию функции с примерами решения дифференцируема в каждой точке заданного промежутка, то:

Примечание: если функция Применение производной к исследованию функции с примерами решениянепрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

По графику функции Применение производной к исследованию функции с примерами решения исследуйте промежутки возрастания и убывания функции.

Применение производной к исследованию функции с примерами решения

На интервалах Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения угловой коэффициент касательной положительный, поэтому на каждом из промежутков Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решениявозрастает.

На интервале Применение производной к исследованию функции с примерами решения угловой коэффициент касательной отрицателен, поэтому на промежутке Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решения убывает.

Пример №3

При помощи производной определите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Решение: 1. Алгебраический метод.

Найдем производную функции

Применение производной к исследованию функции с примерами решения

Функция Применение производной к исследованию функции с примерами решения на промежутке удовлетворяющем неравенству Применение производной к исследованию функции с примерами решения т. е. Применение производной к исследованию функции с примерами решения возрастает.

Для решения неравенства сначала надо решить соответствующее уравнение

Применение производной к исследованию функции с примерами решения

Значит, при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точки Применение производной к исследованию функции с примерами решения разбивают область определения функции на три интервала: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения В каждом из интервалов выберем контрольную точку для проверки и установим знак производной.

Применение производной к исследованию функции с примерами решения

Из таблицы и непрерывности функции Применение производной к исследованию функции с примерами решения видно, что данная функция возрастает на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения и убывает на промежутке Применение производной к исследованию функции с примерами решения Из графика так же видно, что задания решение верно.

Применение производной к исследованию функции с примерами решения

2. Промежутки возрастания и убывания функции можно определить но графику производной. На рисунке изображен график производной

Применение производной к исследованию функции с примерами решения

График производной Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположен выше оси Применение производной к исследованию функции с примерами решения значит, Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения график производной расположен ниже оси Применение производной к исследованию функции с примерами решения значит Применение производной к исследованию функции с примерами решения Так как функция Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения непрерывна, то на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения она возрастает, а на промежутке Применение производной к исследованию функции с примерами решения убывает.

Пример №4

Изобразите схематично график непрерывной функции согласно еле дующим условиям:

a) при Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

b) при Применение производной к исследованию функции с примерами решения или Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Решение:

а) при Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит,

функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 5.

Применение производной к исследованию функции с примерами решения

b) При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит, функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 0.

Применение производной к исследованию функции с примерами решения

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

Применение производной к исследованию функции с примерами решения

1. Для значений Применение производной к исследованию функции с примерами решения равных Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения угловой коэффициент касательной к графику равен 0. Т. e.Применение производной к исследованию функции с примерами решенияЭти точки являются критическими точками функции.

2. В точках Применение производной к исследованию функции с примерами решения функция не имеет производной. Эти тоже критические точки функции.

3. Для рассматриваемой нами функции критические точки Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Применение производной к исследованию функции с примерами решения — критические точки, которые не изменяют возрастание и убывание (или наоборот).

Применение производной к исследованию функции с примерами решения

По графику видно, что в точках внутреннего экстремума(Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения) производная функции равна нулю, а в точке Применение производной к исследованию функции с примерами решения производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Применение производной к исследованию функции с примерами решения производная функции Применение производной к исследованию функции с примерами решения равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т. е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Применение производной к исследованию функции с примерами решения

Достаточное условие существования экстремума

Пусть функция Применение производной к исследованию функции с примерами решения непрерывна на промежутке Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Если Применение производной к исследованию функции с примерами решения является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

  1. Применение производной к исследованию функции с примерами решения слева от точки Применение производной к исследованию функции с примерами решения положительна, а справа — отрицательна, то точка Применение производной к исследованию функции с примерами решения является точкой максимума.
  2. Применение производной к исследованию функции с примерами решения слева от Применение производной к исследованию функции с примерами решения отрицательна, а справа — положительна, то точка Применение производной к исследованию функции с примерами решения является точкой минимума
  3. Применение производной к исследованию функции с примерами решения с каждой стороны от точки Применение производной к исследованию функции с примерами решения имеет одинаковые знаки, то точка Применение производной к исследованию функции с примерами решения не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения записываются как Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Применение производной к исследованию функции с примерами решения

Пример №5

Для функцииПрименение производной к исследованию функции с примерами решения определите максимумы и минимумы и схематично изобразите график.

Решение: Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки функции: Применение производной к исследованию функции с примерами решения

3. Точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения разбивают область определения функции на три промежутка.

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки:

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решениямаксимум

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения минимум

4. Используя полученные для функции Применение производной к исследованию функции с примерами решения данные и найдя координаты нескольких дополнительных точек, построим график функции.

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №6

Найдите наибольшее и наименьшее значение функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения

Решение: Сначала найдем критические точки.

Так как Применение производной к исследованию функции с примерами решения то критические точки можно найти из уравнения Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Критическая точка Применение производной к исследованию функции с примерами решения не принадлежит данному отрезку Применение производной к исследованию функции с примерами решения и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Применение производной к исследованию функции с примерами решения и на концах отрезка.

Применение производной к исследованию функции с примерами решения

Из этих значений наименьшее — 4, наибольшее 12. Таким образом:

Применение производной к исследованию функции с примерами решения

Пример №7

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

3. Интервалы, на которые критические точки делят область определения функции:

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки.

