iSopromat.ru
Пример решения задачи по определению импульса сил, действующих, за определенное время, на материальную точку заданной массы, движущуюся по окружности с постоянной скоростью.
Задача
Материальная точка массой m=10 г движется по окружности с постоянной скоростью 40 см/с.
Найти импульс сил, действующих на точку за время прохождения точкой половины окружности (рисунок 2.3).
Импульс тела, закон сохранения импульса
теория по физике 🧲 законы сохранения
Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:
Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).
Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).
Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.
Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:
p = mv = 0,01∙300 = 3 (кг∙м/с)
Относительный импульс
Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:
p 1отн2— импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.
Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.
Сначала переведем единицы измерения в СИ:
Изменение импульса тела
∆ p — изменение импульса тела, p — конечный импульс тела, p 0 — начальный импульс тела
Частные случаи определения изменения импульса тела
Абсолютно неупругий удар
Конечный импульс тела:
Модуль изменения импульса тела равен модулю его начального импульса:
Абсолютно упругий удар
Модули конечной и начальной скоростей равны:
Модули конечного и начального импульсов равны:
Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:
Пуля пробила стенку
Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:
Радиус-вектор тела повернул на 180 градусов
Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:
Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали
Модули конечной и начальной скоростей равны:
Модули конечного и начального импульсов равны:
Угол падения равен углу отражения:
Модуль изменения импульса в этом случае определяется формулой:
Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.
В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.
Вычисляем:
Второй закон Ньютона в импульсном виде
Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:
Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:
Подставим это выражение во второй закон Ньютона и получим:
F ∆t — импульс силы, ∆ p — изменение импульса тела
Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?
Из формулы импульса силы выразим модуль силы:
Реактивное движение
Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.
Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.
Второй закон Ньютона в импульсном виде:
Второй закон Ньютона для ракеты:
Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.
Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:
Выразим ускорение из второго закона Ньютона для ракеты:
Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Отсюда ускорение равно:
Выразим формулу для скорости и сделаем вычисления:
Суммарный импульс системы тел
Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:
Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.
Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:
Закон сохранения импульса
Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.
Закон сохранения импульса в проекции на горизонтальную ось
Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:
- положителен, если его направление совпадает с направлением оси ОХ;
- отрицателен, если он направлен противоположно направлению оси ОХ.
При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.
Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)
Неупругое столкновение с неподвижным телом | m1v1 = (m1 + m2)v |
Неупругое столкновение движущихся тел | ± m1v1 ± m2v2 = ±(m1 + m2)v |
В начальный момент система тел неподвижна | 0 = m1v’1 – m2v’2 |
До взаимодействия тела двигались с одинаковой скоростью | (m1 + m2)v = ± m1v’1 ± m2v’2 |
Сохранение проекции импульса
В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.
Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.
Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:
Отсюда скорость равна:
Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:
Алгоритм решения
Решение
Запишем исходные данные:
Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:
Δ p = √ p 2 1 + p 2 2
Подставим известные данные:
Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5
pазбирался: Алиса Никитина | обсудить разбор | оценить
На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?
а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно
б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено
в) в интервалах 0–1 и 1–2 двигалось равномерно
г) в интервалах 0–1 и 1–2 двигалось равноускорено
§ 2.7. Момент импульса
1. Пусть материальная точка массой т движется по окружности радиусом г со скоростью v (рис. 2.5), ее импульс р = т [см. (2.3)]. Моментом импульса L материальной точки относительно центра О называют произведение модуля ее импульса на радиус окружности:
Момент импульса L — это вектор, перпендикулярный плоскости, в которой лежат импульс р и радиус-вектор г (см. рис. 2.5).
2. Пусть на материальную точку массой т действует сила F, составляющая угол а с радиусом окружности г (рис. 2.6). Разложим эту силу на две составляющие: нормальную F„ = F cos а и тангенциальную FX = F sin а. Нормальная составляющая силы сообщает материальной точке нормальное (центростремительное) ускорение, вызывая поворот тела, но не меняя модуля скорости; тангенциальная составляющая сообщает материальной точке тангенциальное ускорение, т. е. меняет модуль скорости, не меняя ее направления. Итак, согласно второму закону Ньютона (2.13),
3. Пусть модуль момента импульса L [см. (2.24)] изменяется в течение промежутка времени At; при этом следует учесть, что здесь радиус и масса — величины постоянные. Тогда можно записать:
представляющее собой произведение силы F на плечо d (см. рис. 2.6), называют моментом силы. Из (2.25) и (2.26) получим
изменение момента импульса за единицу времени равно моменту силы.
Этот результат аналогичен выражению (2.12), согласно которому изменение импульса за единицу времени равно силе. Поэтому выражение (2.27) называют иногда вторым законом Ньютона для вращательного движения.
4. Если суммарный момент сил, действующих на систему, равен нулю, то изменение вектора момента импульса за единицу времени, согласно (2.27), тоже равно нулю, а это означает, что момент импульса является постоянной величиной, т. е. не меняется ни по модулю, ни по направлению. Оказывается, что наряду с законом сохранения импульса (см. § 2.2) справедлив закон сохранения момента импульса, который формулируется так:
Суммарный момент импульса замкнутой системы в результате действия внутренних сил не меняется.
Закон сохранения момента импульса является столь же фундаментальным законом природы, как и закон сохранения импульса. Справедливость этих законов подтверждается всей совокупностью физических знаний.
Таким образом, если внешние силы не действуют на уже вращающееся тело, иными словами, момент сил М= 0, то AL = 0, т. е. вектор момента импульса L уже вращающегося тела не изменяется ни по модулю, ни по направлению.
Так, можно наблюдать вращающихся конькобежца или балерину. Это значит, что у них вектор момента импульса вдоль оси симметрии остается постоянным. При отсутствии трения их вращение продолжалось бы бесконечно долго.
На этом же принципе работает гироскоп. Гироскопом называют всякое тело вращения, которое вращается вокруг точки, лежащей на оси симметрии тела.
Гироскоп нашел широкое применение на практике. Например, гироскоп на спутнике сохраняет в космосе его положение относительно Солнца; гироскоп на корабле до некоторой степени успокаивает его качку; установив ось гироскопа в направлении север—юг, имеют так называемый гирокомпас. Используя гирокомпас, можно поддерживать заданное направление корабля («авторулевой») или самолета («автопилот»). Гироскопом является сам снаряд или пуля, вылетающие из винторезного ствола. В полете они сохраняют направление оси симметрии. В боевых морских торпедах устанавливают гироскоп для сохранения направления на цель после их пуска и т. д.
http://studref.com/690414/matematika_himiya_fizik/moment_impulsa
Импульс
-
Второй закон Ньютона в импульсной форме
-
Пример вычисления силы
-
Импульс системы тел
-
Закон сохранения импульса
-
Закон сохранения проекции импульса
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: импульс тела, импульс системы тел, закон сохранения импульса.
Импульс тела — это векторная величина, равная произведению массы тела на его скорость:
.
Специальных единиц измерения импульса нет. Размерность импульса — это просто произведение размерности массы на размерность скорости:
.
Почему понятие импульса является интересным? Оказывается, с его помощью можно придать второму закону Ньютона несколько иную, также чрезвычайно полезную форму.
к оглавлению ▴
Второй закон Ньютона в импульсной форме
Пусть — равнодействующая сил, приложенных к телу массы
. Начинаем с обычной записи второго закона Ньютона:
.
С учётом того, что ускорение тела равно производной вектора скорости, второй закон Ньютона переписывается следующим образом:
.
Вносим константу под знак производной:
.
Как видим, в левой части получилась производная импульса:
. ( 1)
Соотношение ( 1) и есть новая форма записи второго закона Ньютона.
Второй закон Ньютона в импульсной форме. Производная импульса тела есть равнодействующая приложенных к телу сил.
Можно сказать и так: результирующая сила, действующая на тело, равна скорости изменения импульса тела.
Производную в формуле ( 1) можно заменить на отношение конечных приращений:
. ( 2)
В этом случае есть средняя сила, действующая на тело в течение интервала времени
. Чем меньше величина
, тем ближе отношение
к производной
, и тем ближе средняя сила
к своему мгновенному значению в данный момент времени.
В задачах, как правило, интервал времени достаточно мал. Например, это может быть время соударения мяча со стенкой, и тогда
— средняя сила, действующая на мяч со стороны стенки во время удара.
Вектор в левой части соотношения ( 2) называется изменением импульса за время
. Изменение импульса — это разность конечного и начального векторов импульса. А именно, если
— импульс тела в некоторый начальный момент времени,
— импульс тела спустя промежуток времени
, то изменение импульса есть разность:
.
Подчеркнём ещё раз, что изменение импульса — это разность векторов (рис. 1):
Рис. 1. Изменение импульса |
Пусть, например, мяч летит перпендикулярно стенке (импульс перед ударом равен ) и отскакивает назад без потери скорости (импульс после удара равен
). Несмотря на то, что импульс по модулю не изменился (
), изменение импульса имеется:
.
Геометрически эта ситуация показана на рис. 2:
Рис. 2. Изменение импульса при отскоке назад |
Модуль изменения импульса, как видим, равен удвоенному модулю начального импульса мяча: .
Перепишем формулу ( 2) следующим образом:
, ( 3)
или, расписывая изменение импульса, как и выше:
.
Величина называется импульсом силы. Специальной единицы измерения для импульса силы нет; размерность импульса силы равна просто произведению размерностей силы и времени:
.
(Обратите внимание, что оказывается ещё одной возможной единицей измерения импульса тела.)
Словесная формулировка равенства ( 3) такова: изменение импульса тела равно импульсу действующей на тело силы за данный промежуток времени. Это, разумеется, снова есть второй закон Ньютона в импульсной форме.
к оглавлению ▴
Пример вычисления силы
В качестве примера применения второго закона Ньютона в импульсной форме давайте рассмотрим следующую задачу.
Задача. Шарик массы г, летящий горизонтально со скоростью
м/с, ударяется о гладкую вертикальную стену и отскакивает от неё без потери скорости. Угол падения шарика (то есть угол между направлением движения шарика и перпендикуляром к стене) равен
. Удар длится
с. Найти среднюю силу,
действующую на шарик во время удара.
Решение. Покажем прежде всего, что угол отражения равен углу падения, то есть шарик отскочит от стены под тем же углом (рис. 3).
Рис. 3. К задаче (вид сверху) |
Тут всё дело в том, что стена — гладкая. Это значит, что трения между шариком и стеной нет. Следовательно, со стороны стены на шарик действует единственная сила — сила упругости, направленная перпендикулярно стене (рис. 4).
Рис. 4. К задаче |
Согласно ( 3) имеем: . Отсюда следует, что вектор изменения импульса сонаправлен с вектором
, то есть направлен перпендикулярно стене в сторону отскока шарика (рис. 5).
Рис. 5. К задаче |
Векторы и
равны по модулю
(так как скорость шарика не изменилась). Поэтому треугольник, составленный из векторов ,
и
, является равнобедренным. Значит, угол между векторами
и
равен
, то есть угол отражения действительно равен углу падения.
Теперь заметим вдобавок, что в нашем равнобедренном треугольнике есть угол (это угол падения); стало быть, данный треугольник — равносторонний. Отсюда:
.
И тогда искомая средняя сила, действующая на шарик:
.
к оглавлению ▴
Импульс системы тел
Начнём с простой ситуации системы двух тел. А именно, пусть имеются тело 1 и тело 2 с импульсами и
соответственно. Импульс
системы данных тел — это векторная сумма импульсов каждого тела:
.
Оказывается, для импульса системы тел имеется формула, аналогичная второму закону Ньютона в виде ( 1). Давайте выведем эту формулу.
Все остальные объекты, с которыми взаимодействуют рассматриваемые нами тела 1 и 2, мы будем называть внешними телами. Силы, с которыми внешние тела действуют на тела 1 и 2, называем внешними силами. Пусть — результирующая внешняя сила, действующая на тело 1. Аналогично
— результирующая внешняя сила, действующая на тело 2 (рис. 6).
Рис. 6. Система двух тел |
Кроме того, тела 1 и 2 могут взаимодействовать друг с другом. Пусть тело 2 действует на тело 1 с силой . Тогда тело 1 действует на тело 2 с силой
. По третьему закону Ньютона силы
и
равны по модулю и противоположны по направлению:
. Силы
и
— это внутренние силы, действующие в системе.
Запишем для каждого тела 1 и 2 второй закон Ньютона в форме ( 1):
, ( 4)
. ( 5)
Сложим равенства ( 4) и ( 5):
.
В левой части полученного равенства стоит сумма производных, равная производной суммы векторов и
. В правой части имеем
в силу третьего закона Ньютона:
.
Но — это импульс системы тел 1 и 2. Обозначим также
— это результирующая внешних сил, действующих на систему. Получаем:
. ( 6)
Таким образом, скорость изменения импульса системы тел есть равнодействующая внешних сил, приложенных к системе. Равенство ( 6), играющее роль второго закона Ньютона для системы тел, мы и хотели получить.
Формула ( 6) была выведена для случая двух тел. Теперь обобщим наши рассуждения на случай произвольного количества тел в системе.
Импульсом системы тел тел называется векторная сумма импульсов всех тел, входящих в систему. Если система состоит из тел, то импульс этой системы равен:
.
Дальше всё делается совершенно так же, как и выше (только технически это выглядит несколько сложнее). Если для каждого тела записать равенства, аналогичные ( 4) и ( 5), а затем все эти равенства сложить, то в левой части мы снова получим производную импульса системы, а в правой части останется лишь сумма внешних сил (внутренние силы, попарно складываясь, дадут нуль ввиду третьего закона Ньютона). Поэтому равенство ( 6) останется справедливым и в общем случае.
к оглавлению ▴
Закон сохранения импульса
Система тел называется замкнутой, если действия внешних тел на тела данной системы или пренебрежимо малы, или компенсируют друг друга. Таким образом, в случае замкнутой системы тел существенно лишь взаимодействие этих тел друг с другом, но не с какими-либо другими телами.
Равнодействующая внешних сил, приложенных к замкнутой системе, равна нулю: . В этом случае из ( 6) получаем:
.
Но если производная вектора обращается в нуль (скорость изменения вектора равна нулю), то сам вектор не меняется со временем:
.
Закон сохранения импульса. Импульс замкнутой системы тел остаётся постоянным с течением времени при любых взаимодействиях тел внутри данной системы.
Простейшие задачи на закон сохранения импульса решаются по стандартной схеме, которую мы сейчас покажем.
Задача. Тело массы г движется со скоростью
м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы
г со скоростью
м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.
Решение. Ситуация изображена на рис. 7. Ось направим в сторону движения первого тела.
Рис. 7. К задаче |
Поскольку поверхность гладкая, трения нет. Поскольку поверхность горизонтальная, а движение происходит вдоль неё, сила тяжести и реакция опоры уравновешивают друг друга:
,
.
Таким образом, векторная сумма сил, приложенных к системе данных тел, равна нулю. Это значит, что система тел замкнута. Стало быть, для неё выполняется закон сохранения импульса:
. ( 7)
Импульс системы до удара — это сумма импульсов тел:
.
После неупругого удара получилось одно тело массы , которое движется с искомой скоростью
:
.
Из закона сохранения импульса ( 7) имеем:
.
Отсюда находим скорость тела, образовавшегося после удара:
.
Переходим к проекциям на ось :
.
По условию имеем: м/с,
м/с, так что
.
Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси . Искомая скорость:
м/с.
к оглавлению ▴
Закон сохранения проекции импульса
Часто в задачах встречается следующая ситуация. Система тел не является замкнутой (векторная сумма внешних сил, действующих на систему, не равна нулю), но существует такая ось , сумма проекций внешних сил на ось
равна нулю в любой момент времени. Тогда можно сказать, что вдоль данной оси наша система тел ведёт себя как замкнутая, и проекция импульса системы на ось
сохраняется.
Покажем это более строго. Спроектируем равенство ( 6) на ось :
.
Если проекция равнодействующей внешних сил обращается в нуль, , то
.
Следовательно, проекция есть константа:
.
Закон сохранения проекции импульса. Если проекция на ось суммы внешних сил, действующих на систему, равна нулю, то проекция
импульса системы не меняется с течением времени.
Давайте посмотрим на примере конкретной задачи, как работает закон сохранения проекции импульса.
Задача. Мальчик массы , стоящий на коньках на гладком льду, бросает камень массы
со скоростью
под углом
к горизонту. Найти скорость
, с которой мальчик откатывается назад после броска.
Решение. Ситуация схематически показана на рис. 8. Мальчик изображён прямогольником.
Рис. 8. К задаче |
Импульс системы «мальчик + камень» не сохраняется. Это видно хотя бы из того, что после броска появляется вертикальная составляющая импульса системы (а именно, вертикальная составляющая импульса камня), которой до броска не было.
Стало быть, система, которую образуют мальчик и камень, не замкнута. Почему? Дело в том, что векторная сумма внешних сил не равна нулю во время броска. Величина
больше, чем сумма
, и за счёт этого превышения как раз и появляется вертикальная компонента импульса системы.
Однако внешние силы действуют только по вертикали (трения нет). Стало быть, сохраняется проекция импульса на горизонтальную ось . До броска эта проекция была равна нулю. Направляя ось
в сторону броска (так что мальчик поехал в направлении отрицательной полуоси), получим:
,
откуда
.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Импульс» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
07.05.2023
Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:
p = mv
Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).
Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).
Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.
Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:
10 г = 0,01 кг
Импульс равен:
p = mv = 0,01∙300 = 3 (кг∙м/с)
Относительный импульс
Определение
Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:
p1отн2 = m1v1отн2 = m1(v1 – v2)
p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.
Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.
Сначала переведем единицы измерения в СИ:
15 т = 15000 кг
p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)
Изменение импульса тела
ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:
∆p = p – p0 = p + (– p0)
∆p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела
Частные случаи определения изменения импульса тела
Абсолютно неупругий удар |
|
|
Конечная скорость после удара:
v = 0. Конечный импульс тела: p = 0. Модуль изменения импульса тела равен модулю его начального импульса: ∆p = p0. |
Абсолютно упругий удар |
|
|
Модули конечной и начальной скоростей равны: v = v0. Модули конечного и начального импульсов равны: p = p0. Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса: ∆p = 2p0 = 2p. |
Пуля пробила стенку |
|
|
Модуль изменения импульса тела равен разности модулей начального и конечного импульсов: ∆p = p0 – p = m(v0 – v) |
Радиус-вектор тела повернул на 180 градусов |
|
|
Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса: ∆p = 2p0 = 2p = 2mv0 |
Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали |
|
|
Модули конечной и начальной скоростей равны: v = v0. Модули конечного и начального импульсов равны: p = p0. Угол падения равен углу отражения: α = α’ Модуль изменения импульса в этом случае определяется формулой: |
Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.
В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.
Вычисляем:
Второй закон Ньютона в импульсном виде
Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:
Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:
Подставим это выражение во второй закон Ньютона и получим:
Или:
F∆t — импульс силы, ∆p — изменение импульса тела
Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?
Из формулы импульса силы выразим модуль силы:
Реактивное движение
Определение
Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.
Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.
Второй закон Ньютона в импульсном виде:
Реактивная сила:
Второй закон Ньютона для ракеты:
Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.
Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:
V = a∆t
Выразим ускорение из второго закона Ньютона для ракеты:
Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:
Отсюда ускорение равно:
Выразим формулу для скорости и сделаем вычисления:
Суммарный импульс системы тел
Определение
Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:
Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.
Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:
Закон сохранения импульса
Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:
Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.
Закон сохранения импульса в проекции на горизонтальную ось
Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:
- положителен, если его направление совпадает с направлением оси ОХ;
- отрицателен, если он направлен противоположно направлению оси ОХ.
Важно!
При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.
Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)
Неупругое столкновение с неподвижным телом | m1v1 = (m1 + m2)v |
Неупругое столкновение движущихся тел | ± m1v1 ± m2v2 = ±(m1 + m2)v |
В начальный момент система тел неподвижна | 0 = m1v’1 – m2v’2 |
До взаимодействия тела двигались с одинаковой скоростью | (m1 + m2)v = ± m1v’1 ± m2v’2 |
Сохранение проекции импульса
В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.
Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.
Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:
m2v2 = (m1 + m2)v
Отсюда скорость равна:
Задание EF17556
Импульс частицы до столкновения равен −p1, а после столкновения равен −p2, причём p1 = p, p2 = 2p, −p1⊥−p2. Изменение импульса частицы при столкновении Δ−p равняется по модулю:
а) p
б) p√3
в) 3p
г) p√5
Алгоритм решения
1.Записать исходные данные.
2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.
3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.
4.Подставить известные значения и вычислить.
Решение
Запишем исходные данные:
• Модуль импульса частицы до столкновения равен: p1 = p.
• Модуль импульса частицы после столкновения равен: p2 = 2p.
• Угол между вектором начального и вектором конечного импульса: α = 90о.
Построим чертеж:
Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:
Δp=√p21+p22
Подставим известные данные:
Δp=√p2+(2p)2=√5p2=p√5
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17695
На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?
а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно
б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено
в) в интервалах 0–1 и 1–2 двигалось равномерно
г) в интервалах 0–1 и 1–2 двигалось равноускорено
Алгоритм решения
1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.
2.Сделать вывод о том, как зависит характер движения от импульса.
3.На основании вывода и анализа графика установить характер движения тела на интервалах.
Решение
Импульс тела есть произведение массы тела на его скорость:
p = mv
Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.
На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.
Верный ответ: б.
Ответ: б
pазбирался: Алиса Никитина | обсудить разбор
Задание EF22730
Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.
Алгоритм решения
1.Записать исходные данные.
2.Записать закон сохранения импульса применительно к задаче.
3.Записать формулу кинетической энергии тела.
4.Выполнить общее решение.
5.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Масса камня: m1 = 3 кг.
• Масса тележки с песком: m2 = 15 кг.
• Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.
Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:
m1v1+m2v2=(m1+m2)v
Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:
m1v1cosα=(m1+m2)v
Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:
Ek=(m1+m2)v22
Отсюда скорость равна:
v=√2Ekm1+m2
Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:
v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·√2Ekm1+m2
Подставим известные данные и произведем вычисления:
v1=(3+15)3cos60o·√2·2,253+15=12·√0,25=12·0,5=6 (мс)
Ответ: 6
pазбирался: Алиса Никитина | обсудить разбор
Задание EF22520
Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс −p1
. Импульс второго осколка изображается вектором:
а) −−→AB
б) −−→BC
в) −−→CO
г) −−→OD
Алгоритм решения
1.Сформулировать закон сохранения импульса и записать его в векторной форме.
2.Применить закон сохранения импульса к задаче.
3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.
Решение
Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:
−p1+−p2=−p′
1+−p′2
Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:
−p0=−p1+−p2
Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:
−p2=−p0−−p1
Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — −−→AB.
Ответ: а
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18122
Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?
Ответ:
а) 27 г
б) 64 г
в) 81 г
г) 100 г
Алгоритм решения
1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.
3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.
4.Выполнить решение задачи в общем виде.
5.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Масса пластилиновой пули: m = 9 г.
• Скорость пластилиновой пули: v = 20 м/с.
• Максимальный угол отклонения нити: α = 60°.
Переведем единицы измерения величин в СИ:
Сделаем чертеж:
Нулевой уровень — точка А.
После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:
mv=(m+M)V
После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.
Закон сохранения энергии для точки В:
(m+M)V22=(m+M)gh
V22=gh
Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:
V=√2glcosα
Подставим это выражение в закон сохранения импульса для точки А и получим:
Выразим массу груза:
Ответ: в
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 20.2k
Импульс. Изменение импульса материальной точки
План урока
- Импульс тела. Импульс силы. Изменение импульса
Цели урока
- Знать: понятие и формулы импульса материальной точки и импульса силы; закон изменения импульса материальной точки
- Уметь рассчитывать импульс тела и импульс силы
Разминка
- Как изменяется скорость тела, если на него начинает действовать постоянная сила?
- Как определить изменение скорости тела, если неизвестны силы, действующие на тело?
- Что такое импульс тела?
Импульс тела. Импульс силы. Изменение импульса
Любое тело, обладающее массой и скоростью, имеет импульс p→, который рассчитывается по следующей формуле:
p→=m·v→,
где m [кг] – масса тела;
v [м/с] – скорость тела;
p [кг ∙ м/с] – импульс тела.
Импульс тела
– это векторная физическая величина, равная произведению массы на скорость: p→=m·v→.
Импульс – векторная физическая величина, направление вектора p→ совпадает с направлением вектора скорости v→.
В СИ единицей измерения импульса тела является килограмм-метр в секунду (кг ∙ м/с).
Понятно, что изменение импульса материальной точки ∆p напрямую связано с изменением скорости ∆v, следовательно, и с ускорением тела a.
По определению ускорение находится по следующей формуле:
a=v-v0∆t.
Согласно второму закону Ньютона ускорение тела есть отношение силы, действующей на тело, к массе этого тела:
a=Fm.
Объединим формулы и выразим силу F:
F=m·a=m·v-v0∆t=m·v-m·v0∆t=p-p0∆t=∆p∆t.
Таким образом, изменение импульса равно:
∆p=F·∆t.
или в векторной форме
∆p→=F→·∆t.
Данное выражение называется законом изменения импульса материальной точки в инерциальной системе отсчета или вторым законом Ньютона в импульсной форме.
Закон изменения импульса материальной точки
: в инерциальной системе отсчета изменение импульса ∆p материальной точки за промежуток времени ∆t равно произведению суммы всех сил F, действующих на тело, на данный промежуток времени: ∆p→=F→·∆t.
Произведение F→·∆t представляет собой импульс суммы всех сил, действующих на материальную точку, и называется
импульсом силы
.
В СИ единицей измерения импульса силы является ньютон-секунда (Н ∙ с).
Формула ∆p→=F→·∆t предполагает, что сумма всех сил F в течение времени Δt не изменяется. Суммарное изменение импульса тела рассчитывается как сумма всех импульсов сил за рассматриваемые промежутки времени.
В случае, если сумма всех сил F→, действующих на тело, изменяется с течением времени, промежуток времени Δt разбивают на такое количество достаточно малых промежутков, чтобы значение силы F можно было считать постоянным. Для каждого такого промежутка времени рассчитывается изменение импульса. Полученные изменения импульсов материальной точки суммируются.
Пусть известен график зависимости модуля суммы сил, действующих на материальную точку, от времени (рис. 1).
Рис. 1. График зависимости модуля изменяющейся с течением времени суммы сил от времени
Разобьем весь промежуток времени на достаточно малые промежутки времени, такие, чтобы модуль F на каждом из них можно было считать постоянным. Тогда модуль изменения импульса материальной точки на каждом таком промежутке равен площади прямоугольника со сторонами F(t) и Δt. Модуль суммарного изменения импульса равен сумме площадей полученных прямоугольников. Сумма площадей приближенно равно площади под графиком функции F(t). Таким образом, модуль изменения импульса материальной точки в этом случае численно равен пощади под графиком F(t).
Приведем еще один пример.
Рис. 2. График зависимости силы, приложенной к телу, от времени воздействия
Пусть скорость точечного тела массой m увеличивается от нуля до некоторого значения под действием некоторой силы F. Модуль силы возрастает прямо пропорционально времени: F=k·t, где k – постоянный коэффициент. График F(t) показан на рисунке 2. Найдем скорость автомобиля в момент времени t1, для этого необходимо вычислить площадь под графиком функции F(t) на данном промежутке времени, равную модулю изменения импульса:
∆p=k·t122.
Начальная скорость тела равна нулю, тогда модуль изменения импульса можно найти по следующей формуле:
∆p=m·v-m·v0=m·v-0=k·t122.
Выразим из уравнения выше искомую скорость:
v=k·t122m.
Итоги:
Импульс тела
– это векторная физическая величина, равная произведению массы на скорость: p→=m·v→;
Закон изменения импульса материальной точки
: в инерциальной системе отсчета изменение импульса ∆p материальной точки за промежуток времени ∆t равно произведению суммы всех сил F, действующих на тело, на данный промежуток времени: ∆p→=F→·∆t;- Произведение F→·∆t представляет собой импульс суммы всех сил, действующих на материальную точку, и называется
импульсом силы
; - Модуль изменения импульса материальной точки численно равен площади под графиком Ft.
Контрольные вопросы
1. Как рассчитывается импульс материальной точки?
2. Сформулируйте закон изменения импульса.
3. Как рассчитать изменение импульса, если сумма всех сил F→, действующих на тело, изменяется с течением времени?
В работе рассмотрены некоторые задачи на
движение центра масс, рассматриваемые на
школьном факультативе по физике в Лицее
научно-инженерного профиля города Королева.
Представляется, что данная статья может быть
полезной как для учителей физики школ с
углубленным изучением предмета, так и для
абитуриентов.
Теоретический материал.
Импульс или количество движения
материальной точки есть вектор, равный
произведению массы этой точки m на вектор ее
скорости v: .
Импульс силы – это вектор, равный
произведению силы на время ее действия: . Если сила не
является постоянным вектором, то под F
следует понимать среднее значение вектора силы
за рассматриваемый интервал времени.
Теорема об изменении импульса материальной
точки. Пусть на материальную точку m
действует постоянная сила F. Тогда
, или
. Таким образом изменение
импульса материальной точки равно импульсу силы,
действующей на нее.
Импульс системы материальных точек равен
по определению сумме импульсов всех N точек
системы:
Изменение импульса системы материальных точек
равно импульсу равнодействующей внешних сил,
действующих на систему.
Изолированная (замкнутая) система – это
такая система материальных точек, на которую не
действуют внешние силы или их равнодействующая
равна нулю.
Закон сохранения импульса: импульс изолированной
системы материальных точек сохраняется, каково
бы ни было взаимодействие между ними:
Если внешние силы, действующие на систему не
равны нулю, но существует такое неизменное
направление (например, ось OX), что сумма проекций
внешних сил на это направление равна нулю, то
проекция импульса системы на это направление
сохраняется.
Центр масс системы материальных точек.
Центром масс N материальных точек m1,
m2,…, mN, положения которых
заданы радиус-векторами , называют воображаемую точку,
радиус-вектор которой определяется формулой:
.
Тогда координаты центра масс равны:
,
,
.
Скоростью центра масс является вектор
,
где –
скорость i-й точки.
Ускорением центра масс является вектор
где –
ускорение i-й точки.
Теорема об ускорении центра масс системы
материальных точек. Произведение суммы масс
точек системы на ускорение центра масс равно
сумме внешних сил, действующих на точки системы.
Если на систему материальных точек не
действуют внешние силы, то скорость центра масс
относительно любой инерциальной системы отсчета
сохраняется, каково бы ни было
взаимодействие внутри системы.
Если при этом скорость центра масс
относительно некоторой инерциальной системы
была равна нулю, то сохраняется и положение
центра масс.
Два этих утверждения являются прямыми
следствиями закона сохранения импульса.
Примеры задач.
Задача 1. Частица массы m движется со
скоростью v, а частица массы 2m движется со
скоростью 2v в направлении, перпендикулярном
направлению движения первой частицы. На каждую
частицу начинают действовать одинаковые силы.
После прекращения действия сил первая частица
движется со скоростью 2v направлении,
обратном первоначальному. Определите скорость
второй частицы. [1]
Решение.
Изменение импульса частицы массой m
вследствие действия импульса силы равно 3mv,
следовательно вторая частица приобретает точно
такой же импульс перпендикулярно направлению ее
движения. Полный импульс второй частицы
находится векторным сложением его составляющих
по двум перпендикулярным направлениям и равен 5mv.
Скорость второй частицы тогда равна 5v/2.
Задача 2. Ящик с песком массы М лежит на
горизонтальной плоскости, коэффициент трения с
которой равен µ. Под углом ? к вертикали в ящик со
скоростью v влетает пуля массы m и почти
мгновенно застревает в песке. Через какое время
после попадания пули в ящик, начав двигаться,
остановится? При каком значении ? он вообще не
сдвинется? [1]
Решение. Изменение импульса системы
материальных точек равно импульсу
равнодействующей внешних сил, действующих на
систему. По горизонтальной и вертикальной оси:
где u – скорость ящика сразу после того, как
пуля в нем застрянет, N – реакция опоры, – время, за
которое пуля застревает в песке. Из этих
уравнений следует
Так как пуля застревает почти мгновенно
последним членом в правой части можно
пренебречь. После того, как пуля застрянет, ящик
тормозит под действие силы трения с ускорением . Ящик
останавливается за время . Ящик не сдвинется, если
.
Задача 3. По наклонной плоскости,
составляющей угол а с горизонтом, с
постоянной скоростью v съезжает ящик с песком
массой M. В него попадает летящая
горизонтально пуля массой m, и ящик при этом
останавливается. С какой скоростью u летела
пуля?
Решение. Вдоль наклонной плоскости изменение
импульса системы
Поперек наклонной плоскости
Тогда
и с учетом того, что (ящик съезжает с постоянной скоростью)
Задача 4. Обезьяна массы m
уравновешена противовесом на блоке А. Блок А
уравновешен грузом массы 2m на блоке В.
Система неподвижна. Как будет двигаться груз,
если обезьяна начнет равномерно выбирать
веревку со скоростью u относительно себя? Массой
блоков и трением пренебречь. [1]
Решение. Обезьяна получает импульс силы и начинает
двигаться со скоростью v к потолку. Точно
такой же импульс силы получает груз m и тоже
движется со скоростью v к потолку. Груз массой
2m получает импульс силы и тоже движется со скоростью v
к потолку. Блок А опускается вниз со скоростью v.
груз m движется относительно блока А
вверх со скоростью 2v. Веревка справа от блока
А движется от потолка со скоростью 3v.
относительно обезьяны веревка движется вниз со
скоростью 4v. Отсюда .
Задача 5. Из однородной круглой пластины
радиусом R вырезали круг вдвое меньшего
радиуса, касающийся края пластины. Найти центр
тяжести полученной пластины.
Решение. Пусть масса пластины до вырезания
равна M. Тогда масса вырезанной части равна M/4.
Предположим, что имеется в наличии вещество с
отрицательной массой, Тогда вырез можно получить
наложением на пластину пластинки с
отрицательной массой —M/4. Тогда, поместив
начало координат в центр круга и направив ось X
направо, положение центра масс получаем из
формулы для координаты центра масс:
.
Задача 6. На гладком полу стоит сосуд,
заполненный водой плотности p0; объем
воды V0. Оказавшийся на дне сосуда жук
объема V и плотности p через некоторое
время начинает ползти по дну сосуда со скоростью u
относительно него. С какой скоростью станет
двигаться сосуд по полу? Массой сосуда пренебречь,
уровень воды все время остается горизонтальным.
[1]
Решение. Пусть скорость сосуда v, тогда
скорость жука относительно пола u+v.
Импульс системы по горизонтальной оси
сохраняется и равен нулю. Удобно рассматривать
жука как совокупность воды массой и сублимированного
вещества жука массой , которое перемещается относительно
всей воды. Тогда импульс системы
и
Задача 7. На дне маленькой запаянной
пробирки, подвешенной над столом на нити, сидит
муха, масса которой равна массе пробирки, а
расстояние от поверхности стола равно длине
пробирки l. Нить пережигают, и за время
падения пробирки муха перелетает со дна в
верхний конец пробирки. Определить время, за
которое пробирка достигнет стола.
Решение. Ускорение центра масс системы
определяется силами тяжести, действующими на
пробирку и муху, и равно g. За время падения
центр масс системы переместился на l/2. Отсюда
время падения .
Задача 8. На нити, перекинутой через блок,
подвешены два груза неравной массы (m2
> m1). Определить ускорение центра масс
этой системы. Массой блока и нити пренебречь. [2]
Решение. Ускорение тяжелого груза направлено
вниз и, как известно, равно . Ускорение легкого груза такое
же по модулю, но направлено вверх. Ускорение
центра масс находим по формуле из теоретического
раздела
Задача 9. В сосуде, наполненном водой
плотности p, с ускорением а всплывает
пузырек воздуха, объем которого V. Найдите
силу давления со стороны сосуда на опору. Масса
сосуда вместе с водой равна m. [1]
Решение. Будем рассматривать системы как
совокупность сосуда с водой массой и шарика с отрицательной
массой ,
который поднимается вверх с ускорением a.
Тогда ускорение центра масс системы
и
направлено вниз. Из теоремы об ускорении центра
масс
, и отсюда
сила давления на опору, численно равная реакции
опоры N,
Задачи для самостоятельного решения.
Задача 10. С горы с уклоном a () съезжают с
постоянной скоростью сани с седоком общей массой
M. Навстречу саням бежит и запрыгивает в них
собака массой m, имеющая при прыжке в момент
отрыва от поверхности горы скорость v,
направленную под углом (
) к
горизонту. В результате этого сани продолжают
двигаться по горе вниз со скоростью u. Найти
скорость саней до прыжка собаки. (Билет 3, 1991, МФТИ)
[3]
Ответ:
Задача 11. Человек, находящийся в лодке,
переходит с носа на корму. На какое расстояние S
переместится лодка длиной L, если масса
человека m, а масса лодки M? Сопротивлением
воды пренебречь.
Ответ:
Задача 12. На поверхности воды находится в
покое лодка. Человек, находящийся в ней,
переходит с кормы на нос. Как будет двигаться
лодка, если сила сопротивления движению
пропорциональна скорости лодки?
Ответ: Лодка сместится, а затем вернется в
исходное положение.
Задача 13. На первоначально неподвижной
тележке установлены два вертикальных
цилиндрических сосуда, соединенных тонкой
трубкой. Площадь сечения каждого сосуда S,
расстояние между их осями l. Один из сосудов
заполнен жидкостью плотности p. Кран на
соединительной трубке открывают. Найдите
скорость тележки в момент времени, когда
скорость уровней жидкости равна v. Полная
масса всей системы m. [1]
Ответ:
Задача 14. На тележке установлен
цилиндрический сосуд с площадью сечения S,
наполненный жидкостью плотности p. От сосуда
параллельно полу отходит длинная и тонкая
горизонтальная трубка, небольшой отрезок
которой вблизи конца загнут по вертикали вниз.
Расстояние от оси сосуда до отверстия трубки
равно L. Уровень жидкости в сосуде опускается
с ускорением а. Какой горизонтальной силой
можно удержать тележку на месте? [1]
Ответ:
Литература.
1. Задачи по физике: Учеб. пособие/ И.И. Воробьев,
П.И. Зубков, Г.А. Кутузова и др.; Под ред. О.Я.
Савченко. ? 2-е изд., перераб. М.: Наука. Гл. ред.
физ.-мат. лит. 1988. — 416 с.
2. Дмитриев С.Н., Васюков В.И., Струков Ю.А. Физика:
Сборник задач для поступающих в вузы. Изд. 7-е, доп.
М: Ориентир. 2005. – 312 с.
3. Методическое пособие для поступающих в вузы /
Под. ред. Чешева Ю.В. М.: Физматкнига, 2006. – 288 с.