Значение области допустимых значений в математике: способы нахождения
Содержание:
- Допустимые и недопустимые значения переменных
- Что такое ОДЗ
-
Как найти ОДЗ: примеры, решения
- Общие принципы нахождения области допустимых значений
- Примеры нахождения ОДЗ
- Почему важно учитывать ОДЗ при проведении преобразований
-
Функции, для которых важна ОДЗ
- ОДЗ обратной зависимости
- ОДЗ степенной функции
- ОДЗ показательной функции
- ОДЗ логарифмической функции
- ОДЗ тригонометрических функций
Допустимые и недопустимые значения переменных
Перед тем, как вводить понятие области допустимых значений функции, необходимо определиться с самим термином «допустимое значение».
Допустимое значение переменной — такое значение переменной, при котором зависимая от нее функция имеет смысл. Это значит, что, подставив данное значение переменной в выражение функции, можно получить конкретный результат. Сама функция в алгебре — это уравнение, в котором каждому значению x соответствует одно значение y.
Например, для функции обратной пропорциональности (y=frac1x) допустимыми значениями для переменной x будут: 1; 2,7; -5, (sqrt{126}), — в общем, все действительные числа. При подстановке их на место x, функция принимает конкретное значение. Исключениями из этого перечня будут 0, (-infty )и (+infty), так как когда x принимает такие значения, функция не имеет смысла.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Что такое ОДЗ
Область допустимых значений (область определения) функции — совокупность всех значений переменных, при которых функция имеет смысл, то есть решается. Для примера из предыдущего пункта, (y=frac1x), область допустимых значений будет иметь следующий вид: ((-infty;;0)cup(0;;+infty)). Это значит, что в область определения функции ( y=frac1x) входят все числа в промежутках от минус бесконечности до нуля и от нуля до плюс бесконечности.
У записи области определения есть некоторые особенности, которые важно иметь в виду. Круглые скобки — () — применяются, когда область допустимых значений заканчивается на данном числе, причем оно не входит в ОДЗ. Квадратные скобки — [] — применяются в ситуациях, когда в область определения входит число, на котором она заканчивается. Знак объединения — (cup) — по сути означает союз «и». Он используется, когда ОДЗ является системой из нескольких числовых промежутков.
Как найти ОДЗ: примеры, решения
Чтобы найти область допустимых значений для какой-либо функции, не имеет смысла перебирать все числа, при подстановке которых ее можно решить. Рациональнее найти те значения, при которых функция не имеет смысла и исключить их из всего множества чисел.
Общие принципы нахождения области допустимых значений
- деление на 0. Практически во всех стандартных математических выражениях такая операция не имеет смысла. У этого действия есть конкретный результат только при нахождении предела последовательности или функции. Пример бессмысленных выражений: (y=frac50;)
- извлечение корня из отрицательного числа. При работе с действительными числами, найти корень любой степени отрицательного числа невозможно. Эта операция приобретает смысл только при переходе к комплексным числам. Пример: (y=sqrt{-11};)
- возведение в степень. У данного действия есть свои ограничения: нельзя возводить 0 в отрицательную и нулевую степень, отрицательные числа в положительную дробную степень и неположительные (отрицательные и 0) в дробную степень со знаком минус. Примеры: (y=0^{-3};;y=0^0;;y=({-7}^{textstylefrac32});;y=({-6}^{-{textstylefrac17}});)
- нахождение логарифма. Так как логарифм равняется степени, в которую необходимо возвести основание, чтобы получить логарифмируемое число, некоторые операции не имеют смысла. К ним относятся логарифмирование неположительного числа, положительного числа по отрицательному основанию или единице. Примеры:( y=log_3left(-9right);;y=log_2left(0right);;y=log_{-4}left(64right);;y=log_1left(5right);)
- тригонометрические функции. Для синуса, косинуса, арктангенса и арккотангенса никаких ограничений нет. Но для тангенса, котангенса, арксинуса и арккосинуса они появляются, исходя из их формул. Так как тангенс является частным при делении синуса на косинус, последний не может равняться нулю. То же самое справедливо и для котангенса, но там уже синус не должен принимать значение 0.