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Используя полученную для функции Применение производной к исследованию функции с примерами решения информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Применение производной к исследованию функции с примерами решения

Пример №8

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная Применение производной к исследованию функции с примерами решения

2. Критические точки: для этого надо решить уравнение Применение производной к исследованию функции с примерами решения или найти точки, в которых производная не существует. В точке Применение производной к исследованию функции с примерами решения функция не имеет конечной производной. Однако точка Применение производной к исследованию функции с примерами решения принадлежит области определения. Значит, точка Применение производной к исследованию функции с примерами решения является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Определим знак Применение производной к исследованию функции с примерами решения выбрав пробные точки для каждого промежутка:

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №9

По графику функции производной Применение производной к исследованию функции с примерами решения схематично изобразите график самой функции.

Применение производной к исследованию функции с примерами решения

Решение:

Производная Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения равна нулю, а при Применение производной к исследованию функции с примерами решения отрицательна, значит, на интервале Применение производной к исследованию функции с примерами решения функция убывающая. При Применение производной к исследованию функции с примерами решения производная положительна, а это говорит о том, что функция/на промежутке Применение производной к исследованию функции с примерами решения возрастает. Точкой перехода от возрастания к убыванию функции является точка Применение производной к исследованию функции с примерами решения Соответствующий график представлен на рисунке.

  • Заказать решение задач по высшей математике

Построение графиков функции с помощью производной

Функция — многочлен определена и непрерывна на всей числовой оси.

Чтобы построить график функции- многочлен надо выполнить следующие шаги.

  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания функции.
  • Найдите максимумы и минимумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Точки пересечения с осями координат :

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

2) Критические точки ( точки, в которых производная равна нулю): Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

значит, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположены на графике.

Применение производной к исследованию функции с примерами решения

3) Промежутки возрастания и убывания. Экстремумы.

Критические точки Применение производной к исследованию функции с примерами решения деляг область определения функции на четыре промежутка. Проверим знаки производной Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

4) Используя полученную информацию, построим график функции.

Применение производной к исследованию функции с примерами решения

Чтобы построить график рациональной функции надо выполнить следующие шаги.

  • Найдите область определения.
  • Найдите асимптоты (если они есть).
  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания и экстремумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Асимптоты: Применение производной к исследованию функции с примерами решения

Прямая Применение производной к исследованию функции с примерами решения вертикальная асимптота функции.

Так как степень многочлена в числителе больше степени многочлена в знаменателе, рациональная функция не имеет горизонтальной асимптоты. Однако, записав следующее: Применение производной к исследованию функции с примерами решения

условии Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения т. е. график функции Применение производной к исследованию функции с примерами решения бесконечно приближается к прямой Применение производной к исследованию функции с примерами решения В этом случае прямая Применение производной к исследованию функции с примерами решения является наклонной асимптотой функции Применение производной к исследованию функции с примерами решения Вообще, если степень многочлена Применение производной к исследованию функции с примерами решения на 1 единицу больше степени многочлена Применение производной к исследованию функции с примерами решениято рациональная функция Применение производной к исследованию функции с примерами решения имеет наклонную асимптоту.

3) Точки пересечения с осями координат: Применение производной к исследованию функции с примерами решения

4) Критические точки:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

5) Промежутки возрастания и убывания: в точке Применение производной к исследованию функции с примерами решения функция не определена, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения являются критическими точками функции. Определим знаки производной в каждом полученном интервале.

Применение производной к исследованию функции с примерами решения

6) Построим график. Отметим на координатной плоскости точки Применение производной к исследованию функции с примерами решения относящиеся к графику. Проведем вертикальную асимптоту Применение производной к исследованию функции с примерами решения и наклонную асимптоту Применение производной к исследованию функции с примерами решения Используя полученные результаты, изобразим график функции.

Применение производной к исследованию функции с примерами решения

Обратите внимание! В области, близкой к точке Применение производной к исследованию функции с примерами решения график функции ведет себя как парабола Применение производной к исследованию функции с примерами решения

Задачи на экстремумы. Оптимизации

В реальной жизненной ситуации возникает необходимость выбора оптимального варианта и нахождения экстремумов определенной функции. Ежедневно, при решении проблем в различных областях, мы сталкиваемся с терминами наибольшая прибыль, наименьшие затраты, наибольшее напряжение, наибольший объем, наибольшая площадь и т.д. Большое экономическое значение в промышленности, при определении дизайна упаковки, имеет вопрос, как подобрать размеры упаковки с наименьшими затратами. Такого рода задания связаны с нахождением максимального или минимального значения величины. Задачи на нахождение максимального и минимального значения величины называются задачами на оптимизацию. Для решения данных задач применяется производная.

Замечание 1: На интервале Применение производной к исследованию функции с примерами решения должны учитываться предельные значения функции на концах.

Замечание 2: В рассматриваемом интервале может быть одна стационарная точка: или точка максимума, или точка минимума. В этом случае, в точке максимума функция принимает наибольшее значение, а в точке минимума — наименьшее значение.

Пример 1. Максимальный объем. Фирма планирует выпуск коробки без крышки, с квадратным основанием и площадью поверхности Применение производной к исследованию функции с примерами решения Найдите размеры коробки, при которых она будет иметь наибольший объем?

Применение производной к исследованию функции с примерами решения

Решение:

Так как основанием коробки является квадрат, то ее объем можно вычислить по формуле Применение производной к исследованию функции с примерами решения Используя другие данные задачи, выразим объем только через одну переменную Применение производной к исследованию функции с примерами решенияВычислим площадь поверхности коробки. Она равна Применение производной к исследованию функции с примерами решения и состоит из 4 площадей боковых граней + площадь основания.

Применение производной к исследованию функции с примерами решения

Тогда выразим Применение производной к исследованию функции с примерами решения подставим в формулу Применение производной к исследованию функции с примерами решения Зависимость объема коробки от переменной Применение производной к исследованию функции с примерами решения можно выразить следующим образом:

Применение производной к исследованию функции с примерами решения

Теперь найдем область определения функции Применение производной к исследованию функции с примерами решения согласно условию задачи.

Понятно, что длина не может быть отрицательной, т. е. Применение производной к исследованию функции с примерами решения Площадь квадрата в основании коробки должна быть меньше 192, т. е. Применение производной к исследованию функции с примерами решения

или Применение производной к исследованию функции с примерами решенияЗначит, Применение производной к исследованию функции с примерами решения

Найдем максимальное значение функции Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения

Для этого используем производную первого порядка:

Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения имеем, что Применение производной к исследованию функции с примерами решения

Однако. Применение производной к исследованию функции с примерами решения Значит, в рассматриваемом интервале критической точкой является Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения функция

Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения принимает максимальное значение.

Если длина основания коробки будет 8 см, то высота будет равна

Применение производной к исследованию функции с примерами решения

Значит, максимальный объем будет иметь коробка с размерами Применение производной к исследованию функции с примерами решения

Построив при помощи графкалькулятора график функции Применение производной к исследованию функции с примерами решения также можно увидеть, что при Применение производной к исследованию функции с примерами решения объем имеет максимальное значение. Постройте график функции при помощи производной и убедитесь в правильности решения.

Применение производной к исследованию функции с примерами решения

Пример 2. Минимальное потребление. Два столба высотой 4 м и 12 м находятся на расстоянии 12 м друг от друга. Самые высокие точки столбов соединены с металлической проволокой, каждая из которых, в свою очередь крепится на земле в одной точке. Выберите такую точку на земле, чтобы для крепления использовалось наименьшее количество проволоки.

Решение: 1) Изобразим рисунок, соответствующий условию задачи, и обозначим соответствующие данные на рисунке.

Применение производной к исследованию функции с примерами решения

2) Аналитически выразим зависимость между переменными.

По теореме Пифагора:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

зависимость функции Применение производной к исследованию функции с примерами решения от переменной Применение производной к исследованию функции с примерами решения будет

Применение производной к исследованию функции с примерами решения

Производная функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Найдем критические точки функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Сравнивая значения функции Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения (это проверьте самостоятельно), получим, что наименьшее количество проволоки используется при Применение производной к исследованию функции с примерами решения (метр)

При решении задач на экстремумы обратите внимание на следующее!

1. Внимательно читайте условие. Сделайте соответствующий рисунок.

2. Задайте список соответствующих переменных и констант, которые менялись и оставались неизменными и какие единицы использовались. Если на рисунке есть размеры, обозначьте их.

3. Выберите соответствующий параметр Применение производной к исследованию функции с примерами решения и выразите искомую величину функцией Применение производной к исследованию функции с примерами решения Найдите экстремумы данной функции.

4. Полученные значения объясните экспериментально.

Пример: Минимальное потребление материала. Для мясных консервов планируется использовать банку в форме цилиндра объемом 250 Применение производной к исследованию функции с примерами решения

a) Каких размеров должна быть банка, чтобы для ее изготовления использовалось как можно меньше материала?

b) Для круглого основания используется материал, цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,05 гяпик, а для боковой поверхности используется материал цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,12 гяпик. Какие размеры должна иметь банка, чтобы затраты на ее изготовление были минимальными?

Решение: а) По условию задачи объем равен 250 Применение производной к исследованию функции с примерами решения Эти данные дают нам возможность найти зависимость между Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Для функции, выражающей площадь поверхности, область определения представляет собой незамкнутый интервал, и мы должны найти, при каком значении Применение производной к исследованию функции с примерами решения где Применение производной к исследованию функции с примерами решения функция имеет наименьшее значение. Найдем производную функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Критическая точка функции: Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Значит, Применение производной к исследованию функции с примерами решения

Подставим значение Применение производной к исследованию функции с примерами решения в формулу для высоты Применение производной к исследованию функции с примерами решения получим Применение производной к исследованию функции с примерами решения

Итак, минимальные затраты на материал будет иметь банка цилиндрической формы с размерами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Размеры, при которых затраты на материал будут минимальными

Применение производной к исследованию функции с примерами решения

  • Приложения производной
  • Производные высших порядков
  • Дифференциал функции
  • Дифференцируемые функции
  • Касательная к графику функции и производная
  • Предел и непрерывность функции
  • Свойства функций, непрерывных в точке и на промежутке
  • Предел функции на бесконечности
Автор статьи

Александр Мельник

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение 1

Функцией, заданной на множестве $X$ и принимающей значения из множества $Y$ называют некую закономерность, по которой каждому элементу из множества $X$ соответствует лишь один и только один элемент из множества $Y$.

Из этого определения следует, что множество (область) значений функции — это те значения функции $y(x)$, которые она может принимать соответственно области её определения. Теперь перейдём к следующему определению.

Определение 2

Область (множество) значений функции на некотором рассматриваемом отрезке — это интервал значений, которые функция принимает на этом рассматриваемом отрезке.

Чаще всего в учебной литературе встречается термин «множество значений функции». Кратко его обозначают $E(f)$.

Как определить область значения функции

Для определения множества значений функции пользуются графическим методом, методом поисков минимума и максимума, вычислением производной и другими.

Определение множества значений функции графическим методом

Графический метод подразумевает построение графика функции и изучение этого графика. Этот метод наиболее удобен, если не известна какая-либо закономерность изменения функции $f(x)$, а есть только набор произвольных точек или собственно сам график.

Пример 1

Определение множества значений функции графическим методом

Рисунок 1. Определение множества значений функции графическим методом

На данном рисунке область значений функции $y=f(x)$ равна $E(y)=3$, так как на протяжении всего отрезка функция $y$ не меняет своего значения и всегда равна $3$, тогда как область определения функции $D(y)=[0;3.5]$.

Скобки в данном случае для области определения функции необходимо использовать квадратные, так как обе точки закрашены, то есть включены в отрезок. В случае если точки не закрашены, они не включаются в отрезок и тогда применяются круглые скобки.

«Множество значений функции» 👇

Метод нахождения области значения функции через производную

Метод нахождения области значения функции через производную состоит в том, чтобы сначала оценить область её определения (то есть определить те значения, которые может принимать аргумент $x$, а затем осуществить процедуру нахождения самой производной. После этого осуществляют поиск значений $x$, при которых производная функции равна нулю и при которых производная не существует.

Рассмотрим пример нахождения области значений функции через производную.

Пример 2

Дана функция $f(x)=sqrt{16-x^2}$. Найдите область её значений.

Сначала определяем, какие значения может принимать $x$ для существования функции.

При значении $x^2>16$ под корнем получается отрицательное число, а это значит, что область определения функции от $[-4;4]$ включительно.

Теперь найдём производную функции:

$(sqrt{16-x^2})’=-frac{x}{sqrt{16-x^2}}$

Если в знаменателе производной нуль, то производной не существует, в данном случае это условие выполняется при $x=±4$.

Приравниваем производную к нулю и находим значения $x$. Производная данной функции принимает нулевое значение при $x=0$. Теперь подставляем найденные значения производной в нашу функцию, и получаем, что наименьшее значение функции — это $f(4)$ и $f(-4)$, при этих значениях функция равна нулю, а наибольшее значение $f(x)$ — при $x=0$, в этой точке функция равна $16$.

Метод поиска минимума и максимума

Метод поиска минимума и максимума основан на том, чтобы найти максимальное и и минимальное значение, которые функция принимает на изучаемой области.

Пример 3

Определите область значений функции:

$y=6-4sinx$

Проанализируем данную функцию. Так как минимальное значение синуса равно минус единице, а а максимальное — единице, то подставив эти значения получаем, что $max(f(x))=10$ при $x=frac{3π}{2}$, а минимум $min(f(x))=2$ при $x=frac{π}{2}$. Следовательно, множество значений, которые может принимать данная функция — $E(x)=[2;10]$.

Разница между областью значения и областью определения функции

Стоит обратить внимание, что область значений функции — не одно и то же с термином «область определения функции».

Определение 3

Область определения функции $D(y)$ — это диапазон таких значений переменной $x$, при которых существует функция $y(x)$.

Например, рассмотрим функцию $y(x)=x^2$. В данном случае область определения этой функции будет множеством вещественных (действительных) чисел $mathbb{R}$, а сама функция будет принимать значения только положительных действительных чисел $mathbb{R}^+$, так как вещественное число, возведённое в квадрат, не может давать отрицательное значение. То есть, в этом примере множество значений функции — это множество положительных вещественных чисел $mathbb{R}^+$.

Также имеют место случаи, когда область определения функции совпадает с областью значений.
В качестве иллюстрации можно рассмотреть функцию $y(x)=2x$. За аргумент $x$ данная функция может принимать любое действительное число из множества $mathbb{R}$, а значения, которые будет принимать сама функция — это удвоенные числа из множества всех действительных чисел. То есть, в данном случае областью значений $E(y)$ будет также всё множество вещественных чисел $mathbb{R}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Лекция 4. Применение производной к исследованию функций и построению графиков.

План

1. Возрастание и
убывание функции.

2. Экстремумы
функции.

3. Схема исследования функции и построения её
графика с помощью производной.

4. Решение задач

 (Учебник: Ш.А.
Алимов Алгебра и начала математического анализа 10-11 класс глава
IX §49, §50, §51, стр. 261-264, стр. 265-269, стр. 271-275)

1. Возрастание и
убывание функции.

Производная широко
используется для исследования функций, т.е. для изучения различных свойств
функций. Например, с помощью производной можно находить промежутки возрастания
и убывания функции, её наибольшее и наименьшее значения.

Рассмотрим применение
производной к нахождению промежутков возрастания и убывания функций
.

Пусть значения
производной функции
 положительны на некотором промежутке, т.е. . Тогда угловой коэффициент касательной  к графику этой функции в каждой точке данного промежутка положителен.
Это означает, что касательная образует острый угол с осью
Ox, и поэтому график функции на этом промежутке «поднимается», т.е.
функция
 возрастает (рис.120).

Если  на некотором промежутке, то угловой коэффициент касательной   к графику функции  отрицателен.

Это означает, что
касательная образует тупой угол с осью
Ox, и поэтому
график функции на этом промежутке «опускается», т.е. функция
 убывает (рис. 121).

Итак, если  на промежутке, то функция возрастает на этом промежутке.

Если  на промежутке, то функция убывает на этом промежутке.

При доказательстве
теорем о достаточных условиях возрастания или убывания функции используется теорема
Лагранжа
.

Теорема Лагранжа. Если функция  непрерывна на отрезке [a;b]
и дифференцируема на интервале (
a;b),
то существует точка
 такая, что .                 (1)

Доказательство
формулы (1) приводится в курсе высшей математики. Поясним геометрический смысл
этой формулы.

Проведём через
точки
 и  графика функции  прямую l и назовём эту прямую секущей. Угловой
коэффициент секущей равен
.

