Формулы, примеры решения задач: ТОЭ | Электрические машины | Высшая математика | Теоретическая механика
- Электрический ток, плотность тока, электрическое напряжение, энергия при протекании тока, мощность электрического тока
- Электрический ток
Электрический ток — это явление упорядоченного движения электрических зарядов. За направление электрического тока принимается направление движения положительных зарядов.
Формула электрического тока:
Электрический ток измеряется в амперах. СИ: А.
Электрический ток обозначается латинскими буквами i или I. Символом i(t) обозначается «мгновенное» значение тока, т.е. ток произвольного вида в любой момент времени. В частном случае он может быть постоянным или переменным.
Прописной латинской буквой I обозначается, как правило, постоянное значение тока.
В любом участке неразветвленной электрической цепи протекает одинаковый по величине ток, который прямо пропорционален напряжению на концах участка и обратно пропорционален его сопротивлению. Величина тока определяется по закону Ома:
1) для цепи постоянного тока
2) для цепи переменного тока,
где U — напряжение, В;
R — омическое сопротивление, Ом;
Z — полное сопротивление, Ом.
Омическое сопротивление проводника:
,
где l — длина проводника, м;
s — поперечное сечение, мм2;
ρ — удельное сопротивление, (Ом · мм2) / м.
Зависимость омического сопротивления от температуры:
Rt = R20 [1 + α(t — 20°)],
где R20 — сопротивление при 20°C, Ом;
Rt — сопротивление при t°C, Ом;
α — температурный коэффициент сопротивления.
Полное сопротивление цепи переменного тока:
,
где— активное сопротивление, Ом;
— индуктивное сопротивление, Ом;
— индуктивность, Гн;
— емкостное сопротивление, Ом;
— ёмкость, Ф.
Активное сопротивление больше омического сопротивления R:
,
где— коэффициент, учитывающий увеличение сопротивления при переменном токе, зависящий от: частоты тока; магнитных свойств, проводимости и диаметра проводника.
При промышленной частоте, для нестальных проводников, принимаюти считают
.
- Плотность тока
Плотность тока (j) — это сила тока, рассчитанная на единицу площади поперечного сечения (s).
Для равномерного распределения плотности тока и сонаправленности её с нормалью к поверхности, через которую протекает ток, формула плотности тока принимает вид:,
где I — сила тока через поперечное сечение проводника площадью s.
СИ: А/м2 - Электрическое напряжение
При протекании тока, как и при всяком перемещении зарядов, происходит процесс преобразования энергии. Электрическое напряжение — количество энергии, которое необходимо затратить на перемещение единицы заряда из одной точки в другую.
Формула электрического напряжения:
Электрическое напряжение обозначается латинской буквой u. Символом u(t) обозначается «мгновенное» значение напряжения, а прописной латинской буквой U обозначается, как правило, постоянное напряжение.
Электрическое напряжение измеряется в вольтах. СИ: В. - Энергия при протекании электрического тока
Формула энергии, при протекании электрического тока:
СИ: Дж - Мощность при протекании электрического тока
Формула мощности, при протекании электрического тока:
СИ: Вт.
- Электрическая цепь
- Электрическая цепь — это совокупность устройств, предназначенных для протекания по ним электрического тока.
Эти устройства называются элементами цепи. - Источники электрической энергии — устройства, преобразующие различные виды энергии, например механическую или химическую, в энергию электрического тока.
- Идеальный источник напряжения — источник, напряжение на зажимах которого не зависит от величины протекающего через него тока.
Внутреннее сопротивление идеального источника напряжения можно условно принять равным нулю. - Идеальный источник тока — источник, величина протекающего тока через который не зависит от напряжения на его зажимах.
Внутреннее сопротивление такого источника можно условно принять равным бесконечности. - Приемник — это устройство, потребляющее энергию или преобразующее электрическую энергию в другие виды энергии.
- Двухполюсник — это цепь, имеющая два зажима для подключения (полюса).
- Идеальный R-элемент (резистивный элемент, резистор) — это такой пассивный элемент цепи, в котором происходит необратимый процесс преобразования электрической энергии в тепловую.
Основной параметр резистора — это его сопротивление.
Сопротивление измеряется в омах. СИ: Ом
Проводимость — это обратная величина по отношению к сопротивлению..
Измеряется проводимость в сименсах. СИ: См.
Формула мощности R-элемента:.
Формула энергии R-элемента:
.
- Идеальный С-элемент (емкостной элемент, или конденсатор) — это такой пассивный элемент цепи, в котором происходит процесс преобразования энергии электрического тока в энергию электрического поля и наоборот. В идеальном C-элементе потери энергии отсутствуют.
Формула ёмкости:
. Примеры: задача 1, задача 2.
Ток в ёмкости:
Напряжения на ёмкости:
.
Закон коммутации для емкостного элемента. При токе конечной амплитуды заряд на C-элементе не может измениться скачком:.
.
При неизменной ёмкости, напряжение на емкостном элементе не может измениться скачком:.
Мощность C-элемента:.
При p > 0 — энергия запасается, при p < 0 — энергия возвращается в источник.
Энергия C-элемента:
, или
.
Если к моменту времени, энергия равна 0, то
Емкость измеряется в фарадах. СИ: Ф. - Идеальный L-элемент (индуктивный элемент или катушка индуктивности) — это такой пассивный элемент цени, в котором происходит процесс преобразования энергии электрического тока в энергию магнитного поля и наоборот. В идеальном L-элементе потери энергии отсутствуют.
Для линейного L-элемента формула индуктивности (L) имеет вид:
,
где— потокосцепление.
Индуктивность обозначается буквойи играет роль коэффициента пропорциональности между потоком
и током
.
Напряжение на индуктивном элементе:
.
Ток в индуктивном элементе:
.
Закон коммутации для индуктивного элемента. При напряжении конечной амплитуды, потокосцепление не может измениться скачком:.
.
При неизменной индуктивности ток в индуктивном элементе не может измениться скачком:.
Мощность L-элемента:.
При p > 0 — энергия запасается, при p < 0 — энергия возвращается в источник.
Энергия L-элемента:
, или
.
Если к моменту времени, энергия равна 0, то
Индуктивность измеряется в генри. СИ: Гн
Пример: задача 3. - R, L, C — основные пассивные двухполюсные элементы электрических цепей.
- Основные законы электрических цепей
- Закон Ома для участка цепи, не содержащего источник ЭДС.
Закон Ома для участка цепи, не содержащего источник ЭДС, устанавливает связь между током и напряжением на этом участке.
Применительно к данному рисунку, математическое выражение закона Ома имеет вид:
, или
Формулируется это равенство так: при неизменном сопротивлении проводника напряжение на нем пропорционально току в проводнике. - Закон Ома для участка цепи, содержащего источник ЭДС
Для схемы
.
Для схемы
.
В общем случае
.
- Закон Джоуля-Ленца. Энергия, выделяемая на сопротивлении R при протекании по нему тока I, пропорциональна произведению квадрата силы тока и величины сопротивления:
- Законы Кирхгофа.
Топология (строение) цепи.
Электрическая схема — графическое изображение электрической цепи.
Ветвь ‐ участок цепи, содержащий один или несколько последовательно соединенных элементов и заключенный между двумя узлами.
Узел ‐ точка цепи, где сходится не менее трех ветвей. Узлы нумеруют произвольно, как правило, арабской цифрой. На схеме узел может быть обозначен точкой, а может и не быть обозначен. Как правило, не обозначают те узлы, расположение которых очевидно (т‐образные соединения). Если пересекающиеся ветви образуют узел, то он обозначается точкой. Если в месте пересечения ветвей точки нет, то и узла нет (провода лежат друг на друге).
Контур – замкнутый путь, проходящий по нескольким ветвям. Контуры независимы, если отличаются хотя бы одной ветвью. Контура обозначают стрелкой с указанным направлением обхода и римской цифрой. Направление обхода выбирают произвольно. Независимых контуров в схеме может быть много, при этом не все эти контура необходимы для составления достаточного для решения задачи количества уравнений.
Первый закон Кирхгофа:
1) алгебраическая сумма токов, подтекающих к любому узлу схемы, равна нулю:
;
2) сумма подтекающих к любому узлу токов равна сумме утекающих от узла токов:
. Пример 1. Первый закон Кирхгофа.
Второй закон Кирхгофа:
1) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:
2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:
. Пример 2. Второй закон Кирхгофа.
- Матричная форма записи уравнений Кирхгофа:
,
где А, В — квадратные матрицы коэффициентов при токах и напряжениях порядка p х p (p — число ветвей схемы; q — число узлов схемы);
I, E — матрицы-столбцы неизвестных токов и заданных ЭДС
Элементами матрицы А являются коэффициенты при токах в левой части уравнений, составленных по первому и второму законам Кирхгофа. Первыестроки матрицы А содержат коэффициенты при токах в уравнениях, составленных по первому закону Кирхгофа, и имеют элементы +1, -1, 0 в зависимости от того, с каким знаком входит данный ток в уравнение.
Элементы следующихстрок матрицы А равны значениям сопротивлении при соответствующих токах в уравнениях, составленных по второму закону Кирхгофа, с соответствующим знаком. Элементы матрицы В равны коэффициентам при ЭДС в правой части уравнений, составленных по законам Кирхгофа. Первые
строки матрицы имеют нулевые элементы, так как ЭДС в правой части уравнений, записанных по первому закону Кирхгофа, отсутствуют. Остальные
строки содержат элементы +1, -1 в зависимости от того, с каким знаком входит ЭДС в уравнение, и 0, если ЭДС в уравнения не входит.
Общее решение уравнений, составленных по законам Кирхгофа:
,
где— матрица проводимостей.
.
Токи в каждой ветви:
;
;
.
- Режимы работы электрических цепей
- Номинальный режим работы элемента электрической цепи — это режим, при котором он работает с номинальными параметрами.
- Согласованный режим — это режим, при котором мощность, отдаваемая источником или потребляемая приемником, имеет максимальное значение. Такое значение получается при определенном соотношении (согласовании) параметров электрической цепи.
- Режим холостого хода — это такой режим, при котором через источник или приемник не протекает электрический ток. При этом источник не отдает энергию во внешнюю часть цепи, а приемник не потребляет ее. Для двигателя это будет режим без механической нагрузки навалу.
- Режим короткого замыкания — это режим, возникающий при соединении между собой разноименных зажимов источника или пассивного элемента, а также участка электрической цепи, находящегося под напряжением.
- Электрические цепи постоянного тока
- Если ток постоянный, то отсутствует явление самоиндукции и напряжение на катушке индуктивности равно нулю:
, так как
- Постоянный ток через емкость не проходит.
- Простая цепь постоянного тока — это цепь с одним источником при последовательном, параллельном или смешанном соединение приемников.
При последовательном соединении приемников:
I×Rэкв;
Rэкв=ΣRi.
При параллельном соединении приемников напряжение на всех приемниках одинаково.
По закону Ома токи в каждой ветви:
.
По первому закону Кирхгофа общий ток:
E×Gэкв;
Gэкв=G1+G2+…+Gn; Rэкв=1/Gэкв.
При смешанном соединении:
Rэкв=.
- Метод контурных токов.
Метод основан на применении второго закона Кирхгофа и позволяет сократить при расчете сложных систем число решаемых уравнений.
Во взаимно независимых контурах, где для каждого контура хотя бы одна ветвь входит только в этот контур, рассматривают условные контурные токи во всех ветвях контура.
Контурные токи, в отличие от токов ветвей, имеют следующие индексы:или
Уравнения составляют по второму закону Кирхгофа для контурных токов.
Токи ветвей выражают через контурные токи по первому закону Кирхгофа.
Число выбираемых контуров и число решаемых уравнений равно числу уравнений, составляемых по второму закону Кирхгофа:.
Сумма сопротивлений всех резистивных элементов каждого контура со знаком плюс является коэффициентом при токе контура, имеет следующие индексы:или
Знак коэффициента при токе смежных контуров зависит от совпадения или несовпадения направления смежных контурных токов. ЭДС входят в уравнение со знаком плюс, если направления ЭДС и направление тока контура совпадают. Пример 3. Метод контурных токов. - Метод узловых потенциалов.
Метод основан на применении первого закона Кирхгофа и позволяет сократить число решаемых уравнений при нахождении неизвестных токов до. При составлении уравнений потенциал одного из узлов схемы принимают равным нулю, а токи ветвей выражают через неизвестные потенциалы остальных
узлов схемы и для них записывают уравнения по первому закону Кирхгофа. Решение системы
уравнений позволяет определить неизвестные потенциалы, а через них найти токи ветвей.
Приследует отдавать предпочтение методу узловых потенциалов.
- Формула двух узлов:
.
Пример 4. Метод узловых потенциалов. - Метод пропорциональных величии.
Метод применяют для нахождения неизвестных токов при цепочечном соединении резистивных элементов в электрических цепях с одним источником. Токи и напряжения, а также и известную ЭДС цепи выражают через ток самой удаленной от источника ветви. Задача сводится к решению одного уравнения с одним неизвестным. - Баланс мощностей
На основании закона сохранения энергии мощность, развиваемая источниками электрической энергии, должна быть равна мощности преобразования в цепи электрической энергии в другие виды энергии:
.
— сумма мощностей, развиваемых источниками;
— сумма мощностей всех приемников и необратимых преобразований энергии внутри источников.
Баланс мощностей составляют, чтобы проверить правильность найденного решения. При этом сравнивают мощность, внесенную в цепь источниками энергии с мощностью, затрачиваемой потребителями.
Формула мощности для одного резистора:
Суммарная мощность потребителей:
PП=
Мощность источников:
Pист = PE + PJ,
где PE = ±EI — мощность источника ЭДС (определятся умножением его ЭДС на ток, протекающий в данной ветви. Ток берут со знаком, полученным в результате расчета. Минус перед произведением ставят, если направление тока и ЭДС не совпадают на схеме);
PJ = JUJ — мощность источника тока (определятся умножением тока источника на падение напряжения на нем).
Для определения UJ выбирают любой контур, который включал бы в себя источник тока. Обозначают падение UJ на схеме против тока источника, и записывают контурное уравнение. Все величины, кроме UJ, в данном уравнении уже известны, что позволяет рассчитать падение напряжения UJ.
Сравнение мощностей: Pист = PП. Если равенство соблюдено, значит, баланс сошелся и расчет токов верен. - Алгоритм расчета цепи по законам Кирхгофа
- Топология цепи.
- Определяем общее число ветвей p*.
- Определяем число ветвей с источниками тока pит. Токи в данных ветвях считаем известными и равными токам источников.
- Определяем число ветвей с неизвестными токами: p*‐pит
- Находим количество узлов q.
- Находим число уравнений, составляемых по первому закону Кирхгофа:
.
- Находим число уравнений, составляемых по второму закону Кирхгофа:
.
- Произвольно наносим на схему номера и направления неизвестных токов.
- Произвольно наносим на схему номера узлов.
- Составляем узловые уравнения для произвольно выбранных узлов (по первому закону).
- Обозначаем на схеме контура и выбираем направления их обхода.
- Количество обозначаемых контуров равно количеству уравнений, составляемых по второму закону Кирхгофа. При этом ни один из контуров не должен включать в себя ветвь с источником тока.
- Составляем контурные уравнения для выбранных контуров (по второму закону).
- Объединяем составленные уравнения в систему. Известные величины переносим в правую часть уравнений. Коэффициенты при искомых токах вносим в матрицу А (левые части уравнений)(о матрицах читаем здесь). Заполняем матрицу F, занося в нее правые части уравнений.
- Решаем полученную систему уравнений (примеры решения систем уравнений).
- Проверяем правильность решения составлением баланса мощностей.
Пример: задача 4.
- Электрические цепи переменного тока
- Электрическая цепь синусоидального тока — это электрическая цепь, в которой ЭДС, напряжения и и токи, изменяющиеся по синусоидальному закону:
- Переменный ток — это ток, периодически меняющийся по величине и направлению и характеризующийся амплитудой, периодом, частотой и фазой.
- Амплитуда переменного тока — это наибольшее значение, положительное или отрицательное, принимаемое переменным током.
- Период — это время, в течение которого происходит полное колебание тока в проводнике.
- Частота — это величина, обратная периоду.
- Фаза — это угол
или
, стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.
- Периодический режим:
. К такому режиму может быть отнесен и синусоидальный:
,
где— амплитуда;
— начальная фаза;
— угловая скорость вращения ротора генератора.
При f = 50 Гцрад/с.
- Синусоидальный ток — это ток изменяющийся во времени по синусоидальному закону:
.
- Среднее значение синусоидального тока (ЭДС, напряжение), формула:
,
то есть среднее значение синусоидального тока составляетот амплитудного. Аналогично,
.
- Действующее значение синусоидального тока (ЭДС, напряжение), формула:
. Аналогично,
.
- Количество теплоты, выделенное за один период синусоидальным током, формула:
.
Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты,что и синусоидальный ток.
=R×Iпост2×T или Iпост=I=
- Коэффициент амплитуды синусоидального тока (κa) — это отношение амплитуды синусоидального тока к действующему значению синусоидального тока:
.
- Коэффициент формы синусоидального тока (κф) — это отношение действующего значения синусоидального тока к среднему за пол периода значению синусоидального тока:
κф=.
Для несинусоидальных периодических токов κa≠, κф≠1,11. Это отклонение косвенно свидетельствует о том, насколько несинусоидальный ток отличается от синусоидального.
- Резонансные явления в электрических цепях
- Резонанс напряжений.
Резонансом в электрических цепях называется режим участка электрической цепи, содержащей индуктивный и емкостной элементы, при котором разность фаз между напряжением и током равна нулю.
Режим резонанса может быть получен при изменении частоты ω питающего напряжения или изменением параметров L и C.
При последовательном соединении возникает резонанс напряжения.
Ток в схеме равен:
При совпадении вектора тока с вектором напряжения по фазе:
где— резонансная частота напряжения, определяемая из условия
Тогда
Волновое или характеристическое сопротивление последовательного контура:
Добротность контура — это отношение напряжения на индуктивности или емкости к напряжению на входе в режиме резонанса:
Добротность контура представляет собой коэффициент усиления по напряжению:
ULрез=IрезXрез=
В промышленных сетях резонанс напряжений является аварийным режимом, так как увеличение напряжения на конденсаторе может привести к его пробою, а рост тока — к нагреву проводов и изоляции. - Резонанс токов.
Резонанс токов может возникнуть при параллельном соединении реактивных элементов в цепях переменного тока. В этом случае:где
тогда
При резонансной частоте реактивные составляющие проводимости могут сравниться по модулю и суммарная проводимость будет минимальной. При этом общее сопротивление становится максимальным, общий ток минимальным, вектор тока совпадает с вектором напряжения. Такое явление называется резонансом токов.
Волновая проводимость:.
При g << bL ток в ветви с индуктивностью значительно больше общего тока, поэтому такое явление называется резонансом токов.
Резонансная частота:
ω*=
Из формулы следует:
1) резонансная частота зависит от параметров не только реактивных сопротивлений, но и активных;
2) резонанс возможен, если RL и RC больше или меньше ρ, в противном случае частота будет мнимой величиной и резонанс не возможен;
3) если RL = RC = ρ, то частота будет иметь неопределенное значение, что означает возможность существования резонанса на любой частоте при совпадении фаз напряжения питания и общего тока;
4) при RL = RC << ρ резонансная частота напряжения равна резонансной частоте тока.
Энергетические процессы в цепи при резонансе токов аналогичны процессам при резонансе напряжений.
Реактивная мощность при резонансе токов равна нулю. Подробно, реактивная мощность рассмотрена здесь.
Идеальное активное сопротивление не зависит от частоты, индуктивное сопротивление линейно зависит от частоты, емкостное сопротивление зависит от частоты по гиперболическому закону:
Как известно у электрического напряжения должна быть своя мера, которая изначально соответствует той величине, что рассчитана для питания того или иного электротехнического устройства. Превышение или снижение величины этого напряжения питания негативно влияет на электрическую технику, вплоть до полного выхода ее из строя. А что такое напряжение? Это разность электрических потенциалов. То есть, если для простоты понимания его сравнить с водой, то это примерно будет соответствовать давлению. По научному электрическое напряжение — это физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда.
Наиболее распространенной формулой напряжения тока является та, в которой имеются три основные электрические величины, а именно это само напряжение, ток и сопротивление. Ну, а формула эта известна под названием закона Ома (нахождение электрического напряжения, разности потенциалов).
Звучит эта формула следующим образом — электрическое напряжение равно произведению силы тока на сопротивление. Напомню, в электротехнике для различных физических величин существуют свои единицы измерения. Единицей измерения напряжения является «Вольт» (в честь ученого Алессандро Вольта, который открыл это явление). Единица измерения силы тока — «Ампер», и сопротивления — «Ом». В итоге мы имеем — электрическое напряжение в 1 вольт будет равно 1 ампер умноженный на 1 ом.
Помимо этого второй наиболее используемой формулой напряжения тока является та, в которой это самое напряжение можно найти зная электрическую мощность и силу тока.
Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток). Сама же мощность находится путем перемножения тока на напряжение. Ну, и чтобы найти силу тока нужно мощность разделить на напряжение. Все предельно просто. Единицей измерения электрической мощности является «Ватт». Следовательно 1 вольт будет равен 1 ватт деленный на 1 ампер.
Ну, а теперь приведу более научную формулу электрического напряжения, которая содержит в себе «работу» и «заряды».
В этой формуле показывается отношение совершаемой работы по перемещению электрического заряда. На практике же данная формула вам вряд ли понадобится. Наиболее встречаемой будет та, которая содержит в себе ток, сопротивление и мощность (то есть первые две формулы). Но, хочу предупредить, что она будет верна лишь для случая применения активных сопротивлений. То есть, когда расчеты производятся для электрической цепи, у которой имеется сопротивления в виде обычных резисторов, нагревателей (со спиралью нихрома), лампочек накаливания и так далее, то приведенная формула будет работать. В случае использования реактивного сопротивления (наличии в цепи индуктивности или емкости) нужна будет другая формула напряжения тока, которая учитывает также частоту напряжения, индуктивность, емкость.
P.S. Формула закона Ома является фундаментальной, и именно по ней всегда можно найти одну неизвестную величину из двух известных (ток, напряжение, сопротивление). На практике закон ома будет применяться очень часто, так что его просто необходимо знать наизусть каждому электрику и электронику.
меню сайта для мобильных приложений
ФОРМУЛЫ ТЕОРИИ ОСНОВ ЭЛЕКТРОТЕХНИКИ (ТОЭ)
Данный раздел основных формул ТОЭ предназначен для начинающих, как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора:
Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях). Поэтому определимся сразу с буквенным обозначением:
При расчётах всегда приводить все значения в одну единицу, например если расчеты по мощности в ваттах, соответственно напряжение в вольтах, сопротивление в Омах и т.д.
Комплексная мощность обозначается буквой S с волнистым значком (тильда) над ней.
- А теперь формулы по электротехнике (ТОЭ) часто применяемые для расчетов (дома, на работе), рассмотрим в порядке от простых к очень простым, для студенческого сообщества выложу отдельно сложные и очень сложные, и напишу целую лекцию по ТОЭ.
ФОРМУЛЫ ПОСТОЯННОГО ТОКА
Закон Ома для участка цепи и всей цепи постоянного тока:
Пример для расчета сопротивления проводника (подробнее можете посмотреть, что такое величина удельного сопротивления проводника на стр. понятия и определения):
Мощность в цепи постоянного тока, здесь нет ничего сложного, как и все в постоянном токе, замечу только, что значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, единица мощности (Р) равна -1 кВт = 1000 Вт:
-
- На заметку для любознательных, можно например, электрическую мощность пересчитать в механическую и наоборот: 1 кВт*ч = 367000 кгс*м; 1кВт = 102кгс*м/с, т.е. за 1 кВтч. Т.е. можно поднять груз массой 367 кг на высоту 1 км, или 102 кг за 1 сек. на один метр.
ФОРМУЛЫ ПЕРЕМЕННОГО ТОКА
В отличие от постоянного тока, особенностью переменного тока является то, что электрический ток с течением времени изменяется по величине и направлению. Элементы такой электрической цепи влияют на амплитуду тока и на его фазу. Условное обозначение переменного тока на электроприборах ̴ (англ. alternating current и обозначается латинскими буквами АС):
Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны, поэтому далее формулы тоэ будут носить более учебный характер, чем практический, иначе говоря для учащихся и просто для любознательных.
Перевод (конвертировать) мощности (Р в Вт), тока (I в А), сопротивления (R в Ом) и напряжения (U в В) можно, как показано ниже на простом примере (см. рис. ниже):
При этом надо учитывать, если у Вас в цепи U 220 В есть электродвигатели, трансформаторы и т.д. (индуктивные или емкостные нагрузки — реактивные элементы), то тогда нужно учитывать cos φ , например:
I = P/(U*cos φ),
в цепи U 380 В подставляем ещё √3 (корень из трёх равен — 1,73), например:
для тока: I = P/(√3*U*cos φ), или I = P/(1,73*U*cos φ), для мощности: P = √3*U*I*cos φ.
Продолжение формулы тоэ:
См. также ниже продолжение раздела формулы:
перейти: формулы тоэ 1 краткое описание страницы — электрический ток (I, ампер), электродвижущая сила (ЭДС, E=A/q=Дж/Кл=В, вольт), электрическое напряжение (U, вольт), электрическая энергия и мощность (Eq, Дж, джоуль) и ватт (Р, Вт, ватт)…
перейти: формулы тоэ 2 краткое описание страницы — пассивные элементы цепи (резистор, катушка индуктивности и конденсатор), их основные характеристики и параметры…
-
Автор сайта надеяться, что информация Вам будет полезна, как доступно простая, так и более углублённая в других разделах сайта. Не забывайте просмотреть рекламу от гугл, реклама для Вас бесплатно, а мне развитие сайта, удачи.
Одним из самых фундаментальных терминов в электротехнике является термин «электрическое напряжение». В этой статье мы объясним, что это такое и как его рассчитать.
Объяснение простыми словами
Электрическое напряжение U является той самой причиной, которая «заставляет» протекать электрический ток I. Электрическое напряжение всегда возникает, когда заряды разделены друг от друга, то есть все отрицательные заряды на одной стороне, а все положительные — на другой. Если соединить эти две стороны электропроводящим материалом, потечет электрический ток.
Общепринятое определение термина «электрическое напряжение».
Электрическое напряжение (или просто напряжение) — это разность потенциалов между двумя точками в электрическом поле. Это движущая сила для электрического заряда.
Потенциал в электрическом поле — это энергия заряженного тела, не зависящая от его электрического заряда. Для пояснения вы можете посмотреть на сравнение с водяным контуром чуть ниже в статье.
Есть другое определение (из учебника по физике 8 класса):
Напряжение — это физическая велuчuна, характеризующая электрическое поле. Электрическое напряжение между двумя точками электрического поля численно равно работе, совершенной при переносе между ними заряда 1 Кл силами электрического поля.
Сравнение с использованием модели протекания воды.
Хорошей аналогией, которая поможет вам представить себе электрическое напряжение и потенциал, является водяной контур. В этой схеме у вас есть два бассейна на разной высоте, которые соединены трубой. В этой трубе вода может перетекать из верхнего бассейна в нижний. Затем вода перекачивается обратно в верхний бассейн с помощью насоса, как показано на рисунке ниже.
В своих размышлениях вы теперь легко можете сравнить насос с источником электрического напряжения. Кроме того, поток воды можно сравнить с электрическим током. Насос транспортирует воду из нижнего бассейна в верхний. Оттуда она самостоятельно течет обратно в нижний бассейн. В данном примере насос является приводом для потока. Чем больше разница в высоте, тем сильнее поток. Решающим фактором является потенциальная энергия верхнего бассейна. Вы можете сравнить разность энергий двух бассейнов с разностью электрических потенциалов. Проще говоря, большая разница в высоте соответствует большему электрическому напряжению.
Формула
Формула для электрического напряжения U, согласно закона Ома для участка цепи, имеет вид
U = R * I .
Как видно из этой формулы, если электрическое напряжение остается неизменным, то чем больше электрическое сопротивление (R), тем меньше сила тока (I).
Другая формула для расчета электрического напряжения такова:
U = P / I .
То есть электрическое напряжение U равно мощности деленной на силу тока I.
Единица измерения электрического напряжения
Единицей измерения электрического напряжения в СИ является Вольт, сокращенно В (в честь итальянского учёного А. Вольта).
1 вольт (1 В) — это напряжение между двумя точками электрического поля, при переносе между которыми заряда 1 Кл совершается работа 1 Дж.
[U] = 1 В
Теперь вы можете объяснить смысл надписи 4,5 В или 9 В на круглой или плоской батарейке. Смысл в том, что при переносе с одного полюса источника на другой (через спираль лампочки или другой проводник) заряда 1 Кл силами электрического поля может быть совершена работа соответственно 4,5 Дж или 9 Дж.
В электротехнике напряжение может варьироваться от микровольт (1 мкВ = 1 * 10-6 В) и миливольт (1 мВ = 10-3 В), до киловольт (1 кВ = 1 * 103 В) и мегавольт (1 МВ = 106 В)
Вы можете преобразовать отдельные единицы измерения следующим образом:
1 В = 1000 мВ, 1 мВ = 1000 мкВ, 1 МВ = 1000 кВ, 1 кВ = 1000 В.
Электрическое напряжение в цепи
Для источников напряжения в схемах обычно используется один из следующих символов.
Источник напряжения всегда имеет два соединения/полюса. Полюс «плюс» и полюс «минус». Само напряжение обозначено стрелкой напряжения (UQ). Для источников оно всегда отображается от плюса к минусу.
Электрическое напряжение, падающее на резисторе, также можно обозначить стрелкой напряжения (на схеме обозначена как красная стрелка UR ). Это указывает на техническое направление электрического тока.
Также часто можно услышать термин «напряжение холостого хода» или «напряжение источника». Это выходное напряжение ненагруженного источника, т.е. источника, к которому ничего не подключено. Если цепь замкнута с нагрузкой, то можно измерить только напряжение на полюсах источника.
Электрические напряжения при последовательном и параллельном соединении
У нас уже есть статья о последовательном и параллельном соединении проводников, в котором мы обсуждаем эту тему более подробно. Поэтому здесь мы рассмотрим лишь некоторые основы.
При последовательном соединении компоненты подключаются в ряд.
Здесь электрическое напряжение источника делится на резисторы. Этот момент также описывается вторым правилом Кирхгофа. Здесь применимо следующее:
UQ = U1 + U2 + U3
то есть напряжение источника равно сумме электрических напряжений на отдельных резисторах. Напряжение источника по-разному распределяется по разным резисторам.
В электрической цепи с параллельным соединением компоненты расположены, соответственно, параллельно друг относительно друга. Это можно увидеть на следующей схеме.
Здесь гораздо проще определить электрические напряжения на резисторах, так как при параллельном соединении:
UQ = U1 = U2 = U3
Поэтому электрическое напряжение на резисторах такое же высокое, как и электрическое напряжение источника.
Измерение электрического напряжения
Приборы для измерения напряжения, также называемые вольтметрами, всегда подключаются параллельно потребителю, на котором необходимо измерить электрическое напряжение.
Одним из наиболее часто используемых вольтметров является цифровой мультиметр (DMM), поэтому мы покажем вам процедуру измерения напряжения с помощью DMM. Сначала необходимо установить тип электрического напряжения (DC — постоянный ток или AC — переменный ток).
Для постоянного тока необходимо обратить внимание на правильную полярность, т.е. подключить плюс к положительному полюсу. На следующем этапе необходимо выбрать правильный диапазон измерения. Если вы не можете оценить, насколько велика измеряемая величина, установите наибольший возможный диапазон и двигайтесь от него вниз, пока не найдете нужный. Наконец, вам нужно только «считать» электрическое напряжение прибором.
Примеры типовых значений электрического напряжения
Для некоторых применений соответствующее электрическое напряжение можно найти в таблице ниже.
Светодиод | 1,2 — 1,5 В |
Зарядное устройство USB | 5 В |
Напряжение автомобильного аккумулятора | 12, 4 — 12,8 В |
Напряжение в розетке (среднеквадратичное или действующее значение) | 230 В |
Высоковольтные линии электропередач (ЛЭП) | 60 кВ — 1 МВ |
Вы можете видеть, что на высоковольтных линиях присутствует напряжение до мегавольт. Такие большие электрические напряжения используются для того, чтобы уменьшить потери в длинных линиях.
Решающим фактором для потребителя является мощность P, которую можно рассчитать для постоянного напряжения с помощью формулы:
P = U * I
Это означает, что электрический ток I так же важен для потребителя, как и электрическое напряжение. Согласно закону Ома, зависимость между током и напряжением имеет вид:
U = R * I .
Если напряжение остается неизменным, сопротивление определяет величину тока. Чтобы проиллюстрировать это, представьте следующее. У вас есть три разных бассейна, которые заполнены одинаковым количеством воды. Каждый бассейн имеет слив, который различается по сечению, т.е. в одном бассейне сливная труба очень маленькая, а в другом — очень большая.
Постоянное электрическое напряжение можно определить по тому, что все емкости заполнены на одинаковую высоту. Если слив узкий в нижней части, он представляет собой большое сопротивление. Ток здесь может течь только медленно. Если сечение сливной трубы больше, то сопротивление меньше и, соответственно, может протекать больший ток.
Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)
Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.
- P = мощность (Ватт)
- U = напряжение (Вольт)
- I = ток (Ампер)
- R = сопротивление (Ом)
- r = внутреннее сопротивление источнка ЭДС
- ε = ЭДС источника
- Тогда для всей цепи:
- I=ε/(R +r) — закон Ома для всей цепи.
И еще ниже куча формулировок закона Ома для участка цепи :
Электрическое напряжение:
|
Электрическая мощность:
|
Электрический ток:
|
Электрическое сопротивление:
|
НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.
Цепь переменного синусоидального тока c частотой ω.
Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.
Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети
частотнонезависимы — данная формулировка применима ко всем гармоникам любого сигнала.
Закон Ома для цепей переменного тока:
-
U=I*Z
- где:
- Естественно, применительно к цепям переменного тока можно говорить и об активной/реактивной мощности.
- где:
- U = U0eiωt напряжение или разность потенциалов,
- I сила тока,
- Z = Re—iφ комплексное сопротивление (импеданс)
- R = (Ra2+Rr2)1/2 полное сопротивление,
- Rr = ωL — 1/ωC реактивное сопротивление (разность индуктивного и емкостного),
- Rа активное (омическое) сопротивление, не зависящее от частоты,
- φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.