Арксинус и арккосинус могут быть определены только в промежутке от -1 до 1 включительно — (lbrack-1;;1rbrack.)
Примеры нахождения ОДЗ
Пример №1. Найти область определения функции (y=sqrt{1-x^2})
Из обозначенных выше принципов следует, что подкоренное выражение не может быть отрицательным, значит 1-x^2geq0. Приведем данное неравенство к общему виду: (1-x^2geq0Rightarrow1geq x^2Rightarrow x^2leq1)
Вычислим квадратный корень для обеих частей неравенства:
(x^2leq1Rightarrowsqrt{x^2}leqsqrt1Rightarrowleft|xright|leq1)
Раскроем модуль согласно правилу:
(left|xright|leq1Rightarrow-1leq xleq1)
Из этого следует, что область допустимых значений функции (y=sqrt{1-x^2}) лежит в пределах между -1 и 1, включая эти числа. Таким образом, ОДЗ данной функции: (xinlbrack-1;;1rbrack)
Пример №2. Найти ОДЗ функции (y=lgleft(xright))
(lgleft(xright)) является краткой формой записи десятичного логарифма (log_{10}left(xright)). Так как 10 — положительное число, не равное единице, единственным условием остается x>0. Таким образом, область определения функции (y=lgleft(xright)) будет включать в себя все числа в промежутке от нуля до (+infty). Так как неравенство x>0 — строгое, ОДЗ будет иметь следующий вид: (xin(0;;+infty)).
Почему важно учитывать ОДЗ при проведении преобразований
Тождественные преобразования могут приводить к расширению или сужению области допустимых значений. В этом случае значение, подходящее к изначальной функции, после преобразования может оказаться вне области определения. Поэтому стоит избегать сужающих ОДЗ преобразований или находить область допустимых значений уже после них.
Функции, для которых важна ОДЗ
Сама по себе область допустимых значений — важная характеристика для всех функций. Чтобы правильно решать математические задачи, следует всегда находить ее. При этом, для многих, если не большинства, функций она включает в себя все множество действительных чисел. Например, линейная (y=kcdot x+b) или квадратичная (y=acdot x^2+bcdot x+c) функции. Рассмотрим некоторые функции, для которых это не так.
ОДЗ обратной зависимости
Функция обратной пропорциональности (y=frac kx) уже упоминалась выше. Ее область определения содержит все действительные числа, за исключением нуля: (xin(-infty;;0)cup(0;;+infty).)
ОДЗ степенной функции
Для степенной функции y=x^n следует учитывать обозначенные выше принципы нахождения ОДЗ, справедливые для возведения в степень и извлечения корня. Рассмотрим области определения переменной x в зависимости от значения n:
- при n>0 и (ninmathbb{Z}), то есть n — целое положительное число: ( xin(-infty;;+infty);)
- для n>0, причем n — дробное число: ( xinlbrack0;;+infty);)
- для n=0:( xin(-infty;0)cup(0;;+infty);)
- при n<0 и (ninmathbb{Z}: xin(-infty;;0)cup(0;;+infty);)
- для n<0, причем n — дробное число: (xin(0;;+infty).)
ОДЗ показательной функции
Показательная функция y=a^x очень похожа на степенную, но, в отличие от нее, здесь переменная не в основании, а в степени. Область допустимых значений для нее определяется по тем же правилам, что и для степенной функции:
- для a>0: (xin(-infty;;+infty);)
- для a=0: (xin(0;;+infty);)
- для a<0: (xin(-infty;;+infty)), причем x должен быть целым числом.
ОДЗ логарифмической функции
Логарифмическая функция (y=log_aleft(xright)) является обратной для показательной. Согласно свойствам логарифмирования, область определения такой функции будет включать все положительные числа: (xin(0;;+infty).)
ОДЗ тригонометрических функций
Как уже упоминалось выше, для синуса, косинуса, арктангенса и арккотангенса область допустимых значений включает в себя все действительные числа: (xin(-infty;;+infty)). Рассмотрим ОДЗ еще четырех тригонометрических функций:
- тангенс: (xin(-infty;;frac{mathrmpi}2+mathrmpicdotmathrm n)cup(frac{mathrmpi}2+mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
- котангенс: (xin(-infty;;mathrmpicdotmathrm n)cup(mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
- арксинус и арккосинус: (xinlbrack-1;;1rbrack.)
Чем алгебраические выражения отличаются от числовых? Сразу рассмотрим простой пример. Допустим, Решавру нужно рассчитать свой индекс массы тела. Известно, что ИМТ рассчитывается как отношение массы тела (кг) к росту (м) в квадрате. Решавр взвесился, замерил рост и получил следующее:
$$textbf{textcolor{blue}{ИМТ}}=frac{60~textit{кг}}{1,55^{2}~textitм}approx{25~frac{textit{кг}}{textit{м}^2}}$$
Запись выше представляет собой числовое выражение, и оно было бы совершенно бесполезно, если бы вы захотели рассчитать свой ИМТ. Но что, если представить расчет ИМТ в общем виде?
Например, вот так:
$$textbf{textcolor{blue}{ИМТ}}=frac{m}{h^2},$$
где $m$ — масса в $textit{кг}$, $h$ — рост в $textit{м}$.
Подставляя вместо «m» и «h» соответствующие величины, можно находить ИМТ для абсолютно любого человека. В целом, запись стала универсальной. Она сообщает не столько информацию о взаимосвязи чисел, сколько инструкцию для вычисления такой информации.
Числовое выражение | Алгебраическая дробь |
$$frac{60}{1,55^2}$$ | $$frac{m}{h^2}$$ |
В данном уроке мы:
- разберемся, как устроены такие «буквенные» записи;
- дадим определение понятия «переменная»;
- узнаем, какие значения переменных называют недопустимыми;
- а также отдельно разберем свойства алгебраических дробей.
Определение понятия «переменная»
Числовые выражения состоят из чисел. Алгебраические выражения — из переменных. Возьмем безразмерную коробку, в которой можно хранить любой предмет. Так вот, предмет — это число, а коробка — это переменная.
🔵 ЗАЧЕМ ЭТО НУЖНО?
В математике не всегда удобно работать с выражениями, содержащими постоянные величины. Как, к примеру, с числовым выражением $frac{60}{1,55^2}$. Оно сообщает значение, но не отражает какую-либо концепцию или идею, как алгебраическая дробь $frac{m}{h^2}$.
Если же «предлагать» внутри выражения не конкретные предметы, а коробки, в которые по необходимости кладутся предметы, потенциал применения выражения значительно возрастает.
Так, можно дать определение понятия «переменная»:
Переменная — математический объект, занимающий некоторое множество числовых значений.
Пусть дана такая переменная $x$ и известно правило, задающее множество ее значений: $xinmathbb{N^+}$. Запись расшифровывается следующим образом: «В качестве значения $x$ допускается любое положительное натуральное число $mathbb{N}$».
Переменная | Множество ее значений | Примеры возможных числовых значений |
$x$ | $xinmathbb{N^+}$ | $1, 2, 3, 4…$ |
Образавр объясняет: расширенный натуральный ряд
Возможно, с формой записи $mathbb{N^+}$ вы ранее не сталкивались. Так как к подобному ограничению числовых множеств мы будем прибегать еще не раз, проясним момент.
Существует несколько определений множества натуральных чисел, с включением нуля и с его исключением. Чтобы не создавать неопределенность, к множеству натуральных чисел мы будем обращаться по-разному:
🔷⠀⠀расширенный натуральный ряд $mathbb{N}$ ${0, 1, 2, 3…}$
🔷⠀⠀ряд с исключением нуля $mathbb{N^+}$ ${1, 2, 3…}$
Переменная в алгебре: пример
Выше мы не зря для примера обозначили переменную как $x$. В алгебре переменные принято записывать строчными литерами латинского алфавита $(a, b, c, x, y…)$, реже греческого $(alpha,beta,theta…)$. Греческие литеры обычно применяются как переменные значения углов.
Также нужно понимать, что числовые значения, спрятанные за буквами, могут задаваться как с ограничениями, так и без. Коробки ведь бывают разными: маленькими, большими или огромными.
Переменная в алгебре: пример. Запишем переместительный закон с помощью переменных $a$ и $b$:
$$a+b=b+a$$
Пояснение. За $a$ и $b$ принимаются какие угодно числовые значения — это пример записи с переменными, когда последние ничем не ограничены. Абсолютно любые числа, пришедшие вам в голову, могут быть подставлены на место переменных в указанном порядке. Если, допустим, $a=-6$ и $b=10^{23}$, то:
$$-6+10^{23}=10^{23}+(-6)$$
Допустимые и недопустимые значения переменной
С другой стороны, подставлять какие угодно числа вместо переменных не всегда возможно. Некоторые математические операции могут не допускать определенные значения переменных. Чаще всего это обусловлено законами арифметики. В таком случае говорят, что запись имеет допустимые и недопустимые значения переменной.
Допустимые значения переменной в алгебраическом выражении — значения переменной, при которых выражение имеет смысл.
Повторим еще раз, но с другой «стороны»: какие значения переменных тогда называют недопустимыми? Те, при которых выражение не имеет смысл.
Рассмотрим пример:
Дана алгебраическая дробь. $frac{a^2}{a+b}$
Пояснение. Подставим в запись значения $a=-10$, $b=10$. Выражение $frac{a^2}{textcolor{coral}{textbf{0}}}$ не имеет смысла — деление на ноль в классической математике недопустимо.
Видим, что данная запись, в отличие от алгебраической записи переместительного закона, имеет как допустимые, так и недопустимые значения переменной.
Можно сказать, что алгебраическая дробь $frac{a^2}{a+b}$ имеет смысл только при:
$$aneq{-b}$$
Алгебраические выражения — даем определение
Теперь определенно ясно, что:
Алгебраические выражения — всякие записи, состоящие из переменных и чисел, связанных между собою арифметическими операциями.
Алгебраическое выражение | Числовое выражение |
---|---|
$x^3+4y^2-49$ | $(2frac{1}{10}:2-1,8)cdot0,4+5$ |
Состоит из переменных, чисел, арифметических операций. | Состоит только из чисел и арифметических операций. |
«Алгебраическая» — значит, особая буквенная форма записи математических объектов. Заметьте, что в подобном выражении могут находиться не только переменные, но и постоянные величины — числа.
Синтаксис алгебраических выражений
В языках, чтобы составить корректное предложение, нужно знать законы синтаксиса. Алгебраические выражения, как и предложения, подчиняются математическому синтаксису. Далее мы разберем наиболее важные положения.
Переменные и коэффициенты
В алгебраическом выражении «$7x^2$»:
🔷 «$7$» — коэффициент переменной;
🔷 «$x$» — буквенное обозначение переменной.
Числовой множитель при переменной называется коэффициентом. Порядок при записи всегда следующий: вначале, если имеется, идет коэффициент, только после — переменная. Также обратите внимание, что в синтаксисе алгебраических выражений не принято указывать знак умножения между коэффициентом и переменной.
Порядок переменных в выражении
$$frac{6(a+2b-4c)}{(a+b)^2}$$
Данная алгебраическая дробь арифметически связывает три переменные — $a$, $b$, $c$. Обращаем ваше внимание, что порядок алфавитный, не произвольный: точно так же, как, например, друг за другом в кириллице идут буквы «а», «б», «в» и так далее. Это не обязательное правило, а, скорее, правило хорошего тона.
Вычисление алгебраических выражений
Задача. Найдите, чему равняется выражение при $a=3,$ $b=-2,$ $c=1,$ и укажите допустимые и недопустимые значения переменных в данном алгебраическом выражении.
$$frac{(a+b)(b+c)}{(a+b)^2}$$
Решение. Найти значение алгебраического выражения — это найти, чему оно равняется при заданных значениях переменных. Прежде чем перейти к вычислению, заметим, что:
$$(a+b)^2=(a+b)(a+b)$$
Выражение можно упростить:
$$frac{cancel{(a+b)}(b+c)}{(a+b)^{cancel{2}}}=frac{b+c}{a+b}$$
Первое. Находим значение при $a=3$, $b=-2$, $c=1$:
$$frac{-2+1}{3+(-2)}=frac{-1}{1}=-1$$
Второе. Еще раз ключевой вопрос: какие значения переменных называют недопустимыми? Те, при которых алгебраическое выражение не имеет смысла. Поскольку мы имеем дело с алгебраической дробью, приравняем знаменатель к нулю:
$$a+bneq{0}\aneq{-b}$$
Теперь мы можем указать допустимые значения переменных в алгебраическом выражении и ограничить числовое множество выше найденным «правилом»:
$$begin{cases}ain{mathbb{R}}\bin{mathbb{R}}\cin{mathbb{R}}\aneq{-b}end{cases}$$
Таким образом, допустимые значения переменных в данном алгебраическом выражении — любые вещественные числа при условии, что $aneq{-b}$.
xptinan
Вопрос по алгебре:
Найдите недопустимые значения переменной в выражении
3х+6 / 1,7-2х
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
Ответы и объяснения 1
quruereredre691
Выражение не имеет смысла, когда знаменатель равен 0
т.е.
1,7-2х≠0
-2х≠-1.7
х≠1,7/2
х≠0,85
недопустимое значение переменной 0,85
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат — это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Алгебра.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!
Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.
Содержание
- Выражение, не имеющее смысла: примеры
- Числовые выражения
- Условия для выражения, которое не имеет смысла
- Алгебраические выражения
- Почему так?
- Примеры алгебраических выражений, не имеющих смысла
- Типовые задачи по теме «Выражение, не имеющее смысла»
- В заключение
- Область допустимых значений функции
- Допустимые и недопустимые значения переменных
- Что такое ОДЗ
- Как найти ОДЗ: примеры решения
- Запомните
- Зачем учитывать ОДЗ при преобразовании выражения
Выражение, не имеющее смысла: примеры
Выражение – это самый широкий математический термин. По существу, в этой науке из них состоит все, и все операции проводятся тоже над ними. Другой вопрос, что в зависимости от конкретного вида применяются совершенно разнообразные методы и приемы. Так, работа с тригонометрией, дробями или логарифмами – это три различных действия. Выражение, не имеющее смысла, может относится к одному из двух видов: числовому или алгебраическому. А вот что означает это понятие, как выглядит его пример и прочие моменты будут рассмотрены далее.
Числовые выражения
Если выражение состоит из чисел, скобок, плюсов-минусов и остальных знаков арифметических действий, его смело можно называть числовым. Что довольно логично: стоит только еще разок взглянуть на первый названный его компонент.
Числовым выражением может быть что угодно: главное, чтобы в нем не было букв. А под «чем угодно» в данном случае понимается все: от простой, стоящей одиноко, самой по себе, цифры, до огромного их перечня и знаков арифметических действий, требующих последующего вычисления конечного результата. Дробь – это тоже числовое выражение, если в ней нет всяких a, b, c, d и т.д., ведь тогда это совершенно другой вид, о котором будет рассказано чуть позже.
Условия для выражения, которое не имеет смысла
Когда задание начинается со слова «вычислить», можно говорить о преобразовании. Штука в том, что это действие не всегда целесообразно: в нем не то чтобы сильно нуждаются, если на передний план выходит выражение, не имеющее смысла. Примеры бесконечно удивительны: иногда, чтобы понять, что оно-то нас и настигло, приходится долго и нудно раскрывать скобки и считать-считать-считать.
Главное, что нужно запомнить: не имеет смысла то выражения, чей конечный результат сводится к запретному в математике действию. Если уж совсем по-честному, то тогда бессмысленным становится само преобразование, но для того, чтобы это выяснить, приходится его для начала выполнить. Такой вот парадокс!
Самое знаменитое, но от того не менее важное запретное математическое действие – это деление на ноль.
Потому вот, например, выражение, не имеющее смысла:
Если при помощи нехитрых вычислений свести вторую скобку к одной цифре, то она и будет нулем.
По такому же принципу «почетное звание» дается и этому выражению:
Алгебраические выражения
Это то же самое числовое выражение, если в него добавить запретные буквы. Тогда оно и становится полноценным алгебраическим. Оно также может быть всех размеров и форм. Алгебраическое выражение – понятие более широкое, включающее в себя предыдущее. Но был смысл начинать разговор не с него, а с числового, чтобы было понятнее и разобраться было легче. Ведь имеет ли смысл выражение алгебраическое – вопрос не то чтобы очень сложный, но имеющий больше уточнений.
Почему так?
Буквенное выражение, или выражение с переменными – это синонимы. Первый термин объяснить просто: ведь оно, в конце концов, содержит в себе буквы! Второй тоже не загадка века: вместо букв можно подставлять разные числа, вследствие чего значение выражения будет меняться. Нетрудно догадаться, что буквы в данном случае и есть переменные. По аналогии, числа – это постоянные.
И тут мы возвращаемся к основной тематике: что такое выражение, не имеющее смысла?
Примеры алгебраических выражений, не имеющих смысла
Условие для бессмысленности алгебраического выражения — аналогичное, как и для числового, с одним лишь только исключением, а если быть точнее, дополнением. При преобразовании и вычислении конечного результата приходится учитывать переменные, поэтому вопрос ставится не как «какое выражение не имеет смысла?», а «при каком значении переменной это выражение не будет иметь смысла?» и «есть ли такое значение переменной, при котором выражение потеряет смысл?»
Вышеприведенное выражение не имеет смысла при a равном -2.
А вот насчет (a+3):(12-4-8) можно смело сказать, что это выражение, не имеющее смысла при любых a.
Точно так же, какое b ни подставишь в выражение (b — 11):(12+1), оно по-прежнему будет иметь смысл.
Типовые задачи по теме «Выражение, не имеющее смысла»
7 класс изучает эту тему по математике в числе прочих, и задания по ней встречаются нередко как непосредственно после соответствующего занятия, так и в качестве вопроса «с подвохом» на модулях и экзаменах.
Вот почему стоит рассмотреть типовые задачи и методы их решения.
Имеет ли смысл выражение:
Необходимо произвести все вычисление в скобках и привести выражение к виду:
Конечный результат содержит деление на ноль, следовательно, выражение не имеет смысла.
Какие выражения не имеют смысла?
Следует вычислить конечное значение для каждого из выражений.
Найти область допустимых значений для следующих выражений:
Область допустимых значений (ОДЗ) — это все те числа, при подставлении которых вместо переменных выражение будет иметь смысл.
То есть задание звучит как: найти значения, при которых не будет деления на ноль.
1) b є (-∞;-17) & (-17; + ∞), или b>-17 & b 25 & b 3 — x 2 y 3 + 13x — 38y)/(12x 2 — y).
Но на самом деле оно только выглядит страшным и громоздким, потому что на деле содержит в себе то, что уже давно известно: возведение чисел в квадрат и куб, некоторые арифметические действия, такие как деление, умножение, вычитание и сложения. Для удобства, между прочим, можно привести задачу к дробному виду.
Числитель у получившейся дроби не радует: (x 3 — x 2 y 3 + 13x — 38y). Это факт. Зато есть другой повод для счастья: его-то для решения задания трогать даже не понадобится! Согласно определению, рассмотренному ранее, делить нельзя на ноль, а что именно на него будет делиться, совершенно неважно. Потому оставляем это выражение в неизменном виде и подставляем пары чисел из данных вариантов в знаменатель. Уже третий пункт идеально вписывается, превращая небольшую скобочку в ноль. Но останавливаться на этом – плохая рекомендация, ведь подойти может еще что-нибудь. И вправду: пятый пункт тоже неплохо вписывается и подходит условию.
Записываем ответ: 3 и 5.
В заключение
Как видно, эта тема очень интересная и не особо сложная. Разобраться в ней не составит труда. Но все-таки отработать пару примеров никогда не помешает!
Источник
Область допустимых значений функции
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Допустимые и недопустимые значения переменных
В 7 классе заканчивается математика и начинается ее-величество-алгебра. Первым делом школьники изучают выражения с переменными.
Мы уже знаем, что математика состоит из выражений — буквенных и числовых. Каждому выражению, в котором есть переменная, соответствует область допустимых значений (ОДЗ). Если игнорировать ОДЗ, то в результате решения можно получить неверный ответ. Получается, чтобы быстро получить верный ответ, нужно всегда учитывать область допустимых значений.
Чтобы дать верное определение области допустимых значений, разберемся, что такое допустимые и недопустимые значения переменной.
Рассмотрим все необходимые определения, связанные с допустимыми и недопустимыми значениями переменной.
Выражение с переменными — это буквенное выражение, в котором буквы обозначают величины, принимающие различные значения.
Значение числового выражения — это число, которое получается после выполнения всех действий в числовом выражении.
Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение.
Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.
Теперь, опираясь на данные определения, мы можем сформулировать, что такое допустимые и недопустимые значения переменной.
Допустимые значения переменных — это значения переменных, при которых выражение имеет смысл.
Если при переменных выражение не имеет смысла, то значения таких переменных называют недопустимыми.
В выражении может быть больше одной переменной, поэтому допустимых и недопустимых значений может быть больше одного.
Пример 1
Рассмотрим выражение
В выражении три переменные (a, b, c).
Запишем значения переменных в виде: a = 1, b = 1, c = 2.
Такие значения переменных являются допустимыми, поскольку при подстановке этих значений в выражение, мы легко можем найти ответ:
Таким же образом можем выяснить, какие значения переменных — недопустимые.
Подставим значения переменных в выражение
На ноль делить нельзя.
Что такое ОДЗ
ОДЗ — это невидимый инструмент при решении любого выражении с переменной. Чаще всего, ОДЗ не отображают графически, но всегда «держат в уме».
Область допустимых значений (ОДЗ) — это множество всех допустимых значений переменных для данного выражения.
Пример 2
Рассмотрим выражение
ОДЗ такого выражения выглядит следующим образом: ( — ∞; 3) ∪ (3; +∞).
Читать запись нужно вот так:
Область допустимых значений переменной x для выражения — это числовое множество ( — ∞; 3) ∪ (3; +∞).
Пример 3
Рассмотрим выражение
ОДЗ такого выражения будет выглядеть вот так: b ≠ c; a — любое число.
Такая запись означает, что область допустимых значений переменных b, c и a = это все значения переменных, при которых соблюдаются условия b ≠ c; a — любое число.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Как найти ОДЗ: примеры решения
Найти ОДЗ — это значит, что нужно указать все допустимые значения переменных для выражения. Часто, чтобы найти ОДЗ, нужно выполнить преобразование выражения.
Чтобы быстро и верно определять ОДЗ, запомните условия, при которых значение выражения не может быть найдено.
Мы не можем вычислить значение выражения, если:
- требуется извлечение квадратного корня из отрицательного числа
- присутствует деление на ноль (математическое правило номер раз: никогда не делите на ноль)
- отрицательный целый показатель в степени при отрицательном числе
- требуется вычисление логарифма отрицательного числа
- область определения тангенса
= π * k, где k ∈ z
- область определения котангенса π * k, где k ∈ z
- нахождение арксинуса и арккосинуса числа, выходящего за пределы числового промежутка [- 1, 1].
Теперь, приступая к поиску ОДЗ, вы можете сверять выражение по всем этим пунктам.
Давайте потренируемся находить ОДЗ.
Пример 4
Найдем область допустимых значений переменной выражения a 3 + 4 * a * b − 6.
В куб возводится любое число. Ограничений при вычитании и сложении нет. Это значит, что мы можем вычислить значение выражения a 3 + 4 * a * b − 6 при любых значениях переменной.
ОДЗ переменных a и b — это множество таких пар допустимых значений (a, b), где a — любое число и b — любое число.
Ответ: (a и b), где a — любое число и b — любое число.
Пример 5
Найдем область допустимых значений (ОДЗ) переменной выражения
Здесь нужно обратить внимание на наличие нуля в знаменатели дроби. Одним из условий, при котором вычисление значения выражения невозможно явлется наличие деления на ноль.
Это значит, что мы может сказать, что ОДЗ переменной a в выражении — пустое множество.
Пустое множество изображается в виде вот такого символа Ø.
Пример 6
Найдем область допустимых значений (ОДЗ) переменных в выражении
Если есть квадратный корень, то нам нужно следить за тем, чтобы под знаком корня не было отрицательного числа. Это значит, что при подстановке значений a и b должны быть условия, при которых a + 3 * b + 5 ≥ 0.
Ответ: ОДЗ переменных a и b — это множество всех пар, при которых a + 3 * b + 5 ≥ 0.
Пример 7
Найдем ОДЗ переменной a в выражении
Прежде всего, нам нужно подобрать такое условие, при котором в знаменателе дроби не будет ноля —
Мы знаем, что выражение под знаком корня должно быть положительным. Это дает нам второе условие: a + 1 ≥ 0.
Мы не можем вычислить логарифм отрицательного выражения. Получаем третье условие: a 2 + 2 > 0.
Выражении в основании логарифма не должно быть отрицательным и не должно равняться единице. Получаем условие 4: a + 6 > 0.
Условие 5: a + 6 ≠ 1.
Определим ОДЗ, опираясь на все означенные условия:
a +1 — 1 0.
Ответ: ОДЗ: [ — 1; 0) ∪ (0; +∞)
Как видите, записывая ОДЗ, мы ставим квадратные и круглые скобки.
Запомните
- Если число входит в ОДЗ, то около числа ставим квадратные скобки.
- Если число не входит в ОДЗ, то около него ставятся круглые скобки.
Например, если х > 6, но х
Зачем учитывать ОДЗ при преобразовании выражения
Иногда выражение просто невозможно решить, если не выполнить ряд тождественных преобразований. К ним относятся: перестановки, раскрытие скобок, группировка, вынесение общего множителя за скобки, приведение подобных слагаемых.
Кроме того, что видов таких преобразований довольно много: нужно понимать, в каких случаях какое преобразование возможно. В этом может помочь определение ОДЗ.
Тождественное преобразование может:
- расширить ОДЗ
- никак не повлиять на ОДЗ
- сузить ОДЗ
Рассмотрим каждый случай в отдельности.
Пример 8
Рассмотрим выражение a + 4/a — 4/a
Поскольку мы должны следить за тем, чтобы в выражении не возникало деление ноль, определяем условие a ≠ 0.
Это условие отвечает множеству (−∞ ; 0) ∪ (0 ; +∞).
В выражении есть подобные слагаемые, если привести подобные слагаемые, то мы получаем выражение вида a.
ОДЗ для a — это R — множество всех вещественных чисел.
Преобразование расширило ОДЗ — добавился ноль.
Пример 9
Рассмотрим выражение a 2 + a + 4 * a
ОДЗ a для этого выражения — множество R.
В выражении есть подобные слагаемые, выполним тождественное преобразование.
После приведения подобных слагаемых выражение приняло вид a 2 + 5 * a
ОДЗ переменной a для этого выражения — множество R.
Это значит, что тождественное преобразование никак не повлияло на ОДЗ.
Пример 10
Рассмотрим выражение
ОДЗ a определяется неравенством (a — 1) * (a — 4) ≥ 0.
Решить такое неравенство можно методом интервалов, что дает нам ОДЗ (−∞; 1] ∪ [4 ; +∞).
Затем выполним преобразование исходного выражения по свойству корней: корень произведения = произведению корней.
Приведем выражение к виду
ОДЗ переменной a для этого выражения определяется неравенствами:
a — 1 ≥ 0
a — 4 ≥ 0
Решив систему линейных неравенств, получаем множество [4; + ∞).
Отсюда видно, что тождественные преобразования сузили ОДЗ.
От (−∞; 1] ∪ [4 ; +∞) до [4; + ∞).
Решив преобразовать выражение, внимательно следите за тем, чтобы не допустить сужение ОДЗ.
Запомните, что выполняя преобразование, следует выбирать такие, которые не изменят ОДЗ.
Источник