Запишем формулу (1)
в виде
.           (2)

Согласно формуле
(2) угловой коэффициент касательной к графику функции
 в точке C  с абсциссой c
(рис. 122) равен угловому коэффициенту секущей
l, т.е. на
интервале (
a;b) найдётся такая точка c, что в точке графика с абсциссой c касательная к
графику функции
 параллельна секущей. Сформулируем с помощью теоремы Лагранжа теорему
о достаточном условии возрастания функции
.

Теорема 2. Если
функция
 дифференцируема на интервале (a;b) и  для всех , то функция возрастает на интервале (a;b).

Пример 1.

Доказать, что
функция
 возрастает на промежутке .

Доказательство:

Найдём производную:
.

Если , и поэтому данная функция возрастает на промежутке .

Промежутки
возрастания и убывания функции часто называют промежутками монотонности
этой функции.

Правило
нахождения интервалов монотонности функции
.

1. Находят
производную
 данной функции.

2. Находят точки, в
которых
 равна нулю или не существует, т.е. критические точки функции.

3. Найденными
точками область определения функции 
 разбивается на интервалы, на каждом из которых производная  сохраняет свой знак. Эти интервалы являются интервалами монотонности
(т.е. критические точки отмечаем на числовой прямой и определяем знак
производной в каждом интервале, подставив соответствующее значение
xв формулу производной).

4. Исследуют знак  на каждом из найденных интервалов.

Если на
рассматриваемом интервале
, то на этом интервале   возрастает;

если же , то на таком интервале  убывает.

Пример 2.

Найти
интервалы монотонности функции
.

Решение

Найдем производную:
.

Решая неравенство , т.е. неравенство  , находим интервалы возрастания: .

Решая неравенство , т.е. неравенство , находим интервал убывания .

Ответ: возрастает;

убывает.

График функции  изображен на рисунке 123. Из этого рисунка видно, что функция  возрастает не только на интервалах , но и на промежутках ; убывает не только на интервале , но и на отрезке .

2. Экстремумы
функции.

На рисунке 123
изображён график функции
. Рассмотрим окрестность точки x = 0, т.е.
некоторый интервал, содержащий эту точку. Как видно из рисунка, существует
такая окрестность точки
x = 0, что наибольшее значение
функция
 в этой окрестности принимает в точке  x = 0.
Например, на интервале (-1; 1) наибольшее значение, равное 0, функция принимает
в точке
x = 0. Точку x = 0 называют
точкой максимума этой функции.

Аналогично точку x = 2 называют точкой минимума функции , так как функции в этой точке меньше её значения в любой точке
некоторой окрестности точки
x = 2, например окрестности
(1,5; 2,5).

Точка  называетсяточкой максимума функции, если существует такая окрестность точки , что для всех  из этой окрестности выполняется неравенство .

Например, точка  является точкой максимума функции , так как  и при всех значения  верно неравенство  (рис. 124).

Точка  называетсяточкой минимума функции, если существует такая окрестность точки , что для всех  из этой окрестности выполняется неравенство .

Например, точка  является точкой минимума функции , так как  при всех значениях  (рис. 125).

Точки минимума и
точки максимума называются точками экстремума. Экстремум
значение функции в этих точках.

Рассмотрим функцию , которая определена в некоторой окрестности точки  и имеет производную в этой точке.

Теорема. Если — точка экстремума дифференцируемой функции , то .

Это утверждение
называют теоремой Ферма.

Теорема Ферма имеет наглядный геометрический смысл: касательная к
графику функции
 в точке , где  — точка экстремума функции , параллельна оси абсцисс, и поэтому её угловой коэффициент равен нулю (рис. 126).

Например, функция  (рис.124) имеет в точке  максимум, её производная . Функция  имеет минимум в точке  (рис. 125), .

Отметим, что если , то этого недостаточно, чтобы утверждать, что  обязательно точка экстремума функции .

Например, если . Однако точка x = 0 не является точкой
экстремума, так как функция
 возрастает на всей числовой оси (рис. 127).

Итак, точки
экстремума дифференцируемой функции нужно искать только среди корней уравнения
, но не всегда корень этого уравнения является точкой экстремума.
Точки, в которых производная функции равна нулю, называют стационарными.

Заметим, что
функция может иметь экстремум и в точке, где эта функция не имеет производной.
Например,
x = 0 – точка минимума функции  не существует. Точки, в которых функция имеет производную, равную
нулю, или недифференцируема, называют критическими точками этой функции.

Таким образом, для
того чтобы точка
 была точкой экстремума функции , необходимо, чтобы эта точка была критической точкой данной функции.
Приведём достаточные условия того, что стационарная точка является точкой
экстремума, т.е. условия, при выполнении которых стационарная точка есть точка
максимума или минимума функции.

Теорема. Пусть функция  дифференцируема на интервале (a; b), , и .

Тогда:

1) если при переходе через стационарную точку  функции  её производная меняет знак с «плюса» на «минус», т.е.  слева от точки  и  справа от точки , то  — точка максимума функции  (рис. 128);

2) если при переходе через стационарную точку  функции  её производная меняет знак с «минуса» на «плюс»,  то  — точка минимума функции  (рис. 129);

Если же  не меняет знак  в окрестности точки , то данная функция не имеет экстремума в точке .

Правило
нахождения экстремумов функции
.

1. Находят
производную
 данной функции.

2. Находят все
критические точки из области определения функции.

3. Устанавливают
знаки производной функции при переходе через критические точки и выписывают
точки экстремума.

4. Вычисляют
значения функции
 в каждой точке экстремума.

Пример 3

Найти точки
экстремума функции
.

Решение

1. Найдём
производную:

2. Найдём все
критические точки из области определения функции. Решим уравнение
. .

3. Установим знаки производной функции при переходе через критические
точки и выпишем точки экстремума.
Для этого отметим полученные
значения на числовой прямой. Точки
 и  разделили область определения функции  на три интервала. Вычислим знак производной в каждом из этих
интервалов:

;

;

.

рис 1.JPG

Так как при
переходе через точку
 знак производной не меняется, то эта точка не является точкой
экстремума.

При переходе через
точку
 производная меняет знак с «-» на «+». Поэтому  — точка минимума.

Ответ: — точка минимума.

Пример 4

Найти точки
экстремума функции
 и значения функции в этих точках.

Решение

1. Найдём
производную:
.

2. Найдём
критические точки.

или      – не существует

.

3. Установим знаки производной функции при переходе через критические
точки и выпишем точки экстремума. Для этого о
тметим
полученные значения на числовой прямой. Точки
 и  разделили область определения функции  на три интервала. Вычислим знак производной в каждом из этих
интервалов:

;

;

.

рис 2.JPG

При переходе через
точку
 производная меняет знак с «+» на «-». Поэтому  — точка максимума. При переходе через точку  производная меняет знак с «-» на «+», поэтому  — точка минимума.

4. Вычислим значения функции  в каждой точке экстремума.

Значение функции в
точке максимума равно
, а в точке минимума
.

Ответ: — максимум, . – минимум.

3. Схема
исследования функции и построения её графика с помощью производной.

Примерная
схема исследования функции:

1. Найти область
определения функции (если возможно, то множество значений).

2. Выяснить, не
является ли функция чётной, нечётной, периодической.

3. Найти точки
пересечения графика функции с осями координат (если это не вызывает
затруднений).

4. Найти асимптоты
графика функции (если это необходимо, только для функций, которые имеют точки
разрыва, т.е. не являются непрерывными).

5. Найти промежутки
монотонности функции и её экстремумы.

6*. Найти
промежутки выпуклости графика функции и точки перегиба (применение производной
второго порядка).

7. Вычислить
координаты дополнительных точек (если это необходимо).

В зависимости от
сложности функции некоторые пункты данной схемы могут быть пропущены.

Пример 5

Построить график
функции
.

Решение

1.

2. Исследуем на
чётность:
. Функция не является ни чётной, ни нечетной, т.е. общего вида.

3. Пересечение с
осью
Ox: ,

. Таким образом, получили две точки .

Пересечение с осью Oy: .

4. С помощью
производной найдём промежутки монотонности этой функции и её точки экстремума.

Производная равна . Найдем стационарные точки: ,

откуда .

Для определения
знака производной разложим квадратный трёхчлен
 на множители: .

Производная
положительна на промежутках
, следовательно, на этих промежутках функция возрастает.

При  производная отрицательна, следовательно, на интервале  функция убывает.

Точка  является точкой максимума, так как слева от этой точки функция
возрастает, а справа убывает. Значение функции в этой точке равно
.

Точка  является точкой минимума, так как слева от этой точки функция убывает,
а справа возрастает; её значение в точке минимума равняется
.

Результаты
исследования представим в следующей таблице:

5.
Для более точного построения графика найдём значения функции ещё в двух точках:

.

Используя
результаты исследования, построим график функции
(рис. 132).

Пример 6. Исследуйте и постройте графики функций:

а) ;б).

План исследования

Применение

плана

шага

Функции

а)

б)

1

Находим область
определения функции

, ,

2

Исследуем функцию
на четность, нечетность

функция ни четная, ни
нечетная

функция четная

3

 

Находим нули
(корни) функции и промежутки её знакопостоянства

,

,

, — нуль функции

,

— нуль функции

4

Находим производную
функции и её критические точки

,

— критические точки
функции

— критическая точка
функции

5

 

 

Находим промежутки
монотонности, точки экстремума и экстремумы функции

х=0 – не
является точкой экстремума, х=1 – точка минимума,

,

х=0 – точка
максимума,

6

Находим предел
функции при

7

 

 

Строим эскиз
графика функции

4. Задания для
самостоятельного решения

Задача 1 (1 балл)

Найдите промежутки
убывания и возрастания функции:
.

В ответе укажите
промежуток убывания.

Задача 2 (2 балла)

Найдите промежутки
убывания и возрастания функции:
.

1. при  убывает; при  возрастает

2. при  убывает; при  возрастает

3. при  убывает; при  возрастает

4. при  возрастает

В ответе укажите
номер с правильным ответом.

Задача 3 (3 балла)

Найдите промежутки
убывания функции
.

Задача 4 (2 балла)

Найдите точку
минимума функции
.

Задача 5 (2 балла)

Найдите точку
максимума функции
.

Вспомним кратко основные определения функции в математике.

Функция — это зависимость переменной « y » от
независимой переменной « x ».

Функцию можно задать через формулу (аналитически). Например:

у = 2x

  • « x » называют независимым аргументом функции;
  • « y » зависимой переменной или значением функции.

Вместо « x » (аргумента функции) в формулу «у = 2x» подставляем произвольные числовые значения
и по заданной формуле вычисляем
значение « y ».

Подставим несколько числовых значений вместо « x » в формулу «у = 2x» и запишем результаты в таблицу.

x y = 2x
x = −2 у = 2 · (−2) = −4
x = 0 y = 2 · 0 = 0
x =

1
2
y = 2 ·

1
2

=

2 · 1
2

= 1

x = 3 y = 2 · 3 = 6

Запомните!
!

Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).

Обозначают область определения функции как:

D(y)

Вернемся к нашей функции «у = 2x» и найдем её область определения.

Посмотрим ещё раз на таблицу функции «y = 2x», где
мы подставляли произвольные числа вместо « x », чтобы найти « y ».

x y = 2x
−2 −4
0 0
1
2
1
3 6

Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать,
что вместо « x » мы могли подставлять любое действительное число.

Другими словами, вместо « x » можно подставить любые числа, например:

  • −2
  • 0
  • 10
  • 30,5
  • 1 000 000
  • и так далее…

Запомните!
!

Областью определения функции называют множество чисел,
которые можно подставить вместо « x ».

В нашей функции «у = 2x» вместо « x »
можно подставить любое число, поэтому область определения функции «у = 2x» — это любые действительные числа.

Запишем область определения функции «у = 2x» через математические обозначения.

у = 2x
D(y): x
— любое действительное число

Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на
математические символы.
Для этого вспомним понятие числовой оси.

числовая ось для x

Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции «у = 2x».
Так как в функции
«у = 2x» нет ограничений для « x »,
заштрихуем всю числовую ось от минус бесконечности «−∞» до плюс бесконечности
«+∞».

числовая ось для x

Запишем результат по правилам записи неравенств.

числовая ось для x

D(y): x ∈ (−∞ ; +∞)

Запись выше читается как: « x » принадлежит промежутку от минус бесконечности
до плюс бесконечности.

Запишем окончательный ответ для области определения функции.

Ответ:

D(y): x ∈ (−∞ ; +∞)

По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как
«x ∈ R».

Читается «x ∈ R» как: « x » принадлежит всем действительным числам».

Записи « x ∈ (−∞ ; +∞) » и
«x ∈ R» одинаковы по своей сути.

Область определения функции с дробью

Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.

Разбор примера

Найдите область определения функции:

Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x »
в функции

« f(x) = ».

По законам математики из школьного курса мы помним, что на ноль делить нельзя.
Иначе говоря,
знаменатель (нижняя часть дроби) не может быть равен нулю.

Переменная « x » находится в знаменателе функции «f(x) = ».
Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.

x + 5 ≠ 0

Решим полученное линейное уравнение.

Получается, что « x » может принимать любые числовые значения кроме «−5».
На числовой оси заштрихуем все доступные значения для « x ».

Число «−5» отмечено
«пустой»
точкой на числовой оси, так как не входит в область допустимых значений.

числовая ось для x

Запишем заштрихованную область на числовой оси через знаки неравенства.

числовая ось для x

Запишем промежутки через математические символы. Так как число «−5» не входит
в область определения функции, при записи ответа рядом с ним будет стоять
круглая скобка.

Вспомнить запись ответа через математические символы можно в уроке
«Как записать ответ неравенства».

числовая ось для x

x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Запишем окончательный ответ для области определения функции
«f(x) = ».

Ответ:

D(y): x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Область определения функции с корнем

Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.

Разбор примера

Найти область определения функции:

y = 6 − x

Из урока «Квадратный корень» мы помним,
что подкоренное выражение корня чётной степени должно быть больше или равно нулю.

Найдём, какие значения может принимать « x » в функции
«у = 6 − x».
Подкоренное выражение
«6 − x» должно быть больше или равно нулю.

6 − x ≥ 0

Решим линейное неравенство по правилам урока «Решение линейных неравенств».

6 − x ≥ 0

−x ≥ −6 | ·(−1)

x 6

Запишем полученный ответ, используя числовую ось и математические символы. Число «6» отмечено
«заполненной»
точкой на числовой оси, так как входит в область допустимых значений.

числовая ось для x

x ∈ (−∞ ; 6]

Запишем окончательный ответ для области определения функции
«y = 6 − x» .
Так как число «6» входит
в область определения функции, при записи ответа рядом с ним будет стоять
квадратная скобка.

Ответ:

D(y): x ∈ (−∞ ; 6]

Правило для определения области определения функции

Запомните!
!

Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:

  1. на ноль делить нельзя (другими словами, знаменатели дробей с « x » не должны быть равны нулю);
  2. подкоренные выражения корней чётной степени должны быть больше или равны нулю.

При нахождении области определения функции необходимо всегда задавать себе два вопроса:

  1. есть ли в функции дроби со знаменателем, в котором есть « x »?
  2. есть ли корни четной
    степени с « x »?

Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.

Рассмотрим пример поиска области определения функции с корнем и дробью.

Разбор примера

Найдите область определения функции:

Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.

В функции «
f(x) = x + 3 +

»

есть дробь «

»,
где « x » расположен в знаменателе. Запишем условие, что знаменатель
« x 2 − 9 »
не может быть равен нулю.

Решаем квадратное уравнение через
формулу квадратного уравнения.

x1;2 =

x2 − 9 ≠ 0

x1;2 =

−0 ±
02 − 4 · 1 · (−9)
2 · 1

x1;2

x1;2

x1;2

x1;2 ≠ ±3

Запомним полученный результат. Задаем себе
второй
вопрос.
Проверяем, есть ли в формуле функции

«
f(x) = x + 3 +

»

корень четной степени.

В формуле есть квадратный корень «
x + 3
».

Подкоренное выражение «x + 3»
должно быть больше или равно нулю.

x + 3 ≥ 0

Решим линейное неравенство.

x + 3 ≥ 0
x ≥ −3

числовая ось для x

Объединим полученные ответы по обоим вопросам:

  • знаменатель дроби
    «
    » не равен нулю ;
  • подкоренное выражение «
    x + 3
    » должно быть больше или равно нулю.

Объединим все полученные результаты на числовых осях.
Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.

сравнение ограничений для поиска области определения

Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях.
Обратим внимание, что числа «−3» и «3» отмечены «пустыми» точками и не входят в итоговое решение.

поиск общих промежутков

Получаем два числовых
промежутка «−3 < x < 3» и «x > 3», которые являются областью определения функции
«f(x) = x + 3 + ».
Запишем окончательный ответ.

Ответ:

D(y): x ∈ (−3 ; 3) ∪ (3 ; +∞)

Примеры определения области определения функции

Разбор примера

Найти область определения функции:

y = 6x +
51 + x

Для поиска области определения функций задаем себе
первый вопрос.

Есть ли знаменатель, в котором содержится « x »?

Ответ: в формуле функции

«y = 6x +
51 + x
»
нет дробей.

Задаем
второй вопрос.

Есть ли в функции корни четной степени?

Ответ: в функции есть корень шестой степени:
«6x».

Степень корня — число «6». Число «6» — чётное,
поэтому подкоренное выражение корня «6x»
должно быть больше или равно нулю.

x ≥ 0

В формуле функции «y = 6x +
51 + x
»
также есть корень пятой степени
«51 + x
».

Степень корня «5» — нечётное число, значит, никаких ограничений на подкоренное выражение
«1 + x»
не накладывается.

Получается, что единственное ограничение области определения функции

«y = 6x +
51 + x
»
— это ограничение подкоренного выражения
«6x».

x ≥ 0

Нарисуем область определения функции на числовой оси и запишем ответ.

поиск общих промежутков

Ответ:

D(y): x ∈ [0 ; +∞)


Разбор примера

Найдите область определения функции:

Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два.
Выделим знаменатели с « x » красным цветом.

Запишем условие, что каждый из знаменателей не должен быть равен нулю.

x + 2 ≠ 0
x2 − 7x + 6 ≠ 0

Обозначим их номерами «1» и
«2» и решим каждое уравнение отдельно.

x + 2 ≠ 0            (1)
x2 − 7x + 6 ≠ 0     (2)

Решаем первое уравнение.

x + 2 ≠ 0     (1)

Если значение квадратного корня
«x + 2 ≠ 0» не должно быть равно нулю,

значит, подкоренное выражение
«x + 2 ≠ 0»

также не должно быть равно нулю.

x + 2 ≠ 0     (1)

x + 2 ≠ 0
x ≠ −2

Теперь решим уравнение под номером «2», используя
формулу квадратного уравнения.

x1;2 =

x2 − 7x + 6 ≠ 0     (2)

x1;2 =

−(−7) ±
(−7)2 − 4 · 1 · 6
2 · 1

x1;2 =

x1;2 =

x1;2 =

Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.

Знаменатели с « x »
мы проверили. Настала очередь
проверить
формулу функции
на
наличие корней четной степени .

В формуле функции

«f(x) =

+
»

есть два корня
«x − 4» и
«x + 2». Их подкоренные
выражения должны быть больше или равны нулю.

Решим полученную
систему неравенств.

Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.

решение системы неравенств

Выпишем результат решения системы неравенств.

x ≥ 4

Объединим в таблицу ниже полученные ответы по обеим
проверкам:

  1. проверка, что знаменатели
    дробей
    с « x »
    не равны нулю;
  2. проверка, что
    подкоренные выражения корней четной степени должно быть больше или равны нулю.
Условие проверки Результат

Результат проверки, что знаменатели дробей

с « x »

не равны нулю

Результат проверки, что подкоренные выражения должно быть больше или равны нулю

x ≥ 4

Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет
всем полученным условиям.

пример поиска области определения функции

Запишем окончательный ответ для области определения функции
«f(x) =

+
»

с использованием математических символов.

Ответ:

D(y): x ∈ [4 ; 6) ∪ (6; +∞)


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

17 декабря 2016 в 18:02

Татьяна Цыганова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Цыганова
Профиль
Благодарили: 0

Сообщений: 1

Найти ОДЗ функции у=?(р1+р2х+x2
Я не могу понять за какое число воспринимать p1, p2

0
Спасибоthanks
Ответить

17 декабря 2016 в 19:10
Ответ для Татьяна Цыганова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


x2 + p2x + p1 ? 0.

0
Спасибоthanks
Ответить

24 февраля 2016 в 20:29

Влад Алексеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Влад Алексеев
Профиль
Благодарили: 0

Сообщений: 1

Постройте график функции y=-

 . Укажите область определения функции

0
Спасибоthanks
Ответить

25 февраля 2016 в 8:10
Ответ для Влад Алексеев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Область определения функции: знаменатель не равен 0.
x+1?0
x?-1
Графиком является гипербола, смещеная влево относительно оси Y.

0
Спасибоthanks
Ответить

5 февраля 2018 в 14:30
Ответ для Влад Алексеев

Кирилл Косован
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Кирилл Косован
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

11 февраля 2018 в 15:44
Ответ для Влад Алексеев

Татьяна Мирная
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Мирная
Профиль
Благодарили: 0

Сообщений: 1


у=- 

0
Спасибоthanks
Ответить

7 октября 2015 в 21:21

Катерина Яроцкая
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Катерина Яроцкая
Профиль
Благодарили: 0

Сообщений: 1

Помогите найти область определения функции

0
Спасибоthanks
Ответить

12 сентября 2016 в 15:59
Ответ для Катерина Яроцкая

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


К сожалению, картинка не отражается.

0
Спасибоthanks
Ответить


Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти dns сервер своего сайта
  • Как составить бухгалтерский баланс пример для чайников с примерами
  • Как составить тематический план на год
  • Как найти телефон человека по его данным
  • Как исправить показания счетчика в платосфере

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии