Как найти объем буферного раствора

Выполнение работы

I. Выбрать реактивы для приготовления буферного раствора.

Определение состава
буфера с заданным рН начинают с подбора
слабой кислоты или слабого основания
таким образом, чтобы показатель их
константы диссоциации отличался от
заданного значения рН или рОН не более,
чем на единицу в соответствии с формулой
рKd = рН 1. При этом
пользуются справочными данными.

II. Рассчитать объемы реактивов для приготовления буферного раствора.

Т.к. концентрации
компонентов буферного раствора одинаковы,
при расчете объемов компонентов можно
пользовать в формуле расчета рН буферного
раствора соотношение объемов компонентов.

Для ацетатного
буферного раствора объемы кислоты и
соли можно вычислить исходя из системы
уравнений:

,
pKd(CH3COOH)
= 4,756.

Для аммиачно-хлоридного
буферного раствора следует рассчитать
объемы гидроксида натрия и хлорида
аммония. Необходимый для формирования
буферного раствора гидроксид аммония
получится по реакции:

NH4Cl
+ NaOH = NH4OH
+ NaCl.

,
pKd(NH4OH)
= 4,752.

III. Приготовить буферный раствор и определить его рН

1. Рассчитанные
в п. 2 объемы выбранных растворов
отбирают с помощью бюретки на 100 мл
и смешивают в колбе на 100 мл.

2. Пробу буферного
раствора отобрать в химический стакан
объемом 50 мл

3. Включить
рН-метр.

4. Вынуть электрод
рН-метра из раствора хранения и протереть
его кусочком фильтровальной бумаги.

5. Опустить
электрод рН-метра в химический стакан
с пробой буферного раствора.

6. После того
как показания прибора установятся,
считать значение рН на экране рН-метра.

IV. Определить буферную емкость

Для ацетатного
буфера определяютемкость по щелочи

1. В две конические
колбы объемом 50 мл отбирают пипеткой
по 5 мл буферного раствора.

2. К каждой пробе
добавляют по 3−4 капли фенолфталеина

3. Титруют 0,05 М
раствором NaOH до перехода окраски
индикатора от бесцветной к розовой.

4. Записать объем
титранта VТдля каждой пробы.

Для аммиачногобуфера определяютемкость по кислоте

1. В две конические
колбы объемом 50 мл отбирают пипеткой
по 5 мл буферного раствора.

2. К каждой пробе
добавляют по 3−4 капли метилового
оранжевого

3. Титруют 0,05 М
раствором HCl до перехода окраски
индикатора от желтой к красной.

4. Записать объем
титранта VТдля каждой пробы.

Протокол лабораторной работы

1. Значение рН
буферного раствора, заданное преподавателем
рНтеор.= ……..

2. Реактивы для
приготовления буферного раствора и их
концентрации.

Для ацетатного
буфера – С(СН3СООН) = …………, моль/л

С(CH3COONa)
= ……….., моль/л

Для аммиачно-хлоридного
буфера – C(NaOH) = …….., моль/л

C(NH4Cl)
= ………, моль/л

3. Расчет объемов
выбранных растворов

Для ацетатного
буфера: V(CH3COOH)
= …………, мл

V(CH3COONa)
= ………….., мл

Для аммиачно-хлоридного
буфера – V(NaOH)
= ……., мл

V(NH4Cl)
= ………, мл

4. Результат
измерения рН приготовленного буферного
раствора рНпракт.= ……

5. Объем пробы
буфера, взятый для определения буферной
емкости Va= …мл

6. Концентрация
титранта

Для ацетатного
буфера – С(NaOH) = …………,
моль/л

Для аммиачно-хлоридного
буфера – C(HCl)
= …….., моль/л

7. Результаты
титрования

Для ацетатного
буфера – V(NaOH)1= …………, мл

V(NaOH)2= …………, мл

V(NaOH)ср.= …………, мл

Для аммиачно-хлоридного
буфера – V(HCl)1= …….., мл

V(HCl)2= …….., мл

V(HCl)ср.
= …….., мл

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание

  1. Расчет рН и буферной емкости раствора
  2. Определение массы соли в буферном растворе
  3. Расчет буферной емкости раствора
  4. Как рассчитать рН буферного раствора

