Как найти нули множителя

Прежде чем перейти к изучению темы «Нули функции»
внимательно изучите уроки
«Что такое функция в математике»
и
«Как решать задачи на функцию».

Запомните!
!

Нули функции — это
значения « x »
(аргумента функции),

при которых « y = 0 ».

В заданиях «Найдите нули функции» чаще всего сама функция задана через формулу

(аналитически). Разберем алгоритм решения

подобных задач.

Как найти нули функции, заданной формулой

Важно!
Галка

Чтобы найти нули функции, нужно:

  • в формулу функции вместо

    « у » (или « f(x) »,
    « g(x) » и т.п.)
    подставить «0»;
  • решить полученное уравнение
    относительно « x »;
  • записать полученные решения уравнения для « x » в ответ.

По традиции разберемся на примере.

Разбор примера

Найдите нули функции:

Подставим вместо значения функции « f(x) » ноль.

0 = 0,2x + 3

Решаем полученное линейное уравнение
и записываем полученный ответ
для « x ».

Перенесем неизвестное « 0,2x » из правой части уравнения в левую с
противоположным
знаком.

      −0,2x = 3     | · (−1)

0,2x = −3

Переведем десятичную дробь «0,2» в
обыкновненную для упрощения дальнейших расчетов.

0,2x = −3

· x = −3     | · 10

· x · 10 = −3 · 10

· x = −30

2x = −30

x =

x = −15

Ответ: x = −15 является нулем
функции    f(x) = 0,2x + 3

Разбор примера

Найдите нули функции:

Вместо « f(x) » подставим ноль.

0 = x 3 − 4x

−x 3 + 4x = 0     | · (−1)

(−1) · (−x 3 + 4x) = 0 · (−1)

x 3 − 4x = 0

Вынесем общий множитель
« x » за скобки.

В левой части полученного уравнения у нас два множителя:
« x »
и «(x 2 − 4)». Результат их умножения равен нулю.

Это возможно, когда любой
из множителей равен нулю. Поэтому рассмотрим оба варианта: когда множитель
« x » равен нулю и когда множитель «(x 2 − 4)»
равен нулю.

Решаем квадратное уравнение
«x 2 − 4 = 0».
Используем формулу
для решения квадратного уравнения с дискриминантом.

a · x 2 + b · x + c = 0

x1;2 =

x 2 − 4 = 0

x1;2 =

0 ±
02 − 4 · 1 · (−4)
2 · 1

x1;2 =

x1;2 =

Запишем все полученные корни уравнений в ответ в порядке возрастания. Они будут являться нулями функции.

Ответ: x = −2; x = 0; x = 2 являются нулями функции
   f(x) = x 3 − 4x

Разбор примера

Найдите нули функции:

Подставим вместо « h(x) » ноль.

Перенесем правую часть

в левую, изменив ее знак на минус.

Единственный вариант, когда дробь будет равна нулю, только если
ее числитель
«x 2 − x − 6» будет равен нулю. Знаменатель
«x + 3» не может быть равен нулю, так как на ноль делить нельзя.

Решим полученное квадратное уравнение через формулу с дискриминантом.

a · x 2 + b · x + c = 0

x1;2 =

x 2 − x − 6 = 0

x1;2 =

−(−1) ±
(−1)2 − 4 · 1 · (−6)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 3 x2 = −2

Ответ: x = −2; x = 3 являются нулями функции   

h(x) =

Разбор примера

Найдите нули функции:

Заменим «f(x)» на ноль.

Единственное число, квадратный корень которого равен нулю — это сам ноль.
Поэтому, квадратный корень
« x 2 − 4 = 0 »

будет равен нулю, когда его подкоренное выражение
« x 2 − 4 »
будет равно нулю.

Осталось решить полученное квадратное уравнение, чтобы найти нули функции
«f(x) = x 2 − 4».

x1;2 =

x 2 − 4 = 0

x1;2 =

−(−0) ±
(−0)2 − 4 · 1 · (−4)
2 · 1

x1;2 =

x1;2 =

Ответ: x = −2; x = 2 являются нулями
функции   f(x) = x 2 − 4

Как найти нули функции на графике функции

Важно!
Галка

Графически нули функции — это точки пересечения графика функции
с осью «Ox»
(осью абсцисс).

По определению
нули функции — это значения « x »,
при которых
« y = 0 ». Другими словами, у точек
графика функции, которые являются нулями функции,
координата « x » равна нулю.

нули функции на графике функции

Чтобы найти нули функции на графике
нам остается, только найти, какая у них
координата
по оси « Ox ».

координаты нулей функции на графике функции

Рассмотрим на примере.

Разбор примера

На рисунке ниже изображен график функции « y = f(x) », определенной на множестве действительных чисел. Используя график,
найдите нули функции.

найдите нули на графике функции

Отметим на графике функции его точки пересечения с осью « Ox ».

нули на графике функции в задании

Назовем полученные точки «(·)А» и «(·)B».
В точках «(·)А» и «(·)B» график функции пересекает
ось

« Ox » , то есть координаты точки «(·)А» и «(·)B»
по оси « Oy »
равны нулю.

Точки «(·)А» и «(·)B»
— нули функции. Теперь определим, чему равны их координаты по оси « Ox ».

точки нули на графике функции в задании

На графике видно, что у точки «(·)А» координата « x » равна
« 0 », а у точки «(·)B» координата « x » равна
« 2 ».

полученные точки нули на графике функции в задании

Запишем полученные значения координат « x » в ответ.

Ответ: x = 0; x = 2 являются нулями функции.

Как найти нули функции, заданной таблицей

В некоторых заданиях, где требуется найти нули функции, сама функция задана не вполне привычно с помощью формулы,
а с помощью таблицы. Поиск нулей в таких примерах является легкой задачей.

Разбор примера

Найдите нули функции, заданной таблицей.

x −2 −1 0 1 2 3
y −3 −1,5 0 2 1 0

Вспомним определение нулей функции.

Запомните!
!

Нули функции — это
значения « x » в функции,
при которых « y = 0 ».

Согласно определению нулей функции нам достаточно найти значения « x » в таблице,
где
« y = 0 ». Выделим их цветом.

x −2 −1 0 1 2 3
y −3 −1,5 0 2 1 0

Остаётся только записать в ответ значения « x » из таблицы.

Ответ: x = 0; x = 3 являются нулями функции, заданной таблицей.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Содержание:

Многочлен – это сумма одночленов, причем сам одночлен — это частный случай многочлена.

История многочелена:

Живший в 1050-1122 гг Омар Хаям известен в мире как мастер рубай. Однако имя Омара Хаяма также упоминается наряду с именами гениальных математиков. Именно Омар Хаям впервые представил общую формулу корней уравнения кубического многочлена Многочлен - виды, определение с примерами решения

Многочлены от одной переменной и действия над ними

Определение многочленов от одной переменной и их тождественное равенство

Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной Многочлен - виды, определение с примерами решения

По определению одночлена числа и буквы (в нашем случае одна буква — Многочлен - виды, определение с примерами решения) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения — некоторое число. Поэтому одночлен от одной переменной Многочлен - виды, определение с примерами решения — это выражение вида Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения — некоторое число, Многочлен - виды, определение с примерами решения — целое неотрицательное число. Если Многочлен - виды, определение с примерами решения то показатель степени Многочлен - виды, определение с примерами решения переменной Многочлен - виды, определение с примерами решения называется степенью одночлена. Например, Многочлен - виды, определение с примерами решения — одночлен шестой степени, Многочлен - виды, определение с примерами решения — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку Многочлен - виды, определение с примерами решения).

По определению многочлен от одной переменной Многочлен - виды, определение с примерами решения — это сумма одночленов от одной переменной Многочлен - виды, определение с примерами решения. Поэтому

многочленом от одной переменной Многочлен - виды, определение с примерами решения: называется выражение вида

Многочлен - виды, определение с примерами решения (1)

где коэффициенты Многочлен - виды, определение с примерами решения — некоторые числа.

Если Многочлен - виды, определение с примерами решения, то этот многочлен называют многочленом Многочлен - виды, определение с примерами решения степени от переменной Многочлен - виды, определение с примерами решения. При этом член Многочлен - виды, определение с примерами решения называют старшим членом многочлена Многочлен - виды, определение с примерами решения, число Многочлен - виды, определение с примерами решениякоэффициентом при старшем члене, а член Многочлен - виды, определение с примерами решениясвободным членом. Например, Многочлен - виды, определение с примерами решения — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.

Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена Многочлен - виды, определение с примерами решения записывают так:

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения — некоторые числа.

Теорема 1. Одночлены Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения, тождественно равны тогда и только тогда, когда Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю тогда и только тогда, когда Многочлен - виды, определение с примерами решения

Поскольку равенство одночленов

Многочлен - виды, определение с примерами решения (2)

выполняется при всех значениях Многочлен - виды, определение с примерами решения (по условию эти одночлены тождественно равны), то, подставляя в это равенство Многочлен - виды, определение с примерами решения, получаем, что Многочлен - виды, определение с примерами решения Сокращая обе части равенства (2) на Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения по условию), получаем Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения из этого равенства имеем: Многочлен - виды, определение с примерами решения Поскольку 2Многочлен - виды, определение с примерами решения то равенство Многочлен - виды, определение с примерами решения возможно только тогда, когда Многочлен - виды, определение с примерами решения Таким образом, из тождественного равенства Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Если известно, что Многочлен - виды, определение с примерами решения для всех Многочлен - виды, определение с примерами решения то при Многочлен - виды, определение с примерами решения получаем Многочлен - виды, определение с примерами решения Поэтому одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю при Многочлен - виды, определение с примерами решения (тогда Многочлен - виды, определение с примерами решения).

Далее любой одночлен вида Многочлен - виды, определение с примерами решения будем заменять на 0.

Теорема 2. Если многочлен Многочлен - виды, определение с примерами решения тождественно равен нулю (то есть принимает нулевые значения при всех значениях Многочлен - виды, определение с примерами решения), то все его коэффициенты равны нулю.

Многочлен - виды, определение с примерами решенияЗначком Многочлен - виды, определение с примерами решенияобозначено тождественное равенство многочленов.

Для доказательства используем метод математической индукции. Пусть Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения поэтому Многочлен - виды, определение с примерами решения То есть в этом случае утверждение теоремы выполняется.

Предположим, что при Многочлен - виды, определение с примерами решения это утверждение также выполняется: если многочлен Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения

Докажем, что данное утверждение выполняется и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения (3)

Поскольку равенство (3) выполняется при всех значениях Многочлен - виды, определение с примерами решения, то, подставляя в это равенство Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения Тогда равенство (3) обращается в следующее равенство: Многочлен - виды, определение с примерами решения Вынесем Многочлен - виды, определение с примерами решения в левой части этого равенства за скобки и получим

Многочлен - виды, определение с примерами решения (4)

Равенство (4) должно выполняться при всех значениях Многочлен - виды, определение с примерами решения. Для того чтобы оно выполнялось при Многочлен - виды, определение с примерами решения должно выполняться тождество

Многочлен - виды, определение с примерами решения В левой части этого тождества стоит многочлен со степенями переменной от Многочлен - виды, определение с примерами решения до Многочлен - виды, определение с примерами решения Тогда по предположению индукции все его коэффициенты равны нулю: Многочлен - виды, определение с примерами решения Но мы также доказали, что Многочлен - виды, определение с примерами решения поэтому наше утверждение выполняется и при Многочлен - виды, определение с примерами решения Таким образом, утверждение теоремы справедливо для любого целого неотрицательного Многочлен - виды, определение с примерами решения то есть для всех многочленов.

Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают Многочлен - виды, определение с примерами решения или просто Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения).

Теорема 3. Если два многочлена Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).

Пусть многочлен Многочлен - виды, определение с примерами решения, а многочлен Многочлен - виды, определение с примерами решения Рассмотрим многочлен Многочлен - виды, определение с примерами решенияПоскольку многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по условию тождественно равны, то многочлен Многочлен - виды, определение с примерами решения тождественно равен 0. Таким образом, все его коэффициенты равны нулю.

Но Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения Отсюда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияКак видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, Многочлен - виды, определение с примерами решения больше Многочлен - виды, определение с примерами решения), то коэффициенты разности будут равны нулю. Поэтому начиная с (Многочлен - виды, определение с примерами решения-го номера все коэффициенты Многочлен - виды, определение с примерами решения также будут равны нулю. То есть действительно многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.

Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.

Пример:

Докажите, что выражение Многочлен - виды, определение с примерами решения

является полным квадратом.

Решение:

► Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида Многочлен - виды, определение с примерами решения Получаем тождество:

Многочлен - виды, определение с примерами решения (5)

Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:

Многочлен - виды, определение с примерами решения

Из первого равенства получаем Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения из второго равенства имеем а из третьего — Многочлен - виды, определение с примерами решения Как видим, при этих значениях Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения последние два равенства также выполняются. Следовательно, тождество (5) выполняется при Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения (аналогично можно также получить Многочлен - виды, определение с примерами решения). Таким образом, Многочлен - виды, определение с примерами решения

Действия над многочленами. Деление многочлена на многочлен с остатком

Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.

Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.

При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, Многочлен - виды, определение с примерами решения При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.

Например, Многочлен - виды, определение с примерами решения Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что целое число Многочлен - виды, определение с примерами решения делится на целое число Многочлен - виды, определение с примерами решения если существует такое целое число Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Определение: Многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения— не нулевой многочлен), если существует такой многочлен Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что

многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) с остатком, если существует такая пара многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения причем степень остатка Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения (в этом случае многочлен Многочлен - виды, определение с примерами решенияназывают неполным частным.)

Например, поскольку Многочлен - виды, определение с примерами решения то при делении многочлена Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения получаем неполное частное Многочлен - виды, определение с примерами решения: и остаток 2.

Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом.

Пример №1

Разделим многочлен Многочлен - виды, определение с примерами решения на многочленМногочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения Докажем, что полученный результат действительно является результатом деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Если обозначить результат выполнения первого шага алгоритма через Многочлен - виды, определение с примерами решениявторого шага — через Многочлен - виды, определение с примерами решения третьего — через Многочлен - виды, определение с примерами решениято операцию деления, выполненную выше, можно записать в виде системы равенств:

Многочлен - виды, определение с примерами решения (1)

Многочлен - виды, определение с примерами решения (2)

Многочлен - виды, определение с примерами решения (3)

Сложим почленно равенства (1), (2), (3) и получим

Многочлен - виды, определение с примерами решения (4)

Учитывая, что степень многочлена Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения обозначим Многочлен - виды, определение с примерами решения (остаток), а Многочлен - виды, определение с примерами решения (неполное частное). Тогда из равенства (4) имеем: Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения а это и означает, что мы разделили Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Очевидно, что приведенное обоснование можно провести для любой пары многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) найти неполное частное Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Отметим, что в случае, когда степень делимого Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения, считают, что неполное частное Многочлен - виды, определение с примерами решения а остаток Многочлен - виды, определение с примерами решения

Теорема Безу. Корни многочлена. Формулы Виета

Рассмотрим деление многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, то получим

Многочлен - виды, определение с примерами решения

Это равенство выполняется тождественно, то есть при любом значении Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения Полученный результат называют теоремой БезуМногочлен - виды, определение с примерами решения.

Теорема 1 (теорема Безу). Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решенияравен Многочлен - виды, определение с примерами решения (то есть значению многочлена при Многочлен - виды, определение с примерами решения).

Пример №2

Докажите, что Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка.

Решение:

► Подставив в Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения значение 1, получаем: Многочлен - виды, определение с примерами решения. Таким образом, остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен 0, то есть Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка. <]

Определение: Число Многочлен - виды, определение с примерами решения называют корнем многочлена Многочлен - виды, определение с примерами решения если

Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень этого многочлена.

Многочлен - виды, определение с примерами решенияБезу Этьен (1730-1783) — французский математик, внесший значительный вклад в развитие теории алгебраических уравнений.

Действительно, если Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения и поэтому Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Справедливо и обратное утверждение. Оно является следствием теоремы Безу.

Теорема 2. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то этот многочлен делится на двучлен Многочлен - виды, определение с примерами решения без остатка.

По теореме Безу остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решения Но по условию Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения таким образом, Многочлен - виды, определение с примерами решения

Обобщением теоремы 2 является следующее утверждение.

Теорема 3. Если многочлен Многочлен - виды, определение с примерами решения имеет попарно разные корни Многочлен - виды, определение с примерами решения то он делится без остатка на произведение Многочлен - виды, определение с примерами решения

Для доказательства используем метод математической индукции.

При Многочлен - виды, определение с примерами решения утверждение доказано в теореме 2.

Допустим, что утверждение справедливо при Многочлен - виды, определение с примерами решения То есть если Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решенияпопарно разные корни многочлена Многочлен - виды, определение с примерами решения то он делится на произведение Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения (1)

Докажем, что утверждение теоремы справедливо и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения — попарно разные корни многочлена Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения. Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:

Многочлен - виды, определение с примерами решения

По условию все корни Многочлен - виды, определение с примерами решения разные, поэтому ни одно из чисел Многочлен - виды, определение с примерами решения не равно нулю. Тогда Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения Тогда по теореме 2 многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения и из равенства (1) имеем

Многочлен - виды, определение с примерами решения

Это означает, что Многочлен - виды, определение с примерами решения делится на произведение

Многочлен - виды, определение с примерами решения то есть теорема доказана и при Многочлен - виды, определение с примерами решения

Таким образом, теорема справедлива для любого натурального Многочлен - виды, определение с примерами решения

Следствие. Многочлен степени Многочлен - виды, определение с примерами решенияимеет не больше Многочлен - виды, определение с примерами решения разных корней.

Допустим, что многочлен Многочлен - виды, определение с примерами решения степени имеет Многочлен - виды, определение с примерами решения разных корней: Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения многочлен степени Многочлен - виды, определение с примерами решения но это невозможно. Поэтому многочлен Многочлен - виды, определение с примерами решения степени не может иметь больше чем Многочлен - виды, определение с примерами решения корней.

Пусть теперь многочлен Многочлен - виды, определение с примерами решения степени Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения имеет Многочлен - виды, определение с примерами решения разных корней Многочлен - виды, определение с примерами решения Тогда этот многочлен делится без остатка на произведение Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Это произведение является многочленом той же

Многочлен - виды, определение с примерами решения степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,

Многочлен - виды, определение с примерами решения (2)

Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения (3)

Сравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:

Многочлен - виды, определение с примерами решения (4)

Например, при Многочлен - виды, определение с примерами решения имеем:

Многочлен - виды, определение с примерами решения

а при Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения (5)

Выполнение таких равенств является необходимым и достаточным

условием того, чтобы числа Многочлен - виды, определение с примерами решения были корнями многочлена

Многочлен - виды, определение с примерами решения

Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена Многочлен - виды, определение с примерами решения разные. Введем понятие кратного корня многочлена.

Если многочлен Многочлен - виды, определение с примерами решения делится без остатка на Многочлен - виды, определение с примерами решения но не делится без остатка на Многочлен - виды, определение с примерами решения то говорят, что число Многочлен - виды, определение с примерами решения является корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения

Например, если произведение Многочлен - виды, определение с примерами решения записать в виде многочлена, то для этого многочлена число Многочлен - виды, определение с примерами решения является корнем кратности 3, число 1 — корнем кратности 2, а число Многочлен - виды, определение с примерами решения — корнем кратности 1.

При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.

Пример №3

Проверьте справедливость формул Виета для многочлена Многочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поэтому Многочлен - виды, определение с примерами решения имеет корни: Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения — корень кратности 2).

Проверим справедливость формулы (5). В нашем случае: Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения

Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.

Пример №4

Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения Многочлен - виды, определение с примерами решения

Решение:

► Обозначим корни уравнения Многочлен - виды, определение с примерами решения через Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Тогда корнями искомого уравнения должны быть числа Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Поэтому искомое уравнение имеет вид Многочлен - виды, определение с примерами решения где

Многочлен - виды, определение с примерами решения

По формулам Виета имеем Многочлен - виды, определение с примерами решения Отсюда находим, что Многочлен - виды, определение с примерами решения а Многочлен - виды, определение с примерами решения Таким образом, искомое уравнение имеет вид Многочлен - виды, определение с примерами решения

Схема Горнера

Делить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения иногда удобно с помощью

специальной схемы, которую называют схемой Горнера.

Пусть многочлен Многочлен - виды, определение с примерами решения необходимо разделить на двучлен Многочлен - виды, определение с примерами решения В результате деления многочлена Многочлен - виды, определение с примерами решения степени на многочлен первой степени получим некоторый многочлен Многочлен - виды, определение с примерами решения степени (то есть Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения) и остаток Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения

Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Найдем из этих равенств коэффициенты Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент Многочлен - виды, определение с примерами решениянеполного частного, достаточно предыдущий найденный коэффициент Многочлен - виды, определение с примерами решения умножить на Многочлен - виды, определение с примерами решения и добавить Многочлен - виды, определение с примерами решения коэффициент делимого. Эту процедуру целесообразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.

Многочлен - виды, определение с примерами решения

Пример №5

Разделите по схеме Горнера многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения

Решение:

► Запишем сначала все коэффициенты многочлена Многочлен - виды, определение с примерами решения (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:

Многочлен - виды, определение с примерами решения

Таким образом, Многочлен - виды, определение с примерами решения

Пример №6

Проверьте, является ли Многочлен - виды, определение с примерами решения корнем многочлена Многочлен - виды, определение с примерами решения

Решение:

► По теореме Безу остаток от деления многочлена Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решенияпоэтому найдем с помощью схемы Горнера остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поскольку Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Нахождение рациональных корней многочлена с целыми коэффициентами

Теорема 4. Если многочлен с целыми коэффициентами Многочлен - виды, определение с примерами решения имеет рациональный корень Многочлен - виды, определение с примерами решения, то Многочлен - виды, определение с примерами решения является делителем свободного члена Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — делителем коэффициента при старшем члене Многочлен - виды, определение с примерами решения

Если Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения Подставляем

Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения в Многочлен - виды, определение с примерами решения и из последнего равенства имеем

Многочлен - виды, определение с примерами решения (1)

Умножим обе части равенства (1) на Многочлен - виды, определение с примерами решения Получаем

Многочлен - виды, определение с примерами решения (2)

В равенстве (2) все слагаемые, кроме последнего, делятся на Многочлен - виды, определение с примерами решения Поэтому Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения

Но когда мы записываем рациональное число в виде Многочлен - виды, определение с примерами решения то эта дробь считается несократимой, то есть Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют общих делителей. Произведение Многочлен - виды, определение с примерами решения может делиться на Многочлен - виды, определение с примерами решения (если Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения— взаимно простые числа) только тогда, когда Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — делитель свободного члена Многочлен - виды, определение с примерами решения

Аналогично все слагаемые равенства (2), кроме первого, делятся на Многочлен - виды, определение с примерами решения ТогдаМногочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения взаимно простые числа, то Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения, следовательно, Многочлен - виды, определение с примерами решения — делитель коэффициента при старшем члене.

Отметим два следствия из этой теоремы. Если взять Многочлен - виды, определение с примерами решения то корнем многочлена будет целое число Многочлен - виды, определение с примерами решения — делитель Многочлен - виды, определение с примерами решения Таким образом, имеет место:

Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.

Если в заданном многочлене Многочлен - виды, определение с примерами решения коэффициент Многочлен - виды, определение с примерами решения то делителями Многочлен - виды, определение с примерами решения могут быть только числа Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения и имеет место:

Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.

Пример №7

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения

Решение:

► Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена. Тогда Многочлен - виды, определение с примерами решениянеобходимо искать среди делителей свободного члена, то есть среди чисел Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — среди делителей старшего коэффициента: Многочлен - виды, определение с примерами решения

Таким образом, рациональные корни многочлена необходимо искать среди чисел Многочлен - виды, определение с примерами решения Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера.

При Многочлен - виды, определение с примерами решения имеем следующую таблицу.

Многочлен - виды, определение с примерами решения

Кроме того, по схеме Горнера можно записать, что

Многочлен - виды, определение с примерами решения

Многочлен Многочлен - виды, определение с примерами решения не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень Многочлен - виды, определение с примерами решения

Пример №8

Разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение:

► Ищем целые корни многочлена среди делителей свободного члена: Многочлен - виды, определение с примерами решения

Подходит 1. Делим Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с помощью схемы Горнера.

Многочлен - виды, определение с примерами решения

Тогда Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения

Ищем целые корни кубического многочлена Многочлен - виды, определение с примерами решения среди делителей его свободного члена: Многочлен - виды, определение с примерами решения Подходит Многочлен - виды, определение с примерами решения Делим на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Имеем Многочлен - виды, определение с примерами решения

Квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней и на линейные множители не раскладывается.

Ответ: Многочлен - виды, определение с примерами решения

Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней). Таким образом, многочлен Многочлен - виды, определение с примерами решения степени не всегда можно разложить на произведение линейных множителей. Но многочлен нечетной степени всегда можно разложить на произведение линейных и квадратных множителей, а многочлен четной степени — на произведение квадратных трехчленов.

Например, многочлен четвертой степени раскладывается на произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.

Пример №9

Разложите на множители многочлен Многочлен - виды, определение с примерами решения

Решение:

► Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.

Попытаемся разложить этот многочлен на произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:

Многочлен - виды, определение с примерами решения (3)

где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:

Многочлен - виды, определение с примерами решения

Получаем систему

Многочлен - виды, определение с примерами решения (4)

Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.

Многочлен - виды, определение с примерами решения

Коэффициенты Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в равенстве (3) равноправны, поэтому мы не рассматриваем случаи Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения и т. д.

Для каждой пары значений Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения из третьего равенства системы (4) найдем Многочлен - виды, определение с примерами решения а из второго равенства имеем Многочлен - виды, определение с примерами решения Зная Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения Многочлен - виды, определение с примерами решения подставим в четвертое равенство системы (4) Многочлен - виды, определение с примерами решения чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:

Многочлен - виды, определение с примерами решения

Как видим, системе (4) удовлетворяет набор целых чисел Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда равенство (3) имеет вид

Многочлен - виды, определение с примерами решения (5)

Поскольку квадратные трехчлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.

Деление многочлена на многочлен

Задача. Объём подарочных коробок, размеры которых даны в сантиметрах, можно смоделировать функцией Многочлен - виды, определение с примерами решения — положительное целое число и . Если высоты коробок можно определить при помощи линейной функции Многочлен - виды, определение с примерами решения, то как можно выразить другие размеры коробки в виде многочлена? Вы сможете решить эту задачу, изучив правило деления многочлена на многочлен.

Исследование. Изучите, как правило деления многозначных чисел столбиком можно применить при делении многочлена.

Многочлен - виды, определение с примерами решения

a) Для каждого из двух случаев укажите, какие числа и какие многочлены соответствуют понятиям делимое, делитель и частное.

b) Как был найден первый член при делении многочлена? Каковы сходные и отличительные черты данного деления и деления многозначных чисел?

c) Как вы убедились,что каждое из двух делений выполнено правильно?

Выражение вида Многочлен - виды, определение с примерами решения называется многочленом Многочлен - виды, определение с примерами решения степени от одной переменной. Здесь Многочлен - виды, определение с примерами решения — переменная, Многочлен - виды, определение с примерами решения — определенные числа и Многочлен - виды, определение с примерами решения — старший член, Многочлен - виды, определение с примерами решения— коэффициент при старшем члене, Многочлен - виды, определение с примерами решения-свободный член. Многочлен можно разделить на многочлен аналогично правилу деления целых чисел столбиком.

Деление целого числа па целое число можно проверить равенством

Многочлен - виды, определение с примерами решения

Аналогичное правило справедливо и при делении многочлена на многочлен. Если многочлен Многочлен - виды, определение с примерами решения -делимое, Многочлен - виды, определение с примерами решения — делитель, Многочлен - виды, определение с примерами решения — неполное частное, Многочлен - виды, определение с примерами решения — остаток, то справедливо равенство

Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения.

Здесь, степень многочлена Многочлен - виды, определение с примерами решения ниже степени многочлена Многочлен - виды, определение с примерами решения Если делителем является двучлен Многочлен - виды, определение с примерами решения, то остатком может являться определенное число Многочлен - виды, определение с примерами решения

В этом случае: Многочлен - виды, определение с примерами решения

Пример №10

а) Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения.

Ответ запишите в виде Многочлен - виды, определение с примерами решения

b) Определите множество допустимых значений переменной.

c) Выполните проверку.

Решение:

Многочлен - виды, определение с примерами решения

b) При этом Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения, иначе возникает деление на нуль.

c) Должно выполняться тождество

Многочлен - виды, определение с примерами решения

Пример №11

Разделите Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения.

Решение:

запишем делимое в порядке убывания степеней. Введем в запись отсутствующие члены с коэффициентом равным 0. Многочлен - виды, определение с примерами решения

Пример №12

1) Исследуйте деление столбиком многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения .

2) На каждом шаге деления делимое делится на старший член делителя, на Многочлен - виды, определение с примерами решения и результат записывается в частное. Установите, как можно найти первый член при делении на каждом из следующих шагов.

Многочлен - виды, определение с примерами решения Правило синтетического деления многочлена на двучлен Многочлен - виды, определение с примерами решения(схема Горнера)

При делении многочлена на двучлен вида Многочлен - виды, определение с примерами решения можно использовать метод, альтернативный делению столбиком — метод синтетического деления. При синтетическом делении, используя только коэффициенты, выполняется меньшее количество вычислений.

Пример №13

Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения методом синтетического деления.

Решение:

коэффициенты делимого записываются в порядке убывания степеней (отсутствующий член записывается с коэффициентом равным нулю). Если двучлен имеет вид Многочлен - виды, определение с примерами решения, то его записывают в виде Многочлен - виды, определение с примерами решения.

Запишем двучлен Многочлен - виды, определение с примерами решения в виде Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Таким образом, для делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решениячастным будет Многочлен - виды, определение с примерами решения, а остатком Многочлен - виды, определение с примерами решения.

Деление можно записать в виде: Многочлен - виды, определение с примерами решения В общем случае, правило синтетического деления (или схема Горнера) многочлена и-ой степени на двучлен х -т приведено в таблице ниже.

Многочлен - виды, определение с примерами решения

Теорема об остатке

Теорема об остатке (Теорема Безу)

Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения равен значению многочлена Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Доказательство: В равенстве Многочлен - виды, определение с примерами решения запишем Многочлен - виды, определение с примерами решения. Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения.

Пример №14

Найдите остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, применив теорему об остатке.

Решение: запишем делитель в виде Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения. По теореме об остатке получим, что остаток равен Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения.

Проверим решение.

Многочлен - виды, определение с примерами решения

Теорема о разложении многочлена на множители

Значения переменной Многочлен - виды, определение с примерами решения, которые обращают многочлен Многочлен - виды, определение с примерами решения в нуль (т.е. корни уравнения Многочлен - виды, определение с примерами решения), называются корнями (или нулями) многочлена.

Теорема. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Действительно, если Многочлен - виды, определение с примерами решения, то из равенства Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения. Верно и обратное утверждение, т.е. если двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Пример №15

При помощи теоремы о разложении многочлена на множители определите, являются ли двучлены Многочлен - виды, определение с примерами решения множителями многочлена Многочлен - виды, определение с примерами решения.

Решение: вычислим значение многочлена Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения не является множителем, а Многочлен - виды, определение с примерами решения является одним из множителей данного многочлена.

Пример №16

Зная, что Многочлен - виды, определение с примерами решения, разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение: так как Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения один из множителей многочленаМногочлен - виды, определение с примерами решения . Другой множитель найдем, используя метод синтетического деления.

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения получим: Многочлен - виды, определение с примерами решения .

Отсюда получаем, что Многочлен - виды, определение с примерами решения являются нулями многочлена.

Примечание: Если многочлен задан в виде Многочлен - виды, определение с примерами решения (здесь Многочлен - виды, определение с примерами решения), то число Многочлен - виды, определение с примерами решения является Многочлен - виды, определение с примерами решения кратным корнем многочлена Многочлен - виды, определение с примерами решения (повторяется Многочлен - виды, определение с примерами решения раз). Например, если разложение многочлена на множители имеет вид Многочлен - виды, определение с примерами решения, то число Многочлен - виды, определение с примерами решения является корнем кратности 3.

Нахождение рациональных корней

Теорема о рациональных корнях

Если для многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами существует рациональный корень, то этот корень имеет вид

Многочлен - виды, определение с примерами решения

Доказательство. Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами:

Многочлен - виды, определение с примерами решения

Умножим обе части равенства на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Так как в последнем равенстве каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения и каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения.то коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения, а коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения.

Пример №17

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения.

Решение: свободный член 6, старший коэффициент 2.

Для Многочлен - виды, определение с примерами решения, запишем все возможные числа вида Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения, т.е. одним из множителей является двучлен Многочлен - виды, определение с примерами решения. Другие множители найдем, используя синтетическое деление: Многочлен - виды, определение с примерами решения

Так как, Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, получим, что Многочлен - виды, определение с примерами решения являются корнями многочлена.

Следствие 1. Если старший коэффициент Многочлен - виды, определение с примерами решения и многочлен имеет рациональный корень, то он является целым числом.

Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.

Пример №18

Найдите корни многочлена Многочлен - виды, определение с примерами решения

Решение: по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.

Многочлен - виды, определение с примерами решения

Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.

Так как Многочлен - виды, определение с примерами решения то, решив квадратное уравнение Многочлен - виды, определение с примерами решения получим другие корни: Многочлен - виды, определение с примерами решения Значит данный многочлен третьей степени имеет три корня: Многочлен - виды, определение с примерами решения

Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения Многочлен - виды, определение с примерами решения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми. Например, для нахождения корней многочлена

Многочлен - виды, определение с примерами решения надо умножить все члены уравнения Многочлен - виды, определение с примерами решения на 12, а затем решить полученное

уравнение Многочлен - виды, определение с примерами решения

Для нахождения рациональных корней выполните следующие действия.

1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.

2. Из этих чисел выбирается число Многочлен - виды, определение с примерами решения (обращающее значение многочлена в нуль), которое является корнем многочлена, т. е. определяется двучлен Многочлен - виды, определение с примерами решения на который многочлен делится без остатка.

3. Для данного многочлена при помощи синтетического деления на двучлен Многочлен - виды, определение с примерами решения определяется другой множитель.

4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.

5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена Многочлен - виды, определение с примерами решения могут являться числа ±1.

Проверим: Многочлен - виды, определение с примерами решения Значит, многочлен Многочлен - виды, определение с примерами решения не имеет рациональных корней.

Основная теорема алгебры

Покажем на примере, что многочлен Многочлен - виды, определение с примерами решенияой степени имеет Многочлен - виды, определение с примерами решения корней.

Пример №19

Найдите все корни многочлена Многочлен - виды, определение с примерами решения

Решение: рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения является корнем данного многочлена Многочлен - виды, определение с примерами решения Другие корни найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

В выражении Многочлен - виды, определение с примерами решения для множителя Многочлен - виды, определение с примерами решения вновь применим теорему о рациональных корнях и синтетическое деление. Тогда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияРешим уравнение Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения ( корень кратности 2);

Многочлен - виды, определение с примерами решения

Корни: Многочлен - виды, определение с примерами решения

Во всех рассмотренных нами примерах уравнение Многочлен - виды, определение с примерами решенияой степени всегда имеет Многочлен - виды, определение с примерами решения корней, включая кратные корни (действительных или комплексных).

Теорема. Любой многочлен ненулевой степени имеет хотя бы один корень на множестве комплексных чисел.

Если Многочлен - виды, определение с примерами решения является многочленом ненулевой степени с комплексными коэффициентами, то согласно основной теореме алгебры, у него есть хотя бы один корень Многочлен - виды, определение с примерами решенияПо теореме о разложении многочлена на множители получим Многочлен - виды, определение с примерами решения При этом многочлен Многочлен - виды, определение с примерами решения имеет степень Многочлен - виды, определение с примерами решения Если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения если Многочлен - виды, определение с примерами решения то согласно той же теореме, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения тогда справедливо разложение Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения — многочлен степени Многочлен - виды, определение с примерами решения Значит, можно записать Многочлен - виды, определение с примерами решения Аналогично, если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения на основании той же теоремы, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения т. е. можно записать Многочлен - виды, определение с примерами решения

Продолжая процесс Многочлен - виды, определение с примерами решения раз, получаем Многочлен - виды, определение с примерами решения Тогда для многочлена Многочлен - виды, определение с примерами решения можно записать следующее разложение:

Многочлен - виды, определение с примерами решения

здесь числа Многочлен - виды, определение с примерами решения являются нулями многочлена Многочлен - виды, определение с примерами решения Эти нули могут и не быть различными.

Следствие. Многочлен Многочлен - виды, определение с примерами решенияой степени Многочлен - виды, определение с примерами решения на множестве комплексных чисел имеет ровно Многочлен - виды, определение с примерами решения корней, включая кратные корни.

Отметим, что если комплексное число Многочлен - виды, определение с примерами решения является корнем многочлена с действительными коэффициентами, то сопряженное комплексное число Многочлен - виды, определение с примерами решения гак же является корнем данного многочлена.

Любой многочлен с действительными коэффициентами можно представить в виде произведения двучленов вида Многочлен - виды, определение с примерами решения соответствующих действительным корням, и трехчленов вида Многочлен - виды, определение с примерами решения соответствующих сопряженным комплексным корням.

Отсюда можно сделать вывод, что многочлен нечетной степени с действительными коэффициентами всегда имеет действительные корни.

Пример №20

Запишите в виде произведения множителей многочлен наименьшей степени, если коэффициент при старшем члене равен 2, а корни равны 3 и Многочлен - виды, определение с примерами решения

Решение: так как число Многочлен - виды, определение с примерами решения является корнем многочлена, то сопряженное комплексное число Многочлен - виды, определение с примерами решения также является корнем этого многочлена. Тогда искомый многочлен можно записать в виде

Многочлен - виды, определение с примерами решения

  • Заказать решение задач по высшей математике
Пример №21

При движении скоростной карусели в Лунапарке изменение высоты (в метрах) кабины от нулевого уровня за первые 5 секунд можно смоделировать функцией Многочлен - виды, определение с примерами решения В какие моменты в течении 5 секунд после начала движения кабина карусели находилась на нулевом уровне?

Решение: во всех случаях, кроме значений Многочлен - виды, определение с примерами решения равных нулю, кабина карусели находится либо ниже, либо выше нулевого уровня. Значит, мы должны найти корни заданного многочлена. Применим правило нахождения рациональных корней.

1. Проверим, является ли число Многочлен - виды, определение с примерами решения корнем.

Многочлен - виды, определение с примерами решения

2. Число Многочлен - виды, определение с примерами решения является корнем, значит одним из множителей данного многочлена является Многочлен - виды, определение с примерами решения Другие корни найдем при помощи синтетического деления.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения запишем многочлен в виде Многочлен - виды, определение с примерами решения т. е. Многочлен - виды, определение с примерами решения являются корнями уравнения. Значения Многочлен - виды, определение с примерами решения принадлежат временному интервалу в 5 секунд, и в этих моментах кабина карусели находилась на нулевом уровне. То, что корни найдены верно показывает график многочлена, построенный при помощи графкалькулягора.

Многочлен - виды, определение с примерами решения

Функция-многочлен

График функции-многочлен

В стандартном виде функция — многочлен записывается как Многочлен - виды, определение с примерами решения В частном случае, при Многочлен - виды, определение с примерами решения получаем линейную функцию (график — прямая линия), при Многочлен - виды, определение с примерами решения получаем квадратичную функцию (график- парабола). Любой многочлен определен на множестве действительных чисел и его графиком является непрерывная (сплошная) линия.

При возрастании значений аргумента по абсолютному значению многочлен ведет себя как функция старшего члена Многочлен - виды, определение с примерами решения Ниже показаны примеры графиков функции — многочлен и их свойства.

Многочлен - виды, определение с примерами решения

Пример №22

Определите характер поведения функции — многочлен в зависимости от степени и коэффициента при старшем члене при возрастании аргумента по абсолютному значению.

a) Многочлен - виды, определение с примерами решения б) Многочлен - виды, определение с примерами решения

Решение: а) степень многочлена Многочлен - виды, определение с примерами решения нечетная (равна 3). Коэффициент старшего члена равен Многочлен - виды, определение с примерами решения По таблице видно, что в данном случае при Многочлен - виды, определение с примерами решения а при Многочлен - виды, определение с примерами решения

b) степень многочлена Многочлен - виды, определение с примерами решения четная (равна 4). Коэффициент старшего члена равен 1. В данном случае при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

Пример №23

По графику определите как ведет себя функция — многочлен при неограниченном возрастании аргументов но абсолютному значению, четность или нечетность степени многочлена, знак коэффициента старшего члена.

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен нечетной степени

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен четной степени

Многочлен - виды, определение с примерами решения

Отметим, что если Многочлен - виды, определение с примерами решения нечетно, то функция — многочлен имеет хотя бы один действительный нуль, если Многочлен - виды, определение с примерами решения четно, то их вообще может и не быть.

Алгоритм построения эскиза графика функции — многочлен.

1. Находятся точки пересечения графика с осями координат (если они есть). Эти точки отмечаются на координатной плоскости.

2. Вычисляются значения функции в некоторых точках между действительными нулями. Соответствующие точки отмечаются на координатной плоскости.

3. Определяется поведение графика при больших значениях аргумента по абсолютному значению.

4. На основе полученных данных строят схематически график.

Пример №24

Постройте график функции Многочлен - виды, определение с примерами решения

Решение:

1. Применим теорему о рациональных корнях. Разложим многочлен на множители и найдем нули функции.

По теореме возможные рациональные нули надо искать среди чисел, которые являются делителями числа Многочлен - виды, определение с примерами решения

Проверим Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

Значит, двучлен Многочлен - виды, определение с примерами решения является одним из множителей. Остальные множители найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Зная, что Многочлен - виды, определение с примерами решения запишем все линейные множители многочлена: Многочлен - виды, определение с примерами решения

Отсюда находим нули Многочлен - виды, определение с примерами решения Т. е. график пересекает ось абсцисс в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Так как Многочлен - виды, определение с примерами решения то точка Многочлен - виды, определение с примерами решения является точкой пересечения с осью Многочлен - виды, определение с примерами решения Отметим эти точки на координатной плоскости.

2. Найдем еще несколько значений функции в точках, не требующих сложных вычислений. Например, в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Отметим точки Многочлен - виды, определение с примерами решения

3. Определим, как меняется график при уменьшении или увеличении значений Многочлен - виды, определение с примерами решения Степень при старшем члене равна 3, а коэффициент положителен, функция нечетная. Значит, при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

4. Соединим отмеченные точки и получим схематический график функции Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Рациональная функция

Рациональной функцией называется функция, которою можно представить в виде отношения двух многочленов:

Многочлен - виды, определение с примерами решения

Самым простым примером рациональной функции является функция Многочлен - виды, определение с примерами решения

График функции Многочлен - виды, определение с примерами решения называется гиперболой.

Многочлен - виды, определение с примерами решения

При стремлении значений Многочлен - виды, определение с примерами решения к нулю точки гиперболы стремятся к оси ординат, т е. к прямой Многочлен - виды, определение с примерами решения при неограниченном увеличении Многочлен - виды, определение с примерами решения но абсолютному значению точки гиперболы неограниченно приближаются к оси абсцисс, т. е. к прямой Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения называется вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения называется горизонтальной асимптотой гиперболы Многочлен - виды, определение с примерами решения При параллельном переносе гиперболы Многочлен - виды, определение с примерами решения на вектор Многочлен - виды, определение с примерами решения получается график функции Многочлен - виды, определение с примерами решения. В этом случае начало координат преобразуется в точку Многочлен - виды, определение с примерами решения и вертикальной асимптотой становится прямая Многочлен - виды, определение с примерами решения а горизонтальной- прямая Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Пример №25

Постройте график функции Многочлен - виды, определение с примерами решения

Решение: точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения Разделим почленно числитель функции на знаменатель и запишем ее в виде Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения — горизонтальной асимптотой. Зададим таблицу значений для нескольких точек справа и слева от вертикальной асимптоты

Многочлен - виды, определение с примерами решения

Отметим на координатной плоскости точки, соответствующие парам значений из таблицы и, учитывая горизонтальную и вертикальную асимптоту, изобразим ветви гиперболы, которые пересекают координатные оси в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

В общем случае, для построения графика рациональной функции надо найти точки пересечения с осями координат (если они есть) и ее асимптоты. Если выражение, которое задает рациональную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке Многочлен - виды, определение с примерами решения а числитель отличен от нуля, то данная функция имеет вертикальную асимптоту. Горизонтальные асимптоты для рациональной функции Многочлен - виды, определение с примерами решения определяются в соответствии со степенью Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения данных многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Для Многочлен - виды, определение с примерами решения т. е. если степень многочлена в числителе на 1 единицу больше степени многочлена в знаменателе, частное, полученное при делении, имеет вид Многочлен - виды, определение с примерами решения и является линейной функцией. При возрастании Многочлен - виды, определение с примерами решения по абсолютному значению график функции приближается к данной прямой. В этом случае говорят, что прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой.

Пример №26

Найдите асимптоты и схематично изобразите график функции

Многочлен - виды, определение с примерами решения

Решение: Точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения знаменатель обращается в нуль, а числитель отличен от нуля. Значит, прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой. Горизонтальной асимптоты у данной функции нет Многочлен - виды, определение с примерами решения Разделив числитель на знаменатель, запишем функцию в виде:

Многочлен - виды, определение с примерами решения

Для больших, но модулю, значений Многочлен - виды, определение с примерами решения дробь Многочлен - виды, определение с примерами решения по абсолютному значению уменьшается и график заданной функции бесконечно приближается к прямой Многочлен - виды, определение с примерами решения т. е. прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой данной функции. Составим таблицу значений для некоторых точек слева и справа от вертикальной оси.

Многочлен - виды, определение с примерами решения

Отметим точки, координаты которых соответствуют парам из таблицы. Учитывая вертикальную и наклонную асимптоту, схематично изобразим график функции.

Многочлен - виды, определение с примерами решения

Многочлены в линейной алгебре

Многочленом от переменной х степени n называется выражение вида:

Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения — действительные или комплексные числа, называемые коэффициентами, n — натуральное число, х — переменная величина, принимающая произвольные числовые значения.

Если коэффициент Многочлен - виды, определение с примерами решения приМногочлен - виды, определение с примерами решениямногочлена Многочлен - виды, определение с примерами решенияотличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число n называется степенью многочлена, Многочлен - виды, определение с примерами решения — старшим коэффициентом, а Многочлен - виды, определение с примерами решения — старшим членом многочлена. Коэффициент Многочлен - виды, определение с примерами решения называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.

Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.

Суммой многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен

Многочлен - виды, определение с примерами решения

Произведением многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен: Многочлен - виды, определение с примерами решения

Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.

Многочлен Многочлен - виды, определение с примерами решения называется делителем многочлена Многочлен - виды, определение с примерами решения , если существует многочлен Многочлен - виды, определение с примерами решениятакой, что Многочлен - виды, определение с примерами решения

Теорема о делении с остатком

Для любых многочленов Многочлен - виды, определение с примерами решения существуют многочлены Многочлен - виды, определение с примерами решения такие, что Многочлен - виды, определение с примерами решения причем степень Многочлен - виды, определение с примерами решенияменьше степени g(x) илиМногочлен - виды, определение с примерами решения. Многочлены g(x) и r(x) определены однозначно.

Многочлены g(x) и r(x) называются соответственно частным и остатком. Если g(x) делит Многочлен - виды, определение с примерами решения, то остаток Многочлен - виды, определение с примерами решения.

Число с называется корнем многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения.

Теорема Безу

Число с является корнем многочлена Многочлен - виды, определение с примерами решения тогда и только тогда, когда Многочлен - виды, определение с примерами решения делится на x — с.

Пусть с — корень многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения. Разделим Многочлен - виды, определение с примерами решения на

Многочлен - виды, определение с примерами решения где степень r(х) меньше степени (x-с) которая равна 1. Значит, степень г(х) равна 0, т.е. r(х) = const. Значит, Многочлен - виды, определение с примерами решения. Так как Многочлен - виды, определение с примерами решения, то из последнего равенства следует, что r=0, т.е. Многочлен - виды, определение с примерами решения

Обратно, пусть (х-с) делит Многочлен - виды, определение с примерами решения, т.е. Многочлен - виды, определение с примерами решения. Тогда Многочлен - виды, определение с примерами решения

Следствие. Остаток от деления многочлена Многочлен - виды, определение с примерами решения на (x-с) равен Многочлен - виды, определение с примерами решения.

Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена Многочлен - виды, определение с примерами решения равносильно разысканию его линейных делителей со старшим коэффициентом 1.

Многочлен Многочлен - виды, определение с примерами решения можно разделить на линейный многочлен х-с с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.

Пусть Многочлен - виды, определение с примерами решения и пустьМногочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:

Многочлен - виды, определение с примерами решения

Число с-называется корнем кратности к многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения делит Многочлен - виды, определение с примерами решения, но Многочлен - виды, определение с примерами решения уже не делит Многочлен - виды, определение с примерами решения.

Чтобы поверить, будет ли число с корнем многочлена Многочлен - виды, определение с примерами решения и какой кратности, можно воспользоваться схемой Горнера. Сначала Многочлен - виды, определение с примерами решения делится на х-с, затем, если остаток равен нулю, полученное частное делится на х-с, и т.д. до получения не нулевого остатка.

Число различных корней многочлена не превосходит его степени.

Большое значение имеет следующая основная теорема.

Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).

Следствие. Всякий многочлен степени Многочлен - виды, определение с примерами решенияимеет в С (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения— корни Многочлен - виды, определение с примерами решения, т.е. во множестве С всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то: Многочлен - виды, определение с примерами решениягде Многочлен - виды, определение с примерами решения уже различные корни Многочлен - виды, определение с примерами решения, Многочлен - виды, определение с примерами решения — кратность корня Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения, с действительными коэффициентами имеет корень с, то число с также корень Многочлен - виды, определение с примерами решения

Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.

Следствие. Многочлен с действительными коэффициентами нечетной степени имеет нечетное число действительных корней.

Пусть Многочлен - виды, определение с примерами решения корни Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на х-с и Многочлен - виды, определение с примерами решения, но так как у Многочлен - виды, определение с примерами решения и х-с, нет общих делителей, то Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения

Утверждение 2. Многочлен с действительными коэффициентами степени Многочлен - виды, определение с примерами решениявсегда разлагается на множестве действительных чисел в произведение линейных многочленов, отвечающих его вещественным корням, и многочленов 2-ой степени, отвечающих паре сопряженных комплексных корней.

При вычислении интегралов от рациональных функций нам понадобится представление рациональной дроби в виде суммы простейших.

Рациональной дробью называется дробь гдеМногочлен - виды, определение с примерами решения многочлены с действительными коэффициентами, причем многочлен Многочлен - виды, определение с примерами решения Рациональная дробь Многочлен - виды, определение с примерами решения называется правильной, если степень числителя меньше степени знаменателя. Если рациональная дробь не является правильной, то, произведя деление числителя на знаменатель по правилу деления многочленов, ее можно представить в виде Многочлен - виды, определение с примерами решения некоторые многочлены, а Многочлен - виды, определение с примерами решения правильная рациональная дробь.

Лемма 1, Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а число Многочлен - виды, определение с примерами решения является вещественным корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения, то существует вещественное число A и многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, что Многочлен - виды, определение с примерами решения где дробь Многочлен - виды, определение с примерами решения является правильной.

При этом несложно показать, что полученное выражение является рациональной дробью с вещественными коэффициентами.

Лемма 2. Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а числоМногочлен - виды, определение с примерами решенияявляется корнем кратности Многочлен - виды, определение с примерами решения многочлена g(x), т.е. Многочлен - виды, определение с примерами решения и если Многочлен - виды, определение с примерами решения, то существуют вещественные числа M и N многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, Многочлен - виды, определение с примерами решения где дробь , Многочлен - виды, определение с примерами решениятакже является правильной.

Рациональные дроби видаМногочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения — трехчлен с действительными коэффициентами, не имеющий действительных корней, называются простейшими (или элементарными) дробями.

Всякая правильная рациональная дробь представима единственным образом в виде суммы простейших дробей.

При практическом получении такого разложения оказывается удобным так называемый метод неопределенных коэффициентов.

Он состоит в следующем:

При этом если степень многочлена Многочлен - виды, определение с примерами решенияравна n, то в числителе после приведения к общему знаменателю получается многочлен степени n-1, т.е. многочлен Многочлен - виды, определение с примерами решения коэффициентами.

Число неизвестных Многочлен - виды, определение с примерами решения‘ также равняется n: Многочлен - виды, определение с примерами решения

Таким образом, получается система n уравнений с n неизвестными. Существование решения у этой системы следует из приведенной выше теоремы.

  • Квадратичные формы — определение и понятие
  • Системы линейных уравнений с примерами
  • Линейное программирование
  • Дифференциальное исчисление функций одной переменной
  • Кривые второго порядка
  • Евклидово пространство
  • Матрица — виды, операции и действия с примерами
  • Линейный оператор — свойства и определение

Многочленом (или
полиномом) степени
,называется функция

, (10)

где
– известные комплексные числа
(коэффициенты), при этом старший
коэффициентотличен от 0,z – переменная
комплексная величина. Степень многочлена
f(z)
обозначается deg
f(z).

На
множестве всех многочленов очевидным
образом вводятся операции сложения и
умножения. Число z0
называется нулём многочлена f(z)
, если f(z0)
= 0.

Теорема 1
(о делении
многочленов).

Для любых многочленов f(z) и g(z) существуют
многочлены h(z) и r(z) такие, что:

1)
f(z) = h(z) g(z) + r(z),

2)
deg r(z) < deg g(z).

При
этом h(z)
и r(z)
определяются однозначно.

Многочлен
h(z)
называется частным, а r(z)
– остатком от деления f(z)
на g(z).
При этом оказывается, что deg
f
= deg
g
+ deg
h.
Если r(z)

0, то говорят, что f(z)
делится на g(z).

Теорема 2. Число
z0
является нулём многочлена f(z) в том и
только в том случае,
если f(z)
делится на линейный многочлен (z – z0).

Число
z0
называется нулём кратности m
многочлена f(z),
если f(z)
делится на (z
– z0)m
и не делится на (z
– z0)m+1.
Можно дать другое, равносильное
приведённому, определение: z0
является нулём кратности m
для многочлена f(z),
если f(z)
представим в виде

f(z)
= (z
– z0)m
g(z),
где g(z)
– такой многочлен, что g(z0)

0 .

Теорема 3 (основная
теорема алгебры).

Любой многочлен степени n 
1 имеет ровно n нулей, если каждый нуль
считать столько раз, какова его кратность.

Следствием
основной теоремы алгебры является то,
что если z1, z2, … , zm – нули
многочлена (1) кратностей k1, k2, … , km
соответственно, то f(z)
представим в виде

,

при
этом
,
k1
+ k2
+ … +km
= n
.

Для
того чтобы
несократимая дробь
(p – целое, q – натуральное) была нулём
многочлена f(z) с целыми коэффициентами
aj,
необходимо, чтобы число p было делителем
свободного члена a0,
а число q –
делителем старшего коэффициента аn.
В частности, если f(z) имеет целые
коэффициенты aj
и an = 1,
то рациональными нулями такого многочлена
могут быть только целые числа, которые
являются делителями свободного члена
a0
.

Теорема 4.  Если
коэффициенты многочлена f(z) – действительные
числа и
– нуль f(z), тоz0 =  – i
также является нулём этого многочлена.

Из
последней теоремы следует, что если
f(z) – многочлен с действительными
коэффициентами, то он представим
в виде

,
(11)

где
z, p, qj  –  действительные
числа и квадратичные функции неразложимы
(т.е. имеют отрицательный дискриминант),
при.

При
этом k1
+ k2
+ … +
km
+ 2(r1
+ r2
+ … + rs)
= n .

Если
f(z),
g(z)
– многочлены, то функция
называется рациональной функцией или
рациональной дробью. Рациональная дробьназывается правильной, еслиdeg
g(z)
< < deg
f(z).
Любую неправильную дробь можно представить
в виде суммы многочлена и правильной
рациональной дроби. Если
– правильная рациональная дробь с
действительными коэффициентами иf(z)
имеет разложение (3), то h(z)
допускает следующее представление в
виде суммы простейших дробей:

. (12)

Коэффициенты
находятся путём приравнивания
коэффициентов при одинаковых степенях
z у многочлена g(z) и многочлена, который
получается в числителе правой части
(11) после приведения суммы к общему
знаменателю (метод неопределённых
коэффициентов).

Пример 6.    Найти
все нули многочлена
и разложить его на неразложимые множители
с действительными коэффициентами, если
известен один его нуль.

Решение.
f(z) имеет действительные коэффициенты,
поэтому наряду с z1
= 2+i нулём f(z) является также z2
=
= 2–i. Значит, f(z) делится на.

Разделим
f(z) на
уголком

Таким образом,
.
Найдём нули второго множителя: z2
+ 2z + 10 = 0, z3,4
= –1 
3i.

Итак, нулями
многочлена f(z) являются: z1
= 2 + i, z2
= 2 – i,

z= –1 – 3i,
z4 = –1 + 3i.
Многочлен f(z) разлагается на неразложимые
множители (квадратные функции с
отрицательными дискриминантами)
следующим образом:

z4
– 2z3
+ 7z2
– 30z + 50 = (z2
– 4z + 5)(z2
+2z +10) .

Пример 7. Дан
многочлен f(z) = z4
– 6z3
+ 10z2
+ 2z – 15:

а) подобрать
целые нули многочлена среди делителей
свободного члена;

б) разложить
f(z)
на линейные и неразложимые квадратичные
множители с действительными коэффициентами;

в) разложить
f(z)
на линейные множители с комплексными
коэффициентами;

г) разложить
дробь (2z – 3) / f(z)
на простейшие дроби с действительными
коэффициентами.

Решение.
а) Делителями числа 15 являются: 1,
3,
5,
15.

В
результате проверки убеждаемся, что z1
= –1 является нулём f(z):

f(–1)
= 0. Следовательно, f(z) делится на (z
– z1)
= z
+ 1. Выполним деление

Имеем:
f(z) = (z + 1) (z3
– 7z2
+17z – 15). Найдём
целые нули второго множителя среди
делителей свободного члена (–15): 1;
3;
5;
15.

В
результате проверки убеждаемся, что
является нулём многочлена (z3
– 7z2
+17z
– 15) и, следовательно, многочлена f(z).
Значит, f(z)
делится на (z
– z1)
(z
– z2)
= (z
+ 1) (z
– 3) = z2
– 2z
– 3. Разделим f(z)
на этот квадратный трёхчлен:

Таким
образом, f(z)
= (z2
– 2z
– 3)(z2
– 4z
+ 5). При этом второй множитель (z2
– 4z
+5) не имеет целых (и даже действительных)
нулей. Итак, f(z)
имеет лишь два целых нуля: z1
= –1 и z2
= 3.

б)
Так как z2
– 4z + 5 = 0 имеет лишь комплексные нули
и,
то искомым разложением будет уже
полученное.

в)
f(z)
имеет 4 однократных (говорят, простых)
нуля: z1
= –1, z2
= 3,

z3
= 2 – i,
z4
= 2 + i.
Старший коэффициент f(z)
равен 1. Поэтому

f(z)
= (z
– z1)(z
– z2
)(z
– z3)(z
– z4)
или f(z)
= (z
+ 1)(z
– 3)

(z
– 2 + i)(z
–2– i).

г)
Дробь (2z
– 3)/f(z)
является правильной. Имеем

.

Приведём
последнюю сумму к общему знаменателю:

Так
как f(z) равен знаменателю левой части,
то получим равенство

A(z
–3)(z2
4z +5) + B(z + 1)(z2
4z +5) + (Cz + D)(z +1)(z – 3)2z
– 3.

Неизвестные
коэффициенты А, В, С, D
можно найти, раскрыв скобки в левой
части, сгруппировав слагаемое по степеням
z
и приравняв соответствующие коэффициенты
в левой и правой частях равенства, при
этом получится система из 4-х линейных
алгебраических уравнений:

(A
+ B + C)z3
+ (– 7A – 3B – 2C + D)z2
+ (17A + B – 3C – 2D)z +

+(–15A
+ 5B – 3D) = 2z – 3.

Приравнивая
коэффициенты при одинаковых степенях
z,
получаем систему

Решая её, находим
A = 1/8, B = 3/8, C = –1/2, D =1. Итак,
.

Соседние файлы в папке Сборник ч.1 ред 30. 11

  • #
  • #
  • #
  • #
  • #
  • #

I have been told that to find factors of a polynomial (nth degree) we have to find the factors of constant term and that of coefficient of leading term of the polynomial in concern.

The possible integral zeros of the polynomial will be from the factor set of the constant term while rational zeros would be from set of each factor of constant / each factor of coefficient of the leading term.

Now I have to replace one by one value of $X$ for each integral and rational factors founded above and check if the polynomial results to $0$ (zero). The issue is that I go into deep / lengthy calculation if suppose constant term is $140$ and coefficient of leading term is $6$ per say.

Factors of $140 = -1,+1,-2,+2,-4,+4,-5,+5,-7,+7,…..$

Factors of $6 = -1,+1,-2,+2,-3,+3,-6,+6 $

Integral roots of the polynomial (set range) = $-1,+1,-2,+2,-4,+4,-5,+5,-7,+7,…..$

Rational roots of the polynomial (set range)
= $(-1,+1,-2,+2,-4,+4,-5,+5,-7,+7,…..)/ (-1,+1,-2,+2,-3,+3,-6,+6 )$

Taking one by one value and testing for zero is a very lengthy time consuming method — is there a quick easy way to find zeros of the pronominal?

Вычеты и расположение нулей многочлена на комплексной плоскости

Во многих приложениях важное значение имеет задача определения числа нулей данной функции, расположенных в определенной области. Например, при исследовании устойчивости решений дифференциальных уравнений интерес представляют нули характеристического многочлена, расположенные в левой полуплоскости.

Нули функции f(z) являются, очевидно, полюсами функции вида frac{varphi(z)}{f(z)}, если varphi(z) не обращается в нуль в этих точках. В частности, в качестве вспомогательной для исследования нулей функции f(z) можно рассмотреть функцию, полностью определяемую только самой функцией f(z), а именно frac{varphi(z)}{f(z)}= frac{f'(z)}{f(z)}. Из-за очевидного равенства frac{f'(z)}{f(z)}=(ln f(z))', эту функцию называют логарифмической произведной функции f(z). Ее особыми точками являются особые точки и нули f(z). Поэтому нули функции f(z) можно исследовать как особые точки (ln f(z))'. Можно применить аппарат теории вычетов, в частности основную теорему о вычетах. Имеет место следующее утверждение.


Теорема о логарифмическом вычете

Утверждение 4.12 (теорема о логарифмическом вычете).

1. Пусть функция f(z) — аналитическая в overline{D} за исключением, быть может, конечного числа полюсов, на C — границе области D не имеет ни полюсов, ни нулей. Тогда справедлива формула

frac{1}{2pi i} ointlimits_{C} frac{f'(z)}{f(z)},dz=N-P.

(4.37)

где N — число нулей, P — число полюсов функции f(z) в области D с учетом их кратностей, т.е. каждый нуль считается столько раз, какова его кратность, а каждый полюс — такое количество раз, каков его порядок.

2. В частности, если функция f(z) в overline{D} не имеет особых точек и на C не имеет нулей, то

frac{1}{2pi i} ointlimits_{C} frac{f'(z)}{f(z)},dz=N.

(4.38)

Доказательство формулы (4.37) получается следующим образом. Пусть z_0 — нуль порядка n функции f(z), тогда справедливо равенство f(z)= (z-z_0)^ncdot varphi(z),~ varphi(z_0)ne0. Дифференцируя это равенство, получаем f'(z)=n(z-z_0)^{n-1}cdot varphi(z)+varphi'(z)cdot (z-z_0)^n. Поэтому для логарифмической производной имеем frac{f'(z)}{f(z)}= frac{n}{z-z_0}+ frac{varphi'(z)}{varphi(z)}. Здесь frac{varphi'(z)}{varphi(z)} — аналитическая в точке z_0 функция, так как varphi(z) аналитическая и varphi(z_0)ne0. Поэтому в последнем равенстве слагаемое frac{n}{z-z_0} является главной частью разложения frac{f'(z)}{f(z)} в окрестности z_0, из чего следует, что n= mathop{operatorname{res}}limits_{z=z_0} frac{f'(z)}{f(z)}, т.е. вычет логарифмической производной функции f(z) в ее нуле равен кратности этого нуля.

Аналогично, для z_0Pi(p) функции f(z) из равенств

f(z)= frac{varphi(z)}{(z-z_0)^p},quad varphi(z_0)ne0 и f'(z)=-p(z-z_0)^{-p-1}cdot varphi(z)+ (z-z_0)^{-p} varphi'(z) получаем frac{f'(z)}{f(z)}= frac{-p}{z-z_0}+ frac{varphi'(z)}{varphi(z)},

из чего заключаем, что -p=mathop{operatorname{res}}limits_{z=z_0} frac{f'(z)}{f(z)}, т.е. вычет логарифмической производной функции f(z) в ее полюсе равен порядку полюса с противоположным знаком.

Применяя теорему о вычетах к вычислению интеграла textstyle{ointlimits_{C} dfrac{f'(z)}{f(z)},dz} устанавливаем справедливость формулы (4.37).

Пример 4.44. Вычислить контурный интеграл textstyle{ointlimits_{C} dfrac{f'(z)}{f(z)},dz} с помощью вычетов

а) f(z)= frac{(z-1)^3(z^2+4)^2}{(z+1)^7},quad Ccolon |z|=3; б) f(z)= frac{(z-1)^3(z+3)sin z}{(z-i)^2(z+5)^2},quad Ccolon |z|=2.

Решение

Формула (4.38), очевидно, может быть использована для исследования нулей функции f(z), если удастся получить удобный алгоритм для вычисления интеграла, стоящего слева в (4.38).

Воспользуемся равенством operatorname{Ln}f(z)= ln|f(z)|+i operatorname{Arg}f(z). Так как f(z) — аналитическая на C и на C не имеет нулей, то в некоторой области, содержащей C, возможно выделение однозначных ветвей operatorname{Arg}f(z), и, следовательно, на C имеем однозначную аналитическую функию ln f(z)=ln|f(z)|+iarg f(z), где arg f(z) — одно из значений аргумента, в частности главное значение. Запишем интеграл (логарифмический вычет):

ointlimits_{C} frac{f'(z)}{f(z)},dz= ointlimits_{C} dbigl(ln f(z)bigr)= ointlimits_{C} d bigl(ln|f(z)|bigr)+ i ointlimits_{C}d bigl(arg f(z)bigr).

Первое слагаемое в правой части равенства равно нулю как интеграл по замкнутому контуру от полного дифференциала функции дву: действительных переменных d bigl(ln|f(z)|bigr).

Второе слагаемое определяет приращение аргумента образа точки при отображении w=f(z) в то время, когда точка z совершает полные обход контура C в положительном направлении (рис. 4.9,а), то есть textstyle{ointlimits_{C} d bigl(arg f(z)bigr)= Delta_Carg f(z)}. Если точка w_0=f(z_0) не совершает обхода вокруг w=0, то Delta_Carg f(z) (рис. 4.9,б) . Если точка w_0=f(z_0) совершает, оборотов, то Delta_Carg f(z)=2kpi (на рис. 4.9,в k=2), причем в этом равенстве k&gt;0 при положительном обходе (против часовой стрелки) и k&lt;0 при отрицательном (по часовой стрелке). Величина left|frac{1}{2pi} Delta_Carg f(z)right|=|k| определяет число оборотов вектора w=f(z), а знак — направление обхода.

Рис. 4.9.

Приведенные рассуждения отражают геометрический смысл формулы (4.38).


Принцип аргумента

Утверждение 4.13 (принцип аргумента)

1. Разность между числом нулей и полюсов функции f(z) в области ограниченной контуром C, равна числу оборотов вектора w=f(z) при nt ремещении точки {w} по кривой Gamma — образу C при отображении w=f(z) и однократном обходе точкой z контура Ccolon

N-P= frac{1}{2pi}cdotDelta_Carg f(z).

(4.39)

2. Если функция f(z) — аналитическая в overline{D} и на C — границе D нет нулей f(z), то (4.39) принимает вид

N= frac{1}{2pi}cdot Delta_Carg f(z).

(4.40)

т.е. число нулей N в области D функции f(z), аналитической в этой области, равно числу оборотов вектора w=f(z) вокруг начала координат.

Принцип аргумента, в частности формула (4.40), имеет многочисленные приложения. Приведем, например, следующие две теоремы.


Теорема Руше

Утверждение 4.14 (теорема Руше). Пусть функции f(z) и varphi(z) являются аналитическими в односвязной области D и на ее границе C и в точках границы выполняются условия |f(z)|&gt;|varphi(z)|,~ zin mathbb{C}. Тогда число нулей функции f(z) и F(z)= f(z)+varphi(z) в области D одинаково.

Приведем доказательство. Прежде всего проверим, что функции f(z) и F(z) удовлетворяют условиям применения принципа аргумента, а именно не имеют нулей на контуре C. Действительно, из неравенства |f(z)|&gt;|varphi(z)|,~ zin mathbb{C} и |varphi(z)|geqslant0 получаем |f(z)|&gt;0,~ zin mathbb{C}, то есть f(z)ne0. Аналогично для функции F(z)colon

bigl|f(z)+varphi(z)bigr|= bigl|f(z)-(-varphi(z))bigr| geqslant bigl|f(z)bigr|-bigl|varphi(z)bigr|&gt;0,quad zin mathbb{C}, то есть F(z)ne0,quad zin mathbb{C}.

Далее покажем, что Delta_Carg F(z)= Delta_Carg f(z). Для этого запишем функцию F(z) в виде произведения F(z)= f(z)+varphi(z)= f(z)cdot! left(1+ frac{varphi(z)}{f(z)}right). Тогда Delta_Carg F(z)= Delta_Carg f(z)+Delta_Carg w(z), где w(z)=1+frac{varphi(z)}{f(z)}. На границе C имеем |w-1|= left|frac{varphi(z)}{f(z)}right|= frac{|varphi(z)|}{|f(z)|}&lt;1, т.e. образом кривой C при отображении w=1+frac{varphi(z)}{f(z)} является окружность |w-1|=1, из чего следует, что радиус-вектор точки {w} не обходит начало координат, поэтому Delta_Carg w(z)=0. Таким образом, получаем Delta_Carg F(z)= Delta_Carg f(z).


Основная теорема алгебры

Утверждение 4.15 (основная теорема алгебры). Многочлен степени n с комплексными коэффициентами имеет n корней.

Для доказательства представляем многочлен P_n(z)= a_nz^n+ a_{n-1}z^{n-1}+ldots+a_0 в виде суммы:

P_n(z)=f(z)+varphi(z), где f(z)=a_nz^n и varphi(z)= a_{n-1}z^{n-1}+ldots+a_0.

Так как limlimits_{ztoinfty} frac{varphi(z)}{f(z)}=0. то найдется такое число R&gt;0, что для z, удовлетворяющих условию |z|geqslant R, выполняется неравенство |f(z)|&gt;|varphi(z)|. За счет выбора достаточно большого R можно получить, что все нули многочлена расположены в круге |z|&lt;R. На границе круга, т.е. на |z|=R, выполняется условие |f(z)|&gt;|varphi(z)|. По теореме Руше многочлен имеет в |z|&lt;R, а следовательно, и всюду такое же число нулей, как и функция f(z). Но f(z)=a_nz^n имеет и нулей в круге |z|&lt;R, так как z=0 является нулем кратности n.

Замечание 4.8. Во введении мы построили множество комплексных чисел mathbb{C} как расширение множества действительных чисел, в котором разрешимо любое квадратное уравнение. Может показаться, что для разрешимости уравнений более высоких степеней понадобится раз за разом расширять множество mathbb{C}. Однако оказывается, что больше никаких новых расширений не нужно. Корни многочлена какой угодно степени принадлежат множеству mathbb{C}, и, значит, новых чисел, не входящих в mathbb{C}, для решения не требуется. Это свойство называется алгебраической замкнутостью множества комплексных чисел.

Практическое применение формулы (4.40) при решении задач определения числа нулей аналитической функции в области D заключается в следующем. Строится годограф — кривая, которая является образом границы области D при отображении w=f(z). Далее по рисунку определяется число оборотов вектора {w} при однократном обходе точкой z границы области D. Наконец, по формуле (4.40) определяется число нулей функции f(z) в области D.

Область D может быть неограниченной, например полуплоскость operatorname{Re}z&gt;a. С задачей определения числа нулей многочлена f(z)= P(z) в полуплоскости operatorname{Re}z&gt;0 связана важнейшая проблема механики — проблема устойчивости электрических и механических систем.

В качестве контура C в таком случае выбирается полуокружность |z|=R,~ operatorname{Re}z&gt;0 и ее диаметр (рис. 4.10,a), число R выбирается достаточно большим, чтобы все нули многочлена, расположенные в правой полуплоскости (operatorname{Re}z&gt;0), попали в полукруг |z|&lt;R,~ operatorname{Re}z&gt;0, и рассматривается limlimits_{Rtoinfty} Delta_Carg P(z). Задача определения числа нулей в левой полуплоскости решается аналогично. При этом рассматривается левая полуокружность |z|=R,~ operatorname{Re}z&gt;0 и ее диаметр (рис. 4.10,б).

Рис. 4.10.

Так как контур C состоит из дуги C_Rcolon, |z|=R и отрезка AB, то имеем Delta_Carg P(z)= Delta_{C_R}arg P(z)+ Delta_{AB}arg P(z) в случае operatorname{Re}z&gt;0 и Delta_Carg P(z)= Delta_{C_R}arg P(z)+ Delta_{BA}arg P(z) в случае operatorname{Re}z&lt;0.

Для удобства будем считать, что a_n=1, так как величина коэффициента a_nne0 не влияет на число корней уравнения P_n(z)=0.

Для определения Delta_{C_R}arg P(z) многочлен P(z)= z^n+a_{n-1}z^{n-1}+ ldots+a_0 записывается в виде произведения P(z)=z^ncdot varphi(z), где varphi(z)= left(1+frac{a_{n-1}}{z}+ldots+frac{a_0}{z^n}right).

Поэтому Delta_{C_R}arg P(z)= Delta_{C_R}arg z^n+ Delta_{C_R}arg varphi(z). При этом Delta_{C_R}arg z^n= n Delta_{C_R}arg z, а из limlimits_{ztoinfty} varphi(z)=1 получаем Delta_{C_R}arg varphi(z)=0. Таким образом, имеем Delta_{C_R}arg P(z)= nDelta_{C_R}arg z. Величина Delta_{C_R}arg z определяется как разность: Delta_{C_R}arg z= arg z_2-arg z_1, где z_1 — начальная точка на дуге C_R, a z_2 — конечная. В обоих случаях, изображенных на рис. 4.10,а и 4.10,б, Delta_{C_R}arg z=pi и Delta_{C_R}arg z^n=npi.

Чтобы определить приращение аргумента P(z) при перемещении точки z по мнимой оси (отрезок AB на рис. 4.10,а или BA на рис. 4.10,б при Rtoinfty) строится, как сказано выше, годограф — образ мнимой оси при отображении w=P(z). Для этого записываем параметрическое уравнение мнимой оси z=it,~ tin(-infty,+infty), подставляем в w=P(z) и получаем параметрическое уравнение образа. Чтобы построить годограф, отделяем в полученном уравнении действительную и мнимую части operatorname{Re}w=u,~ operatorname{Im}w=v. Получаем уравнение образа в действительной параметрической форме u=u(t),~ v=v(t).

Для схематичного построения кривой в плоскости Ouv достаточно найти несколько значений переменных {u} и {v} для различных значений t, в частности нули функций u(t),,v(t), а также их значения при tto-infty и tto+infty. Часто полезно найти угловой коэффициент касательной при ttoinfty, то есть limlimits_{ttopminfty} frac{v(t)}{u(t)}. Все данные целесообразно занести в таблицу и по точкам построить кривую. По графику определяем число оборотов вектора w=P(z) вокруг нуля и приращение аргумента w=P(z) на мнимой оси. При решении задачи определения числа нулей в правой полуплоскости рассматривается перемещение точки по годографу в направлении от tto+infty к tto-infty (рис. 4.10,а), а при определении числа нулей в левой полуплоскости — в направлении от tto-infty к tto+infty (рис. 4.10,б). Результаты рассуждений запишем в виде алгоритма.


Алгоритм применения принципа аргумента для отыскания числа нулей многочлена

1. Определить приращение аргумента на дуге C_Rcolon

Delta_{C_R}arg P(z)=npi, где n — степень многочлена P(z).

2. Определить приращение аргумента P(z) на мнимой оси. Для этого:

а) найти u(t)=operatorname{Re}P(it) и v(t)=operatorname{Im}P(it);

б) построить годограф, begin{cases}u=u(t),\ v=v(t),end{cases}tin(-infty,+infty);

в) определить число оборотов k радиуса-вектора вокруг нуля и приращение 2kpi. При решении задачи определения числа нулей в правой полуплоскости рассматривается перемещение точки по годографу в направлении от t=+infty к t=-infty, а при определении числа нулей в левой полуплоскости — в направлении от t=-infty к t=+infty. При обходе нуля против часовой стрелки k&gt;0, а по часовой стрелке k&lt;0.

3. Вычислить Delta_Carg P(z)=npi+2kpi.

4. По формуле (4.40) найти N=frac{1}{2pi}Delta_{C} arg P(z)= frac{2k+n}{2} — число нулей многочлена P(z) в полуплоскости.


Примеры нахождения нулей многочленов

Пример 4.45. Найти число нулей многочлена P(z)=z^4-2z^3+z^2-1 в правой полуплоскости.

Решение

1. Определим Delta_{C_R} arg P(z)=4pi, так как n=4.

2. Положим z=itcolon, P(it)=t^4+2it^3-t^2-1=t^4-t^2-1+2it^3:

а) выделим действительную и мнимую части u(t)=t^4-t^2-1,~ v(t)=2t^3;

б) исследуем поведение функций u(t),,v(t)colon, v(t)=0 при t=0,~ v(t)&gt;0 при t&gt;0 и v(t)&lt;0 при t&lt;0;~ v=v(t) — функция нечетная.

Для нахождения нулей u(t) — корней биквадратного уравнения t^4-t^2-1=0, введем обозначение y=t^2. Находим корни y_{1,2}= frac{1pm sqrt{5}}{2}, поэтому y^2-y-1= (y-y_1)(y-y_2). Так как y_1&gt;0, а y_2&lt;0 , обозначим y_1=b^2,~ y_2=-a^2 и запишем разложение многочлена:

t^4-t^2-1=(t-t_1)(t-t_2)(t^2+a^2), где t_{1,2}= pmsqrt{frac{1+ sqrt{5}}{2}}.

Для значений tin(t_1,t_2) имеем u(t)&lt;0, вне этого промежутка u(t)&gt;0.

Так как многочлены u(t) и v(t) не имеют общих нулей, то P(z)ne0 при z=it, т.е. на границе области operatorname{Re}z&gt;0 нет нулей многочлена P(z). Поэтому можно применить принцип аргумента.

Полученные данные запишем в табл. 4.1 и построим по точкам кривую (рис. 4.11).

begin{aligned}mathit{Table~4.1}&\[-2pt] begin{array}{|c|c|c|c|c|c|c|c|c|c|} hline t& +infty& (infty,t_1)& t_1& (t_1,0)& 0& (0,t_2)& t_2& (t_2,-infty)& -infty\hline u& +infty& &gt;0& 0& &lt;0& -1& &lt;0& 0& &gt;0& +infty\hline v& +infty& &gt;0& approx4,!4& &gt;0& 0& &lt;0& approx-4,!4& &lt;0&-infty\hline end{array}&end{aligned}

Рис. 4.11.

в) Из рис. 4.11 видно, что при однократном обходе точкой z мнимой оси сверху вниз (t изменяется от +infty к -infty), радиус-вектор w=P(z) поворачивается на 2pi против часовой стрелки, т.е. k=1.

3,4. Получаем Deltaarg P(z)=2pi и Delta_{C}arg P(z)=4pi+2pi=6pi. Поэтому по формуле (4.40) находим N=frac{Delta_{C}arg P(z)}{2pi}=3.

Заметим, что заданный многочлен можно разложить на множители P(z)= (z^2-z-1)(z^2-z+1) и выписать все его нули: z_{1,2}= frac{1pm sqrt{5}}{2},~ z_{3,4}= frac{1pm isqrt{3}}{2}. В правой полуплоскости расположены нули z_1=frac{1+ sqrt{5}}{2},~z_3,,z_4, а в левой — один нуль z_2.

Заметим, что для определения числа нулей в левой полуплоскости следует изменять t в направлении от t=-infty к t=+infty. При этом обход нуля осуществляется по часовой стрелке и k=-1. Поэтому N=frac{4pi-2pi}{2pi}=1.

Пример 4.46. Найти число нулей многочлена P(z)= 2z^5+z^4-6z^3+3z^2+4z+2 в левой полуплоскости.

Решение

Воспользуемся алгоритмом.

1. Находим Delta_{C_R}arg P(z)=5pi, так как n=5.

2. Положим z=itcolon, P(it)=2it^5+t^4+6it^3-3t^2+4it+2=(t^4-3t^2+2)+i(2t^5+6t^3+4t)colon

а) найдем действительную и мнимую части:

u(t)= operatorname{Re}P(it)= t^4-3t^2+2,quad v(t)= operatorname{Im}P(it)= 2t^5+6t^3+4t,;

б) исследуем поведение функций u(t),,v(t)colon

u(t)=t^4-3t^2+2= (t^2-2)(t^2-1)= (t-sqrt{2})(t+sqrt{2})(t-1)(t+1);

u(t)=0 при t_{1,2}=pm sqrt{2},~~ t_{3,4}=pm1,;

v(t)= t(2t^4+6t^2+4)= 2t(t^2+2)(t^2+1);

v(t)=0 при t=0,~ ~v(t)&gt;0 при t&gt;0 и v(t)&lt;0 при t&lt;0.

Так как v(t_{1,2})ne0,~ v(t_{3,4})ne0,~ u(0)ne0, то многочлен P(z) не имеет нулей на мнимой оси и принцип аргумента применим.

Данные занесем в табл. 4.2, причем достаточно провести вычисления только на интервале (-infty;0), так как можно использовать свойства функций: u(t) — четная, a v(t) — нечетная.

begin{aligned}mathit{Table~4.2}&\[-2pt] begin{array}{|c|c|c|c|c|c|c|c|} hline t&-infty& (-infty,sqrt{2})&-sqrt{2}& (-sqrt{2},-1)&-1& (-1;0)& 0\hline u& +infty& &gt;0& 0& &lt;0& 0& &gt;0& 2\hline v&-infty& &lt;0&-24 sqrt{2}& &lt;0&-12&&lt;0&0\hline end{array}&end{aligned}

Рис. 4.12.

в) Из рис. 4.12 видно, что arg P(z)=frac{pi}{2} при tto+infty и arg P(z)=-frac{pi}{2} при tto-infty, поэтому Deltaarg P(z)= frac{pi}{2}-left(-frac{pi}{2}right)=pi (k=frac{1}{2}, так как годограф обходит нуль, поворачиваясь против часовой стрелки).

3,4. Delta_{C}arg P(z)=5pi+pi=6pi,~ N=frac{6pi}{2pi}=3.

Заметим, что для определения числа нулей в правой полуплоскости следует изменять t в направлении от t=+infty к t=-infty. При этом обход нуля осуществляется по часовой стрелке и k=-frac{1}{2}. Поэтому N=frac{5pi-pi}{2pi}=2.

Пример 4.47. Найти число нулей многочлена P(z)=z^8+3z^5-5z^4+15z^3+ 18z+4 в правой полуплоскости.

Решение

Пример 4.48. Найти число нулей многочлена P(z)=z^3-2z-5 в области Dcolon a) Dcolon|z|&lt;1; б) Dcolon1&lt;|z|&lt;3.

Решение

Воспользуемся теоремой Руше.

а) Обозначим f(z)=5,~ varphi(z)=z^3-2z. На границе области, т.е. для точек, удовлетворяющих условию |z|=1, имеем

|f(z)|=5,qquad |varphi(z)|=|z^3-2z|&lt;|z|^3+2|z|,qquad Bigl.{|varphi(z)|}Bigr|_{zin mathbb{C}}&lt;3.

Условия теоремы Руше выполняются и, следовательно, число нулей данного многочлена в области |z|&lt;1 совпадает с числом нулей функции f(z)=5 в этой области. Так как многочлен f(z)=5 не имеет корней, то заключаем, что многочлен z^3-2z-5 в области |z|&lt;1 не имеет нулей.

б) В силу того, что в круге |z|&lt;1 многочлен не имеет нулей, то для нахождения нулей в кольце Dcolon 1&lt;|z|&lt;3 достаточно найти их число в круге |z|&lt;3. Обозначим f(z)=z^3,~ varphi(z)=-2z-5. На границе области, т.е. для z, удовлетворяющих условию |z|=3, имеем

Bigl.{|f(z)|}Bigr|_{zin mathbb{C}}= Bigl.{|z|^3}Bigr|_{zin mathbb{C}}=27,qquad |varphi(z)|= |2z+5|&lt;2cdot|z|+5,qquad Bigl.{|varphi(z)|}Bigr|_{zin mathbb{C}}&lt;11.

Условия теоремы Руше выполняются, и искомое число нулей совпадает с числом нулей многочлена f(z)=z^3. Так как этот многочлен в области |z|&lt;3 имеет корень z=0 кратности n=3, то получаем, что многочлен z^3-2z-5 в кольце Dcolon 1&lt;|z|&lt;3 имеет три нуля.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти дорогу а 121
  • Как найти аллерген в домашних условиях
  • Как исправить неправильную запись в трудовой книжке номер приказа
  • Не включается проводник windows 7 как исправить
  • Как найти среднюю температуру самого теплого

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии