- Главная
- Справочник
- Физика
Для того чтобы характеризовать скорость с которой совершается работа ($A$) используют понятие мощности (P), которую определяют как:
[P=frac{dA}{dt}left(1right),]
выражение (1) — это мгновенная мощность.
Мгновенную мощность можно определить как:
[P=overline{F}overline{v}left(2right),]
где $overline{F}$ — вектор силы, которая совершает работу; $overline{v}$ — вектор скорости перемещения точки, к которой приложена сила $overline{F}$.
§ 26.2. Мощность
Часто важна «быстрота» совершения работы, которая определяется мощностью.
Мощностью N называют отношение совершенной работы А к промежутку времени t, за который эта работа совершена: N = A/t
Например, строительный кран поднимает сотни кирпичей на высоту многоэтажного дома за считаные секунды, а человеку для этого потребовалось бы несколько дней. Значит, мощность подъемного крана во много раз больше мощности человека.
Единица мощности.
За единицу мощности в СИ принимают такую мощность, при которой работа в 1 Дж совершается за 1 с. Эту единицу мощности назвали ватт (Вт): 1 Вт = Дж/с
Часто используют также такие единицы мощности, как киловатт (1 кВт = 10 3 Вт) и мегаватт (1 МВт = 10 6 Вт).
Чтобы получить представление о единицах мощности, решим задачу.
Решим задачу
Какую мощность развивает школьник массой 50 кг, взбегая с первого этажа на пятый за полминуты? Высоту этажа примем равной 3 м.
«Мощность» человеческого разума.
Итак, человек может развивать мощность всего в десятки и сотни ватт. Зато мощность созданных разумом человека двигателей в тысячи, миллионы и даже миллиарды раз превышает мощность самого человека (рис. 26.1). Например, мощность легкового автомобиля достигает 100 кВт, а большого пассажирского авиалайнера — 100 МВт. Наибольшую на сегодня мощность развивают двигатели космических ракет — сотни тысяч МВт.
Рис. 26.1. Сравнение мощности человека с мощностью созданных им двигателей
Как выразить мощность через силу и скорость? Пройденный путь s выражается через скорость v и время движения t формулой s = vt. Поэтому
Таким образом, мощность равна произведению модуля силы на модуль скорости.
Следовательно, чтобы увеличить силу при той же мощности двигателя, надо уменьшить скорость. Вот почему на подъеме водитель производит переключение на первую скорость: чтобы увеличить силу тяги двигателя при той же мощности, надо уменьшить скорость движения.
Источник
Подбор номинала автоматического выключателя
Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.
При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.
Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.
У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.
Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.
Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.
Что такое сила тяги и по какой формуле её находить ?
Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.
Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:
- силы трения (покоя, качения, скольжения),
- сопротивления воздуха (газа),
- сопротивления воды и др.
Первый и второй законы Ньютона
Обратимся к законам Ньютона, которые хорошо описывают механическое движение тел. Из школьной программы мы знаем, что есть первый закон Ньютона, который описывает закон инерции. Он гласит, что любое тело, если на него не действуют силы, или если их равнодействующая равна нулю, движется прямолинейно и равномерно, или же находится в состоянии покоя. Это означает, что тело, пока на него ничто не действует, будет двигаться с постоянной скоростью v=const или пребывать в состоянии покоя сколько угодно долго, пока какое-то внешнее воздействие не выведет тело из этого состояния. Это и есть движение по инерции.
Примеры из жизни
Насколько вы сильны?
Рассмотрим простейший пример. Ваш ребёнок сел на санки и просит вас его покатать. С какой силой вам нужно тянуть эти санки, чтобы ребёнок остался доволен быстрой ездой ? Пока санки с ребёнком остаются в состоянии покоя, все силы, действующие на них, уравновешены. Состояние покоя — это частный случай инерции. Здесь на санки действуют две силы: тяжести Fт = m•g, направленная вертикально вниз, и нормального давления N, направленная вертикально вверх. Поскольку санки не движутся, то N – m•g = 0. Тогда из этого равенства следует, что N = m•g.
Когда вы решили покатать своего ребёнка, вы прикладываете силу тяги (Fтяги) к санкам с ребёнком. Когда вы начинаете тянуть санки, возникает сопротивление движению, вызванное силой трения (Fтр.), направленной в противоположную сторону. Это так называемая сила трения покоя. Когда тело не движется, она равна нулю. Стоит потянуть за санки — и появляется сила трения покоя, которая меняется от нуля до некоторого максимального значения (Fтр. max). Как только Fтяги превысит Fтр.max, санки с ребёнком придут в движение.
Чтобы найти Fтяги, применим второй закон Ньютона: Fтяги – Fтр.max = m•a, где a – ускорение, с которым вы тянете санки, m – масса санок с ребёнком. Допустим, вы разогнали санки до определённой скорости, которая не изменяется. Тогда a = 0 и вышеприведённое уравнение запишется в виде: Fтяги – Fтр. max = 0, или Fтяги = Fтр.max. Есть известный закон из физики, который устанавливает определённую зависимость для Fтр.max и N. Эта зависимость имеет вид: Fтр.max = fmax • N, где fmax – максимальный коэффициент трения покоя.
Если в эту формулу подставить выражение для N, то мы получим Fтр.max = fmax•m•g. Тогда формула искомой силы тяги примет вид: Fтяги = fmax•m•g = fск•m•g, где fск = fmax – коэффициент трения скольжения, g – ускорение свободного падения. Допустим, fск = 0,7, m = 30 кг, g = 9,81 м/с², тогда Fтяги = 0,7 • 30 кг • 9,81 м/с² = 206,01 Н (Ньютона).
Насколько силён ваш автомобиль?
Рассмотрим ещё пример. У вас есть автомобиль, мощность двигателя которого N. вы едете со скоростью v. Как в этом случае узнать силу тяги двигателя вашего автомобиля ? Поскольку скорость автомобиля не меняется, то Fтяги уравновешена силами трения качения, лобового сопротивления, трения в подшипниках и т. д. (первый закон Ньютона). По второму закону Ньютона она будет равна Fтяги = m•a. Чтобы её вычислить, достаточно знать массу автомобиля m и ускорение a.
Безопасность
Любой электроприбор — источник опасности, неосторожное обращение с которым чревато электротравмами. К тому же техника может ломаться, подвергая пользователя риску удара током.
Это особенно актуально для кухонной техники, поскольку зачастую берутся за нее или случайно касаются мокрыми руками.
Большинство стационарной кухонной техники должно подключаться к трехпроводной электрической сети, одним проводником подключенной к контуру заземления. Но как быть, если дом им не оборудован? А ведь таких в нашей стране — большинство. Наиболее простое решение — установка устройства защитного отключения (УЗО), которое мгновенно отключит линию при обнаружении на ней тока утечки, тем самым сведя к минимуму риск поражения электрическим током. Для экономии места в распределительном щитке, вместо автоматического выключателя и УЗО можно использовать дифференциальный автомат. Правда, такое решение несколько дороже.
Источник
Действие силы тяги
Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.
Её прекращение
Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.
1 закон Ньютона о действии
Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.
В современной физике в формулировку внесены уточнения:
- закон применим только в системах отсчета, называемых инерциальными;
- тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».
Примеры задач
Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.
Рис. 3. Последовательная расчетная цепь
Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:
P = U 2 /R = 81 / (10+20+30) = 1.35 Вт
Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:
Рис. 4. Параллельная схема подключения
Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:
Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:
P = I 2 *R = 25*6 = 150 Вт
Формулы для определения силы тяги
Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе (m) , умноженной на ускорение (a) . Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы ( F_т-;F_=m;times;a) , где (F_т) — сила тяги, (F_) — силы сопротивления. При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:
- сила тяжести mg;
- сила реакции опоры (N) ;
- сила трения ( F_) ;
- сила тяги (F) .
При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: (F_т-;F_с-;mg;times;sinalpha=m;times;a.)
Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением (A;=;F;times;s) . (s) здесь — расстояние, на которое тело переместилось.
Какое условие должно соблюдаться
Сила тяги всегда должна быть больше противодействующих ей сил.
Формула через мощность
Полезную механическую мощность (N) можно вычислить по формуле (N=F_т;times;v) , где (v) — скорость. Для определения силы тяги нужно разделить мощность на скорость: (F_т;=;frac N v.)
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.
Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.
Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.
Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.
Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.
Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?
Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.
Мощность электродвигателя – паспортная характеристика прибора, превращающего электрическую энергию в кинетическую. Это один из ключевых параметров при выборе устройства для обслуживания различного оборудования. Она всегда указывается в сопроводительной документации и дополнительно «штампуется» на шильднике электрического двигателя, закрепленном на его корпусе.
Но документы не всегда сохраняются, а надпись на шильднике может затереться. В таких случаях для дальнейшей эксплуатации, проверки, подключения может потребоваться расчет мощности электродвигателя. Он производится разными способами, о которых и расскажем.
Способы расчета мощности электродвигателя
Учитывая широкое распространение, неудивительно, что формул мощности электродвигателя существует довольно много. Самые простые в плане применения на производстве – следующие три подхода.
- Расчет мощности электродвигателя по току. Для определения фактического показателя прибор надо подключить (напряжение – фиксированное) и изменять ток поочередно на каждой из обмоток при помощи амперметра. Алгоритм действий такой:
- берется количество замеров;
- определяется сила тока в Амперах для каждого замера;
- все показатели суммируются и делятся на количество замеров;
- среднее значение силы тока умножаем на напряжение и получаем мощность электродвигателя в кВт (или Ваттах).
- Расчет мощности электродвигателя по размерам. Надо измерить диаметр и длину сердечника статора, узнать частоту оборотов вала.
- Расчет мощности электродвигателя асинхронного по силе тяги:
- тахометром определяем частоту вращения вала;
- штангенциркулем меряем радиус вала (если нет циркуля, можно взять обычную линейку);
- динамометр используем, чтобы замерять тяговое усилие устройства;
- формула мощности электродвигателя выглядит как P = F (тяговая сила)*n (частота вращения)*r (радиус вала)*2*3,14.
Формула мощности электродвигателя
Формула мощности электродвигателя может учитывать массу нюансов технологического процесса. Благодаря развитию IT-технологий сегодня найти способы расчета такого показателя не составляет труда. А вот выбрать в огромном количестве предложенных вариантов тот, который подойдет именно вам, как показывает практика, не так-то просто.
Чтобы вы не растерялись в огромном количестве методичек и рекомендаций интернета, предлагаем универсальный вариант формулы, который подойдет практически для любого случая. Выглядит она следующим образом.
,где:
- P – потребляемая мощность электродвигателя (номинальная);
- T – необходимый момент вращения на валу;
- Ω – угловая скорость.
У экспликатов тоже есть свои формулы.
- Вращающий момент (T) считается как произведение требуемого усилия тяги и радиуса рабочего органа подключаемого механизма.
- Усилие тяги (обозначается как Ft) можно рассчитать по формуле Ft = t*M*2,5, где t –коэффициент трения (берется из таблицы данных, для подшипников качения, например, он известен и равняется 0,02), а М – масса груза, который перемещает оборудование. Произведение корректируется на коэффициент Ньютона, который тоже известен и составляет 2,5.
- Радиус элемента вращения измеряют или берут из проектных/паспортных данных.
- Угловую скорость определяют так: Ω = число Пи (π, принимается как 3,14)*n/30 (n – частота вращательного движения механизма, которое приводит в действие электродвигатель – берется из паспорта). Чтобы электродвигателя хватило с учетом возможных перегрузок привода, угловая скорость, рассчитанная приведенным способом, корректируется в большую сторону на коэффициент 1,5.
При расчете мощности электродвигателя надо делать поправку на тип соединения обмоток статора, от которого зависит значение рабочего тока. В соединениях типа «звезда» ток меньше в 1,73 раза, чем в соединениях «треугольник». Соответственно, для «звезды» показатель тоже надо уменьшать в 1,73 раза.
Расчет мощности электродвигателя для оборудования
Чтобы определить, какой мощности электродвигатель нужен для обслуживания конкретного механизма, надо знать его (механизма) потребляемую мощность. Она обычно указывается для каждой категории установок и приборов, прописывается в паспортной документации и известна производителю. Если фактической информации по показателю нет, ее можно получить:
- по результатам теоретических расчетов;
- эмпирически, использовав результаты многочисленных опытов;
- методом снятия нагрузочных диаграмм, если опытной базы эксплуатации еще не накоплено (оборудование малоизученно), здесь нужны самопишущие приборы;
- через применение нормативов потребления энергии (статистических данных), которые учитывают удельные расходы электрической энергии при создании конкретного продукта.
Когда потребление известно, останется подставить его в формулу следующего вида.
, где:
- Рм – определенная теоретически/эмпирически или паспортная мощность оборудования;
– коэффициент полезного действия промежуточной передачи.
Расчетный показатель используется для выбора по каталогу продукции ПТЦ «Привод». При этом ориентироваться следует на номинальные мощностные показатели электродвигателя с небольшим запасом.
Проверять электрический двигатель по нагрузке или перегреву необходимости нет. Наш производственно-технический центр на этапе контроля качества готовых изделий проводит все испытания и расчеты с максимальным использованием материалов, которые заложены в моделях при номинальном расчете мощности электродвигателя. А вот контроль достаточности момента пуска для некоторых видов подключаемых механизмов может быть полезен. Это в особенности касается устройств с увеличенным сопротивлением трения на старте (транспортеры, рабочие узлы станков металлорезки).
Энергетическая эффективность электродвигателя
Как и у всех электроприборов, потребляющих электрическую энергию (платный ресурс), электродвигатель имеет свой класс энергоэффективности. От этого показателя зависят расходы производства на работу устройства. Он, в свою очередь, зависит от коэффициента полезного действия двигателя и указывается в технической документации. Как показывает практика, даже в средней категории электродвигателей (55 кВт) предпочтение версиям с более высоким классом энергоэффективности позволяет существенно снизить расходы энергии (экономия до 10 тыс. кВт в год).
Вы можете подобрать установку оптимального класса энергоэффективности по каталогу продукции ПТЦ «Привод» – в описании моделей есть вся необходимая информация. Здесь же можно заказать регулятор мощности электродвигателя, который тоже помогает сократить расход энергии и обеспечивает плавную работу устройства без рывков (увеличивает срок его службы).
Содержание
- — В чем измеряется тяговая сила?
- — Как зная силу тяги двигателя и скорость движения машины определить мощность?
- — Как рассчитать силу тяги автомобиля?
- — Какая формула связывает мощность двигателя силу тяги и максимальную скорость?
- — Чему равна мощность двигателя Если сила тяги 1000 ньютонов а скорость движения 20 мс?
- — Как найти мощность имея силу и скорость?
- — Как найти силу реактивной тяги?
- — Когда возникает сила тяги?
В чем измеряется тяговая сила?
Основные единицы, в которых измеряется тяговая сила — это либо тонны, либо килоньютоны.
Как зная силу тяги двигателя и скорость движения машины определить мощность?
Поскольку формула расстояния имеет вид s = v•t, то выражение для работы будет таким: A = Fтяги • v • t. Разделив обе части этого равенства на t, получим A/t = Fтяги • v. Но A/t = N – это мощность двигателя вашего автомобиля, поэтому N = Fтяги • v.
Как рассчитать силу тяги автомобиля?
Рассмотрим силу тяги как сумму двух сил:
- разгоняющей автомобиль с заданным ускорением: F 1 = m ⋅ a , где — масса, — ускорение;
- преодолевающей силу трения: F 2 = μ ⋅ m ⋅ g , где — коэффициент силы трения, — ускорение свободного падения.
Какая формула связывает мощность двигателя силу тяги и максимальную скорость?
Формула : N=А/t.
Чему равна мощность двигателя Если сила тяги 1000 ньютонов а скорость движения 20 мс?
Рассчитаем мощность двигателя автомобиля: N = F*V = 1000*20 = 20000 Вт = 20 кВт. Ответ: Мощность двигателя автомобиля равна 20 кВт.
Как найти мощность имея силу и скорость?
Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:
- P = F ¯ v ¯ = F τ v.
- P = m v v ˙ ( 4 )
- P = M ¯ ω ¯ ( 7 )
Как найти силу реактивной тяги?
Реактивная сила тяги может быть найдена как: R=μu (2.3). Учитывая равенство (2.3) уравнение преобразуем к виду: μu−mg=ma→a=μu−mgm(2.4).
Когда возникает сила тяги?
Касательная сила тяги образуется в месте контакта движущих колёс и рельсов, а сумма всех этих сил есть касательная сила тяги локомотива. Сила тяги на сцепке меньше касательной, так как в этом случае учитывается и сопротивление движению от самого локомотива как повозки.
Интересные материалы:
Как должен быть натянут ремень?
Как должно биться сердце?
Как дома усилить сигнал сотовой связи?
Как достать заклинивший поршень из суппорта?
Как дрифтить на автомате задний привод?
Как Дрифтовать на автомате полный привод?
Как дрифтовать на автомате задний привод?
Как дублировать кадр в Adobe Premiere?
Как дублировать текст?
Как дублировать в Adobe After Effects?
Воспользуемся формулой A=Fs и подставим ее в формулу мощностию Получим: Но v=s/t является скоростью движения. Таким образом, получим зависимость между мощностью и скоростью: Полученный результат имеет большое значение в различных производственных процессах.
Как рассчитать мощность автомобиля?
Для определения мощности двигателя в киловаттах, когда известен крутящий момент, можно по формуле такого вида: P = Mкр * n/9549, где: Mкр – крутящий момент (Нм), n – обороты коленвала (об./мин.), 9549 – коэффициент для перевода оборотов в об/мин.
Как рассчитать мощность тела?
Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа. мощность = работа/время. N = A/t, где N — мощность, A — работа, t — время выполненной работы.
Как найти Мощность если есть сила и скорость?
Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:
- P = F ¯ v ¯ = F τ v.
- P = m v v ˙ ( 4 )
- P = M ¯ ω ¯ ( 7 )
Как определяется величина мощности?
Мо́щность — скалярная физическая величина, характеризующая мгновенную скорость передачи энергии от одной физической системы к другой в процессе её использования и в общем случае определяемая через соотношение переданной энергии к времени передачи.
Как рассчитать киловатты двигателя?
Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида: Ne = Vh * pe * n/120 (кВт), где: Vh — объём двигателя, см³ n — частота вращения, об/мин
Как рассчитать мощность на вес?
Разделите мощность на вес в метрических тоннах. Например, если бы у вас была машина мощностью 400 л. с., которая весила 1,5 метрической тонны, то она имела бы 267 л. с./тонну.
Как определить среднюю мощность двигателя?
Среднюю мощность развиваемую двигателем определим по формуле: P=frac{A}{t}(1). Где: А – работа совершенная двигателем, t – время движения.
Как можно измерить мощность человека?
Измерение мощности человека
- 1 — Измерьте свою массу m с помощью взвешивания. m = 63.5 кг
- 2 — Измерьте промежуток времени t, за который вы не спеша поднимаетесь на несколько этажей. …
- 3 — Измерьте рулеткой высоту одного этажа. …
- 4 — Вычислите мощность, развиваемую вами при подъеме. …
- 5 — Измерьте свою мощность, когда вы взбегаете по лестнице.
Как найти мощность двигателя автомобиля физика?
Мощность двигателя автомобиля определяется силой тяги и скоростью: N * = F тяги v cos α , где F тяги — величина силы тяги двигателя автомобиля; v — модуль скорости автомобиля при заданной мощности; α = 0° — угол между векторами силы тяги и скорости.
Как сила влияет на скорость?
Приложение силы обусловливает изменение скорости тела или появление деформаций и механических напряжений. … Деформация может возникать как в самом теле, так и в фиксирующих его объектах — например, пружинах.
Как найти мощность зная силу тока и напряжение?
МОЩНОСТЬ = СИЛА ТОКА * НАПРЯЖЕНИЕ, то есть ВАТТЫ = АМПЕРЫ * ВОЛЬТЫ.
Как определяется механическая мощность формула?
Для формулы механической мощности применяется следующее выражение: N = ΔA/Δt. В числителе формулы затраченная работа, в знаменателе – временной промежуток ее совершения. Это отношение и называется мощностью.
Какой единственный параметр мощности?
Можно сказать, что мощность – это скорость выполнения работы. Например, трактор за секунду накосит больше сена, чем газонокосилка. Основная единица измерения мощности – ватт (Вт). Численно она характеризует собой работу в один джоуль (Дж), совершенную за одну секунду.
Сколько равен 1 ватт?
В Международной системе единиц (СИ) единицей измерения мощности является ватт [Вт],[W], равный одному джоулю [Дж],[J], делённому на секунду. 1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль.
Как-то давно интересовался разницей мощности и крутящего момента и что важнее для разгона, а что для максимальной скорости и вот снова наткнулся на эту хорошую и подробную(на мой взгляд) статейку из журнала Автоцентр
Что интересует людей, изучающих технические характеристики того или иного автомобиля? В первую очередь мощность, затем расход топлива и максимальная скорость. О крутящем моменте вспоминают редко. А зря.
Тяговые возможности моторов еще с момента рождения самоходных колясок принято оценивать по мощности, которая выражается в лошадиных силах. Из-за отсутствия в те далекие времена методики расчета и определения мощности до 1906/1907 годов эта характеристика двигателя имела не вполне четкое обозначение – она показывала приблизительную мощность – «от» и «до», например, от 15 до 20 л.с.
С 1907 года этот неточный показатель мощности разделили на два значения, например, 6/22 л.с. В первую цифру заложили значение налоговой ставки, а во вторую – мощность. Введенная налоговая лошадиная сила соответствовала определенному значению рабочего объема двигателя: 261,8 куб. см для четырехтактных моторов и 174,5 куб. см – для двухтактных. Появление такого способа установления налоговых ставок было обусловлено зависимостью рабочего объема двигателя от количества вырабатываемой им энергии и потребления топлива. Обозначать мощность в киловаттах (кВт), согласно международной системе измерений СИ, начали значительно позже.
На самом деле «мощность» отражает тяговые возможности двигателя лишь косвенно. С этим согласятся те, кто ездил на автомобилях-одноклассниках с двигателями приблизительно равной мощности и объема. Они наверняка заметили, что одни автомобили достаточно резвы начиная с низких оборотов, другие любят только высокие обороты, а на малых ведут себя достаточно вяло.
Много вопросов возникает у тех, кто после легковушки с 110-120-сильным бензиновым мотором пересел за руль такой же машины, но с дизельным двигателем мощностью всего 70-80 л.с. По динамике разгона, не используя спортивный режим (высокие обороты), на первый взгляд маломощный «дизель» с легкостью обойдет своего бензинового брата. В чем же здесь дело?
Вся эта неразбериха вызвана тем, что в каждом случае такая величина как сила тяги (FT, Н), приложенная к ведущим колесам, будет разной. Объяснение этому легко найти из формулы: FT=Мкр•i•h/r, где Мкр-крутящий момент двигателя, i-передаточное число трансмиссии, h – КПД трансмиссии (при продольном расположении двигателя h=0,88-0,92, при поперечном – h=0,91-0,95), r – радиус качения колеса. Из формулы видно, что чем больше крутящий момент двигателя и передаточное число, и чем меньше потери в трансмиссии (т.е. чем выше ее КПД) и радиус ведущих колес, тем больше сила тяги. Радиус колес, передаточное число и КПД трансмиссии у автомобилей-одноклассников очень схожи, поэтому на силу тяги они влияют не в такой степени как крутящий момент двигателя.
Если в формулу подставить реальные цифры, то сила тяги на каждом ведущем колесе, например, автомобиля Volkswagen Golf IV с 75-сильным мотором, развивающим крутящий момент 128 Н•м, будет равна 441 Н или 45 кГ•с. Правда, эти значения действительны, когда частота вращения коленчатого вала двигателя (3300 об/мин) соответствует максимальному крутящему моменту.
Что такое крутящий момент
Разобраться, что такое крутящий момент, можно на простом примере. Возьмем палку и один ее конец зажмем в тисках. Если надавить на другой конец палки, на нее начнет воздействовать крутящий момент (Мкр). Он равен силе, приложенной к рычагу, умноженной на длину плеча силы. В цифрах это выглядит так: если на рычаг длиной один метр подвесить 10-килограммовый груз, появится крутящий момент величиной 10 кг•м. В общепринятой системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м. Из этого следует, что получить больший крутящий момент можно двумя путями – увеличив длину рычага или вес груза.
В двигателе внутреннего сгорания нет палок и грузов, а вместо них имеется кривошипно-шатунный механизм с поршнями. Крутящий момент здесь получают благодаря сгоранию горючей смеси, которая при этом расширяется и толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (удвоенное значение радиуса кривошипа).
Примерный расчет крутящего момента двигателя выглядит так. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Чтобы этот показатель стал больше, радиус кривошипа следует увеличить или сделать так, чтобы поршень давил на шатунную шейку с большей силой. Увеличивать радиус кривошипа до бесконечности нельзя, так как размер двигателя тоже придется увеличивать в ширину и в высоту. Возрастают и силы инерции, требующие упрочения конструкции или уменьшения максимальных оборотов. Появляются при этом и другие негативные факторы. В такой ситуации у конструкторов двигателей остался только один выход – увеличить силу, с которой поршень приводит в движение коленчатый вал. Для этого топливно-воздушную смесь в камере сгорания необходимо сжечь более качественно и большее количество. Достигают этого путем увеличения рабочего объема, диаметра цилиндров и их количества, а также улучшения степени наполнения цилиндров топливно-воздушной смесью, оптимизации процесса сгорания, повышения степени сжатия. Подтверждает это и расчетная формула крутящего момента: Мкр=VH •pe / 0,12566 (для четырехтактного двигателя), где VH – рабочий объем двигателя (л), pe – среднее эффективное давление в камере сгорания (бар).
Получить на коленчатом валу двигателя максимальный крутящий момент удается не на всех оборотах. У разных двигателей пик максимального крутящего момента достигается на различных режимах – у одних он больше на малых оборотах (в диапазоне 1800-3000 об/мин), у других – на более высоких (в диапазоне 3000-4500 об/мин). Объясняется это тем, что в зависимости от конструкции впускного тракта и фаз газораспределения эффективное наполнение цилиндров топливно-воздушной смесью происходит только при определенных оборотах.
Кто сильнейший?
Большим крутящим моментом обладают многоцилиндровые двигатели, моторы с турбо- и механическим наддувом. А чемпионами по величине крутящего момента являются «дизели». Многие из них обеспечивают автомобилю высокую динамику уже при 800-1000 об/мин. Если же стать обладателем «дизеля», нет возможности, то подбирать машину лучше с двигателем, у которого максимальный крутящий момент развивается при более низких оборотах. Такой автомобиль легче разгонять. В противном случае двигатель придется «насиловать» высокими оборотами, при которых и расход топлива выше и детали изнашиваются более интенсивно.
Те, кто следит за тенденциями развития автомобилестроения, могли заметить, что создатели двигателей стремятся «выровнять» кривую крутящего момента, т.е. сделать его практически одинаковым во всем диапазоне оборотов. Делается это для того, чтобы исключить провалы на режимах, когда величина крутящего момента еще или уже не позволяет передать на колеса большую силу тяги.
Один из таких моторов – 2,7-литровый V-образный шестицилиндровый турбированный двигатель Audi. Этот 250-сильный двигатель развивает огромный крутящий момент 350 Н•м в широком диапазоне оборотов – от 1800 до 4500. Другой подобный, хотя и менее мощный двигатель предлагает концерн Volkswagen. Его 1,8-литровый 180-сильный турбированный мотор развивает крутящий момент 228 Н•м в диапазоне оборотов от 2000 до 5000. Ездить на машинах с такими двигателями сплошное удовольствие – независимо от оборотов при нажатии на педаль «газа» автомобиль одинаково динамичен (приемист) и не только позволяет любителям спортивной езды полностью реализовать свои желания, но и при спокойной езде способствует уверенным обгонам, перестроениям и движению при полной загрузке.
Повышение и «выравнивание» крутящего момента в современных двигателях обеспечивают различными путями: устанавливают по три, четыре и даже пять клапанов на цилиндр, механизмы изменений фаз газораспределения, впускные тракты делают с изменяемой длиной, крыльчатки турбин делают керамическими и регулируемыми с изменяемым углом наклона лопаток и т.д. Вся эта модернизация направлена на совершенствование процессов наполнения цилиндров свежим зарядом. Наибольшего результата в этом деле добились инженеры SAAB. В свой пока еще экспериментальный двигатель SAAB Variable Compression объемом всего 1,6 л они умудрились заложить мощность, равную 225 л.с. и крутящий момент 305 Н•м. Добиться столь высоких показателей шведским моторостроителям удалось благодаря возможности изменения объема камеры сгорания и соответственно степени сжатия (от 14:1 до 8:1) в зависимости от режимов работы двигателя. Получению этих характеристик способствует и система наддува воздуха под высоким давлением – 2,8 атм., четыре клапана на цилиндр и система промежуточного охлаждения воздуха (Intercooler) (см. «Автоцентр» №14 ‘2000).
Мощность
А как же обстоит дело с таким популярным показателем как мощность? Здесь ситуация складывается следующим образом. Наверное, многие замечали, что рядом с указываемой в характеристике мощностью всегда стоит значение оборотов коленчатого вала, при которых двигатель развивает эту мощность. Как правило, эти обороты приближены к максимальным. Во всех других режимах двигатель выдает только некоторую часть указанной мощности.
Почему так происходит, хорошо видно из формулы для вычисления мощности двигателя (кВт) – N=Mкрn/9549, где Mкр – средний крутящий момент двигателя (Н.м), n – обороты коленчатого вала двигателя (об/мин). Из формулы следует, что на значение мощности влияют величины крутящего момента и обороты двигателя. Но так как численные значения оборотов двигателя в десятки раз превышают величину крутящего момента (например, 3000 об/мин и 120 Н.м), то и на изменение мощности они будут влиять в большей степени. Это еще одно доказательство того, что силу мотора мощность отражает косвенно.
Вышесказанное подтверждается следующим примером. Когда мы едем по трассе с постоянной скоростью, приложенная к ведущим колесам автомобиля сила тяги расходуется на преодоление всевозможных сил сопротивления движению (аэродинамическую, качению колес и т.д.) и трение в различных механизмах. Но когда возникает потребность резко ускориться для обгона, сделать это удается не всегда, так как появляется необходимость преодолевать появившиеся силы инерции. В этом случае говорят, что у двигателя не хватает мощности. Но мощность здесь ни при чем, так как со всеми силами сопротивления движению борется сила тяги, зависящая от величины крутящего момента двигателя. Чтобы увеличить силу тяги, необходим запас крутящего момента. Величина этого запаса и влияет на то, как быстро сможет ускориться автомобиль.
Для получения более резкого ускорения можно, конечно, и переключиться на пониженную передачу, когда передаточное число трансмиссии станет большим и сила тяги на колесах увеличится. Однако при этом есть опасность «перекрутить» двигатель, да и дальнейшего ускорения мы можем не получить, так как режим работы двигателя может быть приближен к экстремальному. Аналогичная ситуация складывается и на подъемах, когда запас крутящего момента одних двигателей позволяет продолжить движение, а у других его отсутствие требует перехода на пониженную передачу.
Вывод отсюда напрашивается следующий: какой бы мощностью ни обладал двигатель, а способность разгонять автомобиль и «вытаскивать» его на подъем полностью возложена на крутящий момент. Возникает вполне справедливый вопрос: что же означает мощность? Это универсальный показатель, в который заложили целый ряд характеристик автомобильного двигателя – энергоемкость, потребление топлива, тяговая способность и т.д.
Юрий Дацык