Расчет рН и буферной емкости раствора

Определение массы соли в буферном растворе

Задача 345.
Константа диссоциации гидроксида аммония равна 1,8•10-5. Определите массу хлорида аммония, которую необходимо добавить к 500 мл 0,1 М раствора гидроксида аммония, чтобы понизить концентрацию OH ионов в растворе в 50 раз.
Решение:
1. Рассчитаем концентрацию [ОН] в 0,1М растворе гидроксида аммония, получим:

[ОН] = √KD(NH4OH) . CM(NH4OH) = 1,8•10-5 . 0,1 = 1,34•10-3 моль/л.

2. Рассчитаем концентрацию [ОН-] после ее понижения в 50 раз, получим:

[ОН]буф. = (1,34•10-3)/50 = 2,68•10-5 моль/л.

3. Рассчитаем рН буферного раствора, получим:

рН = 14 -lg[ОН] = 14 — lg2,68•10-5 = 14 — 5 — lg2,68 = 9,43.

4. Рассчитаем массу хлорида аммония чтобы получить раствор с pН = 9,43, получим:

Для щелочной буферной смеси рН = 14 – рКb + lg(Cосн/Cсоли).
рКb(NH4ОН) = 4,75.

Тогда

lg(0,1/[NH4Cl]) = 9,43 – 14 + 4,75 = –0,18;
[NH4Cl] = 0,1/10–0,18 = 0,15 M.

Отсюда

m(NH4Cl) = n(NH4Cl)M(NH4Cl) = C(NH4Cl)V(р-ра)M(NH4Cl) = 0,15  0,5 . 53,5 = 4,0125 г.


Задача 346.
Аммиачный буферный раствор готовили следующим образом: в некотором объеме 0,50 М (NH3) растворяли определенную навеску NH4Cl и полученный раствор доводили водой до 1,00 литра. Какой должна быть масса навески NH4Cl и какой объем раствора NH3 следует взять, чтобы буферный раствор имел pH 9,25 и буферную ёмкость 0,10 (моль/литр.pH).
Решение:
Кw = 1 · 10–14;
M(NH4OH) = 35 г/моль;
M(NH4Cl) = 53,5 г/моль;
СМ(NH3) = 0,50 М;
V(б.р.) = 1000 мл;
КD(NH4OH) = 1,76 · 10–5;
pH(б.р.) = 9,25;
V(NH3)(p-pa) = ?
m(NH4Cl) = ?

1. Рассчитаем концентрацию раствоа хлорида аммония по формуле вычисления буферной емкости:

Восн. =  2,303[(C(B) . C(BH+)]/[(C(B) + C(BH+)], где

Восн. — буферная емкость;
C(B) и C(BH+) — концентрации слабого основания и его соли соответственно.

Обозначим концентрвцию NH4Cl за «х«, C(BH+) = х.

Тогда

Восн. =  2,303[C(B) . C(BH+)]/[C(B) + C(BH+)] = 0,1 = 2,303[(0,5 . х]/[(0,5 + х];
2,303(0,5 . х) = О,1(0,5 + х);
1,1515х = 0,05 + 0,1х;
1,0515х = 0,05;
х = 0,048, C(BH+) = 0,048 М.

2. Рассчитаем концентрацию ионов водорода и теоретическую рН в буферном растворе по формуле:

[H+] = [Кw . C(BH+)]/[КD(осн) . C(B)] где

Кw — ионное произведение воды (Kw = 10–14 при 25 °С);
КD(осн) — константа диссоциации слабого основания;
C(B) и C(BH+) — концентрации слабого основания и его соли соответственно.

Тогда

[H+] = [Кw . C(BH+)]/[КD(осн) · C(B)] = [(1 . 10–14) · 0,048)]/[(1,76 . 10–5) · 0,5] = 5,45 . 10-11 моль/л. Далее рассчитывают 
рН(теорет.) = –lg[Н+] = –lg5,45 . 10-11 = 11 — lg5,45 = 11 — 0,74 = 10,26.

3. Рассчитаем объем р-ра NH3, который следует взять для приготовления буферного раствора с рН 9,25, по формуле:

Восн. = [CН(В) . V(B)]/[∆pH . V(б.р.)], где

CН(В) — концентрация слабого основания;
V(B) — объем раствора слабого основания.

∆pH — изменение рН раствора при приготовлении буферной системы [∆pH = рН(теорет.) — pH(б.р.) = 10,26 — 9,25 = 1,01].

Тогда

Восн. = [CН(В) · V(B)]/[∆pH · V(б.р.)];
V(B) = Восн. [∆pH · V(б.р.)]/CН(В) = (0,1 · 1,01 . 1000)/0,5 = 202 мл, V(NH3)(p-pa) = 202 ≈ 200 мл.

4. Рассчитаем массу навески NH4Cl, необходимую для приготовления буферного раствора с рН 9,25, получим:

m(NH4Cl) = М(NH4Cl) · СМ(NH4Cl) = 53,5 . 0,048 = 2,568 ≈ 2,6 г.

Ответ: V(NH3)(p-pa) = 200 мл; m(NH4Cl) = 2,6 г.  


Расчет буферной емкости раствора

Задача 347.
Для получения карбонатного буферного раствора к 50 мл раствора NaHCO3 (4,20  г/л) прибавили 0,10 М  NaOH и разбавили водой до 100 мл. Какой объем раствора гидроксида натрия следует взять, чтобы получить буферный раствор, имеющий рН = 10,5? Чему равна буферная емкость полученного раствора? (рКa (II ступень) = 10,32).
Решение:
Кw = 1 · 10–14;
M(NaHCO3) = 84,0066 г/моль;
M(NaOH) = 40 г/моль;
m(NaHCO3) = 4,20 г/л;
Vp-p(NaHCO3) = 50 мл;
См(NaOH) = 0,10 М;
V(б.р.) = 100 мл;
рКa (II ступень) = 10,32;
pH(б.р.) = 10,5;
1. Рассчитаем СМ(NaHCO3), получим:

m(NaHCO3)/M(NaOH) = 4,20/40 = 0,105 М.

2. Рассчитаем буферную емкость раствора, получим:

Восн. =  2,303[(C(B) . C(BH+)]/[(C(B) + C(BH+)], где

Восн. — буферная емкость;
C(B) и C(BH+) — концентрации слабого основания и его соли соответственно.

Тогда

Восн. =  2,303[(C(B) . C(BH+)]/[(C(B) + C(BH+)] = (0,1 . 0,105)/(0,1 + 0,105) = 0,051.

3. Рассчитаем концентрацию ионов водорода и теоретическую рН в буферном растворе по формуле:

[H+] = [Кw . C(BH+)]/[КD(осн) . C(B)],  где

Кw — ионное произведение воды (KW = 10–14 при 25 °С);
КD(осн) — константа диссоциации слабого основания;
C(B) и C(BH+) — концентрации слабого основания и его соли соответственно.

Тогда

[H+] = [Кw . C(BH+)]/[КD(осн) . C(B)] = [(1 .10–14) . 0,048)]/[(1,76 . 10–5) · 0,5] = 5,45 . 10-11 моль/л.

Отсюда

рН(теорет.) = –lg[Н+] = –lg5,45 . 10-11 = 11 — lg5,45 = 11 — 0,74 = 10,26.


Как рассчитать рН буферного раствора

Задача 348.
Рассчитайте рН аммиачной буферной смеси содержащей 10 мл 0,1 Н раствора NН4ОН и 5 мл 0,01 Н NН4CI. КD(NН4ОН) = 1,8 . 10-5.
Решение:
KD(NH4OH) = 1,8 . 10-5;
CНисх.(NH4OH) = 0,1 н;
CНисх.(NH4Cl) = 0,01 н;
V(NH4OH) = 10 мл = 0,01 л;
V(NH4Cl) = 5 мл = 0,005 л;
рН = ?
Рассчитаем общий объем буферной смеси:

Vб.р. = V(NH4OH) + V(NH4Cl) = 0,01 + 0,005 = 0,015 л.

Рассчитаем концентрации NН4ОН и NН4CI в буферной смеси, полученной путем смешения растворов гидроксида аммония и хлорида аммония:

CН((NH4OH) = [CНисх.(NH4OH) . V(NH4OH)]/Vб.р. = (0,1 .  0,01)/0,015 = 0,0125 Н = 1,25 . 10-2 Н;
CН(NH4Cl) = [CНисх.(NH4Cl) . V((NH4Cl)]/Vб.р. = (0,01 . 0,005)/0,015 = 0,000625 Н = 6,25 . 10-4 Н.

Для буферного раствора, состоящего из слабого основания и сопряженной ему кислоты, концентрацию ионов водорода вычисляют по формуле:

[H+] = [Kw . CН(соль)]/[KD(осн.) . СН(осн.)], где

Kw — константа диссоциации воды, 10^-14;
KD(осн.) — константа диссоциации основания;
СН(осн.) и CН(соль) – концентрации слабого основания и его соли соответственно.

Тогда

[H+] = [Kw . CН(NH4Cl)]/[KD(NH4OH) . СН(NH4OH)] = (10-14 . 6,25 .10-4)/(1,8 . 10-5  .  1,25 . 10-2) = 2,78 . 10-11 моль/л.

Рассчитаем рН буферной системы:

рН = -lg[H+] = -lg2,78 . 10-11 = 11 — lg2,78 = 11 — 0,44 = 10,56.

Ответ: рН = 10,56.


Задача 349.
Рассчитать рН ацетатной буферной смеси, состоящей из 50 мл 1 М раствора СН3СООН и 150 мл 1 М раствора СН3СООNa. КD(СН3СООН) = 1,75.10-5.
Решение:
KD(СН3СООН) = 1,75.10-5;
CНисх.(СН3СООН) = 1 Н;
CНисх.(СН3СООNa) = 1 Н;
V(СН3СООН) = 50 мл = 0,05 л;
V(СН3СООNa) = 150 мл = 0,15 л;
рН = ?
Рассчитаем концентрации СН3СООН и NН4CI в буферной смеси, полученной путем смешения растворов гидроксида аммония и хлорида аммония:

CМ(СН3СООН) = [CМисх.(СН3СООН) . V(СН3СООН)]/Vб.р. = (1 . 0,05) = 0,05 моль;
CМ(СН3СООNa) = [CМисх.(СН3СООNa) . V(СН3СООNa)]/Vб.р. = (1 . 0,15) = 0,15 моль.  

Общий объем буферной системы можно не считать, так как оба компонента находятся в одном объеме.
Для буферного раствора, состоящего из слабой кислоты и сопряженной ей основания, концентрацию ионов водорода вычисляют по формуле:

[H+] = [КD(НА) . CМ(НА)]/CМ(А), где

КD(НА) — константа диссоциации кислоты; CМ(НА) — концентрация кислоты; CМ(А) — концентрация соли.
Преобразуем формулу для расчета концентрации ионов водорода в буферном растворе, состоящем из раствора уксусной кислоты и ацетата натрия: 

[H+] = [КD(СН3СООН) . CМ(СН3СООН)/CМ(СН3СООNa) = (1,75.10-5 . 0,05)/0,15 = 5,8.10-6 моль/л; 
pH = -lg[H+] = -lg5,8.10-6 = 6 — 0,76 = 5,24.

Для кислотного буферного раствора рН можно рассчитать и так, по формуле Гендерсона-Хассельбаха:

pH = рКа — lg (Cкисл / Cсоли), где pKa = -lgKa;
pH = рК(СН3СООН) — lg(СН3СООН)/(СН3СООNa);
рК(СН3СООН) = -lgКD(СН3СООН) = -lg1,75.10-5 = 4,76.

Тогда

pH = 4,76 — lg(0,05)/(0,15) = 4,76 — 0,52 = 5,24

Ответ: рН = 5,24.


рН буферного раствора

Чему равен рН буферного раствора,  образовавшегося при смешении 30 миллилитров 0,1 М раствора уксусной кислоты (СН3СООН) и 50 миллилитров 0,3 М раствора ацетата калия (СН3СООK)?

Kа = 1,74 ⋅ 10–5.

Решение задачи

Хотелось бы напомнить, что буферные растворы используют для того, чтобы поддерживать постоянную кислотность среды.

Обычно они содержат слабую кислоту и сопряженное ей основание  (например, CH3COOH/CH3COO –) или слабое основание и сопряженную ему кислоту  (например, NH3/NH4 +).

Буферные растворы образуются при неполной нейтрализации слабой кислоты сильным основанием или слабого основания сильной кислотой.

Рассчитаем объем буферного раствора (V) по формуле:

формула нахождения объема буферной системы

Получаем:

V = 30 + 50 = 80 (мл).

Вычислим молярную концентрацию уксусной кислоты (СН3СООН) и молярную концентрацию ацетата калия (СН3СООK) в буферной смеси, полученной путем смешения растворов уксусной кислоты (СН3СООН) и ацетата калия (СН3СООK):

СМ (СН3СООН) = (Vисх. (СН3СООН)  ⋅ СМ,исх.(СН3СООН)) / V = (30 ⋅ 0,1) / 80 = 0,0375 (М),

СМ (СН3СООK) = (Vисх. (СН3СООK) ⋅ СМ,исх.(СН3СООK)) / V = (50 ⋅ 0,3) / 80 = 0,1875 (М).

Для нахождения рН буферного раствора, рассчитаем равновесную концентрацию ионов водорода по формуле:

формула концентрации ионов водорода для рН буферного раствора

где Ka –  константа диссоциации слабой кислоты.

Получаем:

[H+] = 1,74 ⋅ 10–5 ⋅ 0,0375 / 0,1875 = 3,48 ⋅ 10–6 (моль/л).

Вычислим рН буферного раствора по формуле:

формула нахождения pH

Получаем:

рН = –lg3,48 ⋅ 10–6 = 5,46

Ответ:

рН буферного раствора равен 5,46.

Рассчеты, связанные с приготовлением буферных растворов

Вычисление буферной емкости по кислоте

Задача 51.
Какова буферная емкость по кислоте, если прибавление к 80 мл буферного раствора 30 мл 0,1 М раствора HCl вызвало изменение pH на единицу?
Решение:
Буферная емкость (buffer capacityß – число эквивалентов кислоты или щелочи, которое следует добавить к 1 л буферного раствора, чтобы изменить рН на единицу. Буферную емкость рассчитывают по уравнению:

ß = n/(z • V • ∆pH)

HCl — кислота одноосновная, поэтому z = 1:

n(HCl) = CV = 0,030 • 0,1 = 0,003 моль;
V(буфера) = 0,08 л
ß =  0,003/(1 • 0.08 • 1) = 0,0375 моль/л.

Ответ: ß = 0,0375 моль-экв/л.
 



Вычисление рН буферного раствора


Задача 52.
Вычислите рН раствора, полученного при смешивании 29 см3 6,2 Н. раствора уксусной кислоты и 1 см3 2,0 Н. раствора ацетата натрия.
Решение:
Получается буферный раствор — смесь слабой кислоты и ее соли (анионов слабой кислоты):

рН = рКа  +  lg[CM(соли)/CM(кислоты)];
CM = СH/z, где z — число эквивалентности.

Для кислоты z равно основности, для соли — числу катионов или анионов, умноженному на заряд соответствующего иона.
Уксусная кислота — одноосновная, поэтому z = 1.
В формуле ацетата натрия имеется по 1 иону с единичным зарядом, поэтому z = 1.
Соответственно, для обоих веществ СН = СМ.
При смешивании раствора получен буферный раствор объемом 29 + 1 = 30 мл = 0,03 л.

С1V1 = C2V2, отсюда:
См(СН3СООNa) = С1V1/V2(буф. p-pa) = (6,2 • 0,029)/0,03 = 5,99 М;
См(CH3COOH) = С1V1/V2(буф.) = (2 • 0,001)/0,03 = 0,067 М;
рК(СН3СООН) = 4,76; 
рН = 4,76 + lg(5,99/0,067) = 4,76 + lg89,4 = 4,76 + 1,95 = 6,71.

Ответ: рН = 6,71.
 


Расчет количества (моль) одноосновной кислоты

Задача 53.
Какое количество (моль) одноосновной кислоты необходимо ввести больному с рН крови 7,6 объемом 4л и буферной емкостью по кислоте 0,06 моль/л для нормализации рН крови?
Решение:
Установлено, что состоянию нормы соответствует определенный диапазон колебаний рН крови – от 7,37 до 7,44 со средней величиной 7,40. Рассчет будем производить по формуле:

ß = n/(z • V • ∆pH), где

ß — буферная емкость, n — количество вещества кислоты или соли, z — основность кислоты, V — объем раствора, pH — изменене системы.

ß = 0,06 моль/л;
z = 1, потому что кислота одноосновная;
pH = (7,6 — 7,4) = 0,2;
V = 4л.

Рассчитаем количество (моль) одноосновной кислоты, получим:

ß = n/(z • V • pH);
n(кислоты) = ß • (z • V • pH) = 0,06 моль/л • (1 • 4 л •0,2) = 0,048 моль.

Ответ: n(кислоты) = 0,048 моль.


Растворы

2. Буферные растворы

Буферные системы – это системы, способные сохранять постоянное значение рН при разбавлении и при добавлении определенных количеств сильных кислот и оснований.
Буферные системы могут быть образованы:
1. слабой кислотой и ее солью (СН3СООН + СН3СООNa; С6Н5СООН + С6Н5СООNa; НСООН + НСООNa;)
2. слабым основанием и его солью (NН4ОН (NН3.Н2О) + NН4С1)
3. кислой и средней солью слабой кислоты (NаНСО3 + Nа2СО3; Nа2НРО4 + Nа3РО4)
4. одно- и двухзамещенной солью слабой кислоты (Nа2НРО4 + NаН2РО4)

Растворы, содержащие буферные смеси, способные вследствие этого противостоять изменению рН, называются буферными растворами.

Для количественной характеристики способности буферного раствора противостоять влиянию сильных кислот и оснований используется величина, называемая буферной емкостью. По мере увеличения концентрации буферного раствора возрастает его способность сопротивляться изменению рН при добавлении кислот или щелочей.

Буферная емкость – число эквивалентов кислоты или щелочи, которое следует добавить к 1 л буферного раствора, чтобы изменить рН на единицу (понизить при добавлении кислоты и повысить при добавлении щелочи)

В

=

ν(1/Z*кислоты)

или

В

=

ν(1/Z*основания)

ΔpH×V

ΔpH×V

где V – объем буферного раствора, л.;

ν(1/Z*Х) — количество эквивалента кислоты или щелочи, моль;

ν(1/ Z*Х) = C(1/ Z*Х)×V(Х);

c(1/ Z*Х) – молярная концентрация эквивалента кислоты (щелочи), моль/л;

V(Х) – объем раствора кислоты (щелочи), л;

∆рН – изменение рН после добавления кислоты (щелочи).

Величина буферной емкости зависит от концентрации компонентов буферной смеси и их отношения между этими концентрациями. С увеличением концентрации компонентов буферной смеси буферная емкость увеличивается. При разбавлении буферной смеси буферная емкость уменьшается.

Буферная емкость максимальна при одинаковых концентрациях соли и кислоты или соли и основания в буферной смеси. Если молярные концентрации эквивалента кислоты и соли равны, то рН буферной смеси будет равен рК к-ты.

Следовательно, для приготовления буферной системы с наибольшей буферной емкостью надо выбирать кислоту с наиболее близкой к заданному значению рН величиной рКк-ты (рН ≈ рКк-ты).
Для смесей, образованных слабым основанием и его солью, рН = 14 – рКосн., т.е. рКосн. ≈ 14 — рН.

 Свойства буферных растворов

1. рН буферного раствора зависит от отношения концентраций компонентов буферных систем, а также свойств буферной пары и растворителя.

2. Различные буферные растворы обладают определенной буферной емкостью и сохраняют постоянство рН только до прибавления определенного количества кислоты или щелочи.

3. Буферная емкость тем больше, чем выше концентрация компонентов буферного раствора. Максимальная буферная емкость наблюдается у растворов, которые содержат равные концентрации компонентов буферной пары.

Во внеклеточ­ной и внутриклеточной жидкости существуют четыре основные буферные системы:

–    бикарбонатная;

–    белковая;

–    гемоглобиновая;

–    фосфатная.

Главными буферами внеклеточной жидкости является бикарбонатный и гемоглобиновый, в то время как белки и фосфаты — это основные внутриклеточные буферы.

Бикарбонатный буфер является основным и наиболее лабильным внеклеточным буфером. Он состоит из угольной кислоты и бикарбоната (гидрокарбоната) натрия; константой, характеризующей буфер соотношение концентраций кислоты и ее кислой соли.

Внеклеточная буферная систе­ма угольной кислоты и гидрокарбоната натрия нейтрализует пример­но 40% всех высвобождаемых ионов водорода.

Эта буферная система уникальна тем, что Н2СО3 может диссоци­ировать на Н2О воду и СО2. В то время как другие буферы быстро становятся неэффективны­ми в результате связывания водородных ионов и анионов слабой кис­лоты, бикарбонатные системы поддерживают работоспособность в связи с удалением Н2СО3в виде СО2. Лимитирующим параметром эффективности бикарбонатной системы является, по сути дела, на­чальная концентрация бикарбоната

Гемоглобиновый буфер играет важную роль в регуляции кон­центрации Н+. Его буферная емкость определяется наличием поляр­ных групп в аминокислотных остатках гемоглобина. Гемоглобин является более важным буфером по сравнению с другими белками, что определяется тремя причинами:

–    относительно высокой молярной концентрацией гемоглобина;

–    относительно высокой концентрацией в гемоглобине гистиди­на, рК которого (~7) близко к значению pH крови;

–    ролью гемоглобина в транспорте газов крови.

Белковый буфер. Белки, отличные от гемоглобина, представля­ют собой относительно слабый буфер во внеклеточной жидкости, но в связи с высокой концентрацией белков внутри клеток эта буферная система важна в нейтрализации внутриклеточных сдвигов pH.

Фосфатная буферная пара (НРО2-4 и Н2РО4) во внеклеточной жидкости представлена в низких концентрациях, но является важной буферной системой мочи.

Буферные системы организма

–    Буферы ограничивают изменения pH, вызываемые внесением сильной кислоты или основания.

–    Основные буферы внеклеточной жидкости — бикарбонатный и гемоглобиновый.

–    Основные буферы внутриклеточной жидкости — белковый и фосфатный.

ПЛОТНОСТЬ ВОДЫ В ИНТЕРВАЛЕ -10÷100 °С

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

-10

0,99815

17

0,99880

24

0,99732

35

0,99406

70

0,97781

-5

0,99930

18

0,99862

25

0,99707

40

0,99224

75

0,97489

0

0,99987

19

0,99843

26

0,99681

45

0,99025

80

0,97183

4

1,00000

20

0,99823

27

0,99654

50

0,98807

85

0,96865

5

0,99999

21

0,99802

28

0,99626

55

0,98573

90

0,96534

10

0,99973

22

0,99780

29

0,99597

60

0,98324

95

0,96192

15

0,99913

23

0,99756

30

0,99567

65

0,98059

100

0,95838

16

0,99897

* Источник: Краткий справочник физико-химических величин. Издание десятое, испр. и дополн. / Под ред. А.А. Равделя и А.М. Пономаревой — СПб.: «Иван Федоров», 2003 г. С. 15

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Ошибка 0101 гранта как исправить
  • Как составить дерево возможных вариантов с трехзначными числами
  • Как на вайбере найти группу по названию
  • Как найти свою фишку в блоге
  • Как составить термохимическое уравнение реакции горения магния

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии