Как найти место встречи по физике

Теперь, когда мы с вами научились описывать движение тел, применим паши знания для решения практических задач. Начнем с одной из самых важных и распространенных в природе и технике задач – задачи о встрече тел. Наверняка вы неоднократно слышали о стыковках космических аппаратов, видели, как встречные поезда одновременно подъезжают к промежуточной станции, выпущенная из лука стрела попадает в цель и т. п. Все эти ситуации можно представить как движение двух точечных тел навстречу друг другу. Задача заключается в том, чтобы определить, где произойдет их встреча и когда, т. е. через какое время после начала движения тел, она состоится.

Считается, что два тела встретились, если в некоторый момент времени их положения в пространстве совпали. Иначе говоря, в этот момент времени их координаты в какой-либо системе отсчета сравнялись. Поэтому для решения задачи нам понадобится ввести систему отсчета, в которой необходимо будет описать движение этих тел (в графическом или аналитическом виде). Только таким образом мы сможем грамотно решить данную задачу.

Рассмотрим простой пример. Пусть по прямолинейной дороге навстречу друг другу одновременно начинают двигаться пешеход и велосипедист. Расстояние между ними в момент начала движения составляет l = 20 м. При этом они движутся равномерно относительно дороги навстречу друг другу со скоростями, модули которых |vп| = 1 м/с и |vв| = 3 м/с соответственно. (Мы поставили знаки модуля у скоростей движущихся тел. Это связано с тем, что, пока не выбрана система отсчета. мы не можем сказать, у кого из них значение скорости будет положительным, а у кого – отрицательным. Другими словами, мы не можем определить, будут увеличиваться или уменьшаться их координаты в процессе движения.)

Ответим на два вопроса. Где произойдет встреча пешехода и велосипедиста? Когда (через какое время после начала движения) она состоится?

Рассмотрим каждый шаг решения задачи.

Шаг 1. Введем систему отсчета (рис. 20). В качестве тела отсчета выберем землю, а началом отсчета – место, где растет дерево, от которого начинает свое движение пешеход. Координатную ось направим вдоль дороги в направлении движения пешехода. В качестве единицы длины выберем 1 м. Будем считать пешехода и велосипедиста точечными телами. Координата каждого из тел будет численно равна расстоянию от дерева до этого тела в заданный момент времени. Часы (секундомер) включим в тот момент, когда начинается движение.

Изменение координат пешехода и велосипедиста, движущихся навстречу друг другу, с течением времени

Шаг 2. Определим значение координа пешехода и велосипедиста в момент включения секундомера. Ясно, что начальная координата пешехода xп0 (читается «икс пэ нулевое») равна 0, а велосипедиста xв0 = 20 м.

Шаг 3. Найдем значения скоростей равномерного движения тел. Из рисунка видно, что в выбранной нами системе отсчета координата пешехода в процессе движения будет увеличиваться. Следовательно, значение скорости пешехода положительно: vп = 1 м/с. Напротив, велосипедист в выбранной системе отсчета движется так, что его координата со временем уменьшается. Поэтому значение его скорости отрицательно: vв = -3 м/с.

После того как определены начальные координаты и значения скоростей движения тел, можно переходить к описанию их движения. Для этого у нас есть несколько способов. Начнем с графического.

Шаг 4 (графический). Построим систему координат, состоящую из оси времени t и оси координаты X. Отметим начальные координаты пешехода и велосипедиста (рис. 21).

Графики движения велосипедиста и пешехода. Точка пересечения графиков — их место встречи

Шаг 5 (графический). Теперь от точки xп0 проведем прямую линию, описывающую зависимость координаты пешехода от времени. Поскольку по условию задачи координата пешехода за каждую секунду увеличиваются на 1 м, то это будет «поднимающаяся» прямая линия, проходящая через точки с координатами (1; 1), (2; 2), (3; 3), (4;4), (5; 5) и т.д.

График зависимости от времени координаты велосипедиста – это тоже прямая, но она исходит из точки xв0 = 20 м, расположенной на оси координаты. Координата велосипедиста со временем уменьшается на 3 м за каждую секунду. Поэтому линия, описывающая зависимость этой координаты от времени, «опускается» за каждую секунду на 3 м, т. е. эта линия проходит через точки с координатами (0; 20), (1; 17), (2; 14), (3; 11), (4; 8), (5; 5) и т. д.

Из рис. 21 следует, что прямые, описывающие зависимости координат пешехода и велосипедиста от времени, пересекаются в точке (tвстр = 5 с, xвстр = 5 м). Это означает, что через 5 секунд после начала движения координаты пешехода и велосипедиста становятся равными: xп = xв = xвстр = 5 м. Иначе говоря, в этот момент времени положения тел в пространстве совпадут, и, таким образом, в момент tвстр = 5 с в точке с координатой xвстр = 5 м произойдет встречи пешехода и велосипедиста.

Итоги

Встречей двух тел считают совпадение их положений в пространстве (равенство их координат в одной и той же системе отсчета) в некоторый момент времени.

При графическом способе решения задачи о встрече движущихся тел необходимо: ввести систему отсчета; определить начальные координаты и значения скоростей тел; построить графики движения тел; найти точку пересечения этих графиков.

Вопросы

  1. Приведите примеры встречи двух тел. Что означает в кинематике, что два тела встретились?
  2. Перечислите шаги решения задачи «встреча».

Упражнения

  1. Определите графическим способом время и место встречи двух равномерно движущихся навстречу друг другу школьников, если в момент включения часов: а) расстояние между ними l = 30 м, а модули их скоростей |v1| = 3 м/с, |v2| = 3 м/с; б) расстояние между ними l = 30 м, |v1| = 1 м/с, |v2| = 4 м/с.
  2. Сформулируйте условие задачи, решение которой дано на рис. 22.
  3. Определите место встречи (город) двух равномерно движущихся поездов, которые одновременно выезжают навстречу друг другу из Москвы (|v1| = 100 км/ч) и Санкт-Петербурга (|v2| = 50 км/ч) (рис. 23). Расстояние между Москвой и Санкт-Петербургом – 600 км.

Определить место встречи движущихся навстречу друг другу тел

Равномерное прямолинейное движение

Всё в мире находится в движении.

Каждый день, когда мы выходим из дома, мы стараемся рассчитать, насколько быстро доберемся до школы или работы.

Может, однажды мы захотим научиться чему-то новому и купим машину.

А физика объяснит тебе, как не попасть в аварию и как всюду успевать.

Приступим!

Равномерное прямолинейное движение — коротко о главном

Сегодня ты узнал:

  • Как решить основную задачу механики в общем виде;
  • Равномерное прямолинейное движение — такое движение, при котором тело за любые равные промежутки времени совершает равные перемещения;
  • Скорость равномерного прямолинейного движения есть физическая величина, равная отношению вектора перемещения ко времени, за которое оно произошло;
  • Скорость равномерного прямолинейного движения постоянна;
  • Как решить основную задачу механики для равномерного прямолинейного движения;
  • Как строить и анализировать графики равномерного прямолинейного движения;
  • Графиком равномерного прямолинейного движения является прямая;
  • Встреча – такое событие, при котором координаты тел в один и тот же момент времени совпадают;
  • Проекция перемещения тела численно равна площади под графиком скорости тела;
  • Как строить траекторию движения тела;
  • Средняя скорость тела – векторная физическая величина, равная отношению перемещения тела на определенном участке траектории ко времени, за которое оно совершено;
  • Средняя путевая скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден;
  • Траектория движения тела зависит от выбора системы отсчета;
  • Как доказать закон сложения скоростей;
  • Абсолютная скорость есть векторная сумма относительной и переносной скоростей;

А еще ты научился решать задачи разного уровня сложности!

Ой, я что, не сказал? Там сложные были!

Ты, наверное, и не заметил 😉

О том, как решить основную задачу механики

Мы помним, что основная задача механики – указать положение тела в пространстве в любой момент времени, не только в настоящем, но и в будущем.

Мы узнали это, когда только начали изучать кинематику. 

Итак, что нужно знать для того, чтобы найти положение тела в пространстве?

Неплохо было бы знать, где оно находилось в начале своего движения, его начальные координаты.  Ведь нам важно, откуда мы выдвигаемся в путь.

Зависят ли начальные координаты тела от времени? Совсем нет: мы просто принимаем то, что тело где-то есть.

А еще нам важно знать, как далеко оказалось тело от своего начального положения и куда вообще двигалось. Важно знать перемещение этого тела.

Давай опробуем свои силы! Думаю, мы уже готовы решить главную задачу!

Рассмотрим какое-то тело. Оно подвигалось, изменило свое положение, оказалось в другой точке.

Назовем ее конечной и постараемся найти ее координаты, то есть узнать положение тела после совершенного им перемещения.

Помним, что перемещение – вектор, поэтому изобразим его:

Уже сейчас мы можем указать начальные координаты тела! Нет чисел – не пугаемся, используем буквы:

Нам нужно узнать конечное положение тела. Отметим координаты тела в конце, их нам и нужно найти, чтобы определить положение тела в конце:

Но как найти эти координаты, зная лишь начальное положение тела и его перемещение? Как нам попасть из ({{x}_{0}}) в (x) и из ({{y}_{0}}) в (y) ?

Все очень просто! Если есть вектор, то какая-нибудь проекция-то найдется, правда?

Отметим их:

Теперь ответить на вопрос, как добраться из начала в конец становится очень легким: просто нужно прибавить к начальной точке проекцию перемещения для нужной оси!

То есть положение точки в любой момент времени можно записать так:

(x={{x}_{0}}+{{S}_{x}}) — для оси Х

(y={{y}_{0}}+{{S}_{y}}) — для оси Y

Поздравляю! Мы только что решили основную задачу механики!

Правда, сделали это в общем виде… Но перемещение ведь может быть очень разнообразным! Как вообще его найти? Не всегда же оно будет дано!

Это зависит от движения тела.

Равномерное прямолинейное движение

Определение равномерного прямолинейного движения

Самым простым движением по праву считается равномерное прямолинейное движение. Мы начнем с него.

Давай попробуем дать ему определение.

Всегда стоить помнить, что знать определения наизусть вовсе не обязательно. Главное – научиться строить его самостоятельно.

Успех любого хорошего определения заключается в правильной его структуре.

Равномерное прямолинейное движение – это движение. Мы нашли главное слово нашего определения. Давай развивать его.

Мы уже знаем, что такое движение. Давай дополним это определение.

Что значит равномерное? Равная мера… Но что является этой самой равной мерой?

Тело проходит равные пути. Логично, что происходит это за какие-то промежутки времени.

А за какие промежутки? За равные. За секунду, за минуту, за час. Не обязательно за ОДНУ секунду, ОДНУ минуту, ОДИН час. Равными промежутками времени могут быть, например, три часа или две секунды.

Но что значит прямолинейное? Можно сказать, что это движение по прямой. Но давайте объясним это, исходя из уже знакомых нам понятий.

Представь: какое-то тело движется, у нас в руках секундомер.

Прошла секунда – тело переместилось на метр. Еще секунда – еще метр. В том же направлении.

То есть тело совершает равные перемещения!

Поэтому…

Равномерное прямолинейное движение — такое движение, при котором тело за любые равные промежутки времени совершает равные перемещения.

С перемещением намного проще объяснить, почему за равные промежутки времени можно принимать абсолютно любое количество единиц времени.

Пусть тело совершает за 1 секунду перемещение (vec{S}).

Тогда за две секунды совершает перемещение (2vec{S}):

Будет ли тело все еще совершать равные перемещения за каждые 2 секунды? Конечно! Давай посмотрим:

Скорость

Равномерное прямолинейное движение тоже бывает разным: быстрым и медленным. Чтобы охарактеризовать его, существует скорость.

Чем большее перемещение совершает тело за промежуток времени, тем больше его скорость. Это очевидно: за одно и то же время гепард преодолевает расстояние во много раз большее, чем термит.

То есть скорость прямо пропорциональна перемещению!

А еще мы помним, что нам действительно важно направление скорости, ведь нам важно направление движения. То есть скорость – величина векторная. Давай убедимся в этом.

Скорость равномерного прямолинейного движения есть физическая величина, равная отношению вектора перемещения ко времени, за которое оно произошло.

Запишем это в виде формулы:

(vec{V}=frac{{vec{S}}}{t})

Векторы с обеих сторон, верно, но… Мы ведь учились умножать векторы, а не делить их. При делении тоже вектор получается?

Да. Ведь любое деление можно представить в виде умножения, смотри:

(vec{V}=frac{1}{t}cdot vec{S})

Время – скалярная величина. Оно не имеет направления. Поэтому можно сказать, что скорость есть перемещение, умноженное на скаляр, то есть тоже вектор! Более того, вектор перемещения и скорости сонаправлены.

Подробнее о свойствах векторов можно прочитать в Большой теории по векторам.

Помнишь, мы чуть выше выясняли, будет ли тело все так же совершать одинаковые перемещения за 2 секунды, а не за одну? Причем эти перемещения сами будут в два раза больше. Значит отношение останется прежним, вот так:

(vec{V}=frac{2vec{S}}{2t}=frac{{vec{S}}}{t})

Отсюда делаем вывод:

Скорость равномерного прямолинейного движения постоянна.

Как это записать? Кажется, очевидно, но это «задачка со звездочкой». Вот так:

(vec{V}=overrightarrow{const})

Мы не можем приравнять векторную величину к скалярной. Поэтому над константой тоже нужно ставить вектор.

Решение основной задачи механики для равномерного прямолинейного движения

Из уравнения скорости можно легко выразить перемещения, что сделает нас на шаг ближе к конкретному решению основной задачи. Давай сделаем это:

(vec{S}=vec{V}cdot t)

Из свойств векторов мы помним, что это будет справедливо и для проекций:

({{S}_{x}}={{V}_{x}}cdot t)

({{S}_{y}}={{V}_{y}}cdot t)

Стоп-стоп-стоп… Мы что, можем уже с помощью этого определить положение точки?

Да, почему нет? Просто подставим это вместо проекций перемещения туда, где мы решали основную задачу механики в общем виде:

(x={{x}_{0}}+{{V}_{x}}cdot t)

(y={{y}_{0}}+{{V}_{y}}cdot t)

Обычно в задачах по физике мы стараемся выбрать оси так, чтобы было проще работать с проекциями. Мы стараемся расположить их так, чтобы как можно больше векторов располагалось параллельно один осям и перпендикулярно другим, вот так:

Проекция перемещения на ось Y будет равняться нулю, мы можем не обращать на нее внимания.

По оси Y тело вообще не меняло своего положения, верно?

Именно поэтому в задачах чаще всего мы будем использовать упрощенный вариант нахождения конечного положения тела. Его координата будет описана лишь одним числом.

То есть используем лишь одну ось:

(x={{x}_{0}}+{{V}_{x}}cdot t)

Работаем с проекциями. Настораживаемся. Вспоминаем о знаках.

Здесь все просто: если проекция скорости положительна, тело движется вдоль оси. Если она отрицательна, тело движется против оси.

Помни, что работаем мы с координатной осью! Начальное положение тела тоже может быть отрицательным. Это зависит лишь от того, как расположено тело относительно начала координат:

Графики равномерного прямолинейного движения

Построение графика

Очень важно уметь описывать движение графиком. Это может значительно упростить решение задачи.

Давай посмотрим, как с помощью графика описать равномерное прямолинейное движение.

Любой график – множество точек, который показывает зависимость одного значения от другого. Эта зависимость определяется каким-то уравнением.

Например, когда мы строим параболу, мы руководствуемся уравнением (y={{x}^{2}}). Как еще это можно записать?

Вот так: (f(x)={{x}^{2}}). Это показывает, что функция (f) зависит от значения (x).

Давай аналогично составим график движения тела. Вспомним то главное уравнение:

(x={{x}_{0}}+{{V}_{x}}cdot t)

Иными словами, это график зависимости координаты тела от времени. Давай так и запишем:

(x(t)={{x}_{0}}+{{V}_{x}}cdot t)

Начинаем работать с уравнением. Предположим, что нам известна проекция скорости и начальное положение тела. Работать с конкретными числами удобнее.

Пусть: ({{V}_{x}}=0.5)м/с и ({{x}_{0}}=3)м

Тогда уравнение имеет вид: (x=3+0.5cdot t)

Нарисуем оси и обозначим их. Так как у нас даны единицы измерения (метры и секунды), мы обязательно должны подписать их рядом с названиями осей!

Теперь можем взять и рассмотреть положение тела в любую секунду: хоть в первую, хоть в двенадцатую!

Отметим точки и соединим их. Получим график движения.

А теперь вопрос на засыпку: может ли время быть отрицательным?

Могу ли я указать положение тела в минус третью секунду? Могу.

Для этого стоит помнить, что «нулевая» секунда – момент, когда мы запускаем секундомер, когда мы только начинаем наблюдать за телом. Но оно могло двигаться и до того, как мы включили таймер, верно?

Давай покажем движение тела до наших наблюдений пунктирной линией:

Зачастую точки пересечения графика с осями несут в себе очень важную информацию!

Например, когда мы только включили секундомер ((t=0)с), тело находилось в начальном положении (({{x}_{0}}=3)м), и это видно по графику!

А когда координата тела была равна нулю?

Все очень просто: за 6 секунд до того, как мы включили секундомер! Прямая пересекает ось времени в точке -6.

Итак, мы выяснили, что…

График равномерного прямолинейного движения представляет собой прямую.

Точка пересечения ее с осью Х есть координата в начальный момент времени.

Точка пересечения с осью времени показывает ту секунду, когда тело находится в начале координат.

И действительно, само уравнение (x={{x}_{0}}+{{V}_{x}}cdot t) уже напоминает стандартное уравнение прямой, которое мы изучаем на математике: (y=kx+m), где (m) — точка пресечения графика с осью Х, а (k) — коэффициент наклона прямой.

В нашем случае роль коэффициента наклона играет проекция скорости.

Зависимость графика от проекции скорости

Давай изобразим несколько графиков в общем виде, то есть без каких-либо конкретных значений. Например, пусть у нас есть два движущихся тела, вот так:

Чем отличаются движения этих двух тел?

Ну, прежде всего, у них разные начальные положения. Ладно.

А что насчет проекции скорости?

Рассмотрим первое тело. С течением времени оно все больше удаляется от начала координат. А вот второе к нему приближается: оно даже достигает начала координат через некоторое время (когда пересекает ось).

Значит, первое тело идет вдоль оси, а второе против нее, то есть к началу! Мы помним, что это определяет знак проекции скорости.

А именно: проекция скорости первого тела положительна. Проекция скорости второго тела отрицательна.

Со знаками разобрались. А как быть, если попросят узнать, какая проекция скорости больше?

Рассмотрим следующий график. Чтобы было легче его анализировать, представим, что два тела имеют одинаковое положение, когда мы включаем секундомер:

Чтобы понять, чья скорость больше, рассмотрим определенный промежуток времени, отделим его вертикальной пунктирной линией. А еще обозначим начальную и конечную координаты тел в этот промежуток времени:

Теперь посмотрим, чем отличаются графики. Ну так, навскидку. Они отличаются наклоном.

График движения второго тела расположен к оси Х значительно ближе. Что это значит?

Рассмотрим, какое расстояние прошло первое тело, обозначим его на рисунке. Оно численно равно проекции перемещения, убедимся с помощью формулы:

(Delta {{x}_{1}}={{x}_{1}}-{{x}_{01}}={{S}_{x}}_{1})

Теперь рассмотрим расстояние, которое преодолело второе тело:

(Delta {{x}_{2}}={{x}_{2}}-{{x}_{02}}={{S}_{x}}_{2})

Видим, что за одинаковый промежуток времени второе тело прошло значительно большее расстояние! Это значит, что его скорость больше.

Чем ближе к оси Х расположена прямая, тем больше скорость движения тела.

А что будешь делать с таким графиком?

Координата тела с течением времени не меняется. Значит ли это, что тело не движется вовсе?

Нет. Тело не движется лишь по этой оси. Но по какой-нибудь другой оси оно двигаться может.

Например, вот так:

Тело не меняет координаты по оси Х, однако движется по оси Y.

Если мы видим такой график, мы можем лишь утверждать, что проекция скорости равна нулю. О самой скорости говорить не можем.

Встреча

Помнишь самый первый рисунок с двумя телами? Вот этот:

В нем есть одна интересная деталь. Графики движения тел пересекаются.

Со временем все понятно: оно для всех идет одинаково, ничего не поделаешь.

А вот с координатой интереснее: ведь мы можем утверждать, что в какой-то момент тела встретились. То есть в какой-то момент их координаты на оси Х стали равны. Обозначим момент встречи и координату («место») встречи:

Встреча – такое событие, при котором координаты тел в один и тот же момент времени совпадают.

Это еще один момент, о котором стоит помнить при решении задач на графики.

А еще стоит обратить внимание на то, что координаты тел должны совпадать в один момент времени! Если в лесу мимо дуба пробежала лань, а через несколько дней мимо этого же дуба пробежал енот, мы не можем сказать, что они встретились. 

Просто у них совпала траектория.

График зависимости проекции скорости от времени. Нахождение проекции перемещения

Рассмотрим несколько другой график. График зависимости проекции скорости от времени при равномерном прямоли…

Стоп, чего? Какой зависимости? Скорость ведь постоянная и не меняется со временем.

Ты абсолютно прав. А график-то начертить можем, вот так:

Скучный график. Просто прямая, параллельная оси времени. Проекция скорости не меняется, а время всё идет и идет.

Давай хоть что-то найдем по графику. Хоть площадь под ним. Обозначим эту область:

Получили прямоугольник. Его площадь ищем путем перемножения двух соседних сторон, то есть мы берем проекцию скорости и умножаем еще на время.

Где-то мы это слышали.

Верно, ведь именно так ищется проекция перемещения!

({{S}_{x}}={{V}_{x}}cdot t)

Совпадение? Не думаю.

Искать проекцию перемещения таким способом можно не только для равномерного прямолинейного движения, но и для других его видов!

Проекция перемещения тела численно равна площади под графиком скорости тела.

Решение простейших задач и задач на графики равномерного прямолинейного движения

Текстовые задачи

Задача 1. Охарактеризуйте движение соседки, которая спускается по лестнице и одновременно с этим закатывает рукава, услышав в 11 часов вечера громкую музыку из квартиры снизу, если уравнение ее движения: (x=2cdot t), а ось направлена вниз по лестнице.

Решение:

Итак, для начала вспомним уравнение движения в общем виде:

(x={{x}_{0}}+{{S}_{x}})

Соответствует ли уравнение движения соседки уравнению выше? Конечно!

Почему? По глазам вижу, догадываешься! Потому что его можно записать так:

(x=0+2cdot t)

Начальная координата соседки равна нулю: соседка двигалась из начала координат. С этим разобрались. Осталось определить тип ее движения.

Она движется вниз по лестнице. Значит, идет по прямой в одном направлении. Это прямолинейное движение.

Она свирепеет и ускоряется? Нет. Она движется равномерно. Давай вспомним уравнение движения для равномерного прямолинейного движения:

(x={{x}_{0}}+{{V}_{x}}cdot t)

И еще раз посмотрим на наше:

(x=0+2cdot t)

Сопоставляем их и понимаем, что рядом с временем расположена проекция скорости. Она, как видим, положительна и равна 2 м/с. Соседка двигается вдоль оси. Ось направлена вниз и соседка движется туда же!

Подробно мы разбирали зависимость направления от знака проекции в Большой теории по векторам.

Таким образом, соседка совершает равномерное прямолинейное движение вдоль оси из начала координат, а проекция ее скорости на эту ось равняется 2 м/с.

Задача 2. Таракан Вася совершает равномерное прямолинейное движение вдоль линейки (соответствующей оси Х) на столе семиклассника Вовы, который, старательно уча уроки, уже неделю не выносит из комнаты мусор. Проекция скорости таракана на эту ось 0.1 м/с. Вова берет секундомер и начинает отсчет в тот момент, когда таракан находится на втором сантиметре линейки.

На каком сантиметре линейки окажется таракан через две секунды?

Решение:

Первое правило решающих физику: увидеть тему и писать формулы по теме.

Второе правило решающих физику: увидеть тему и писать ВСЕ формулы по теме. Могут пригодиться.

Знаем тип движения! Равномерное прямолинейное!

Знаем уравнение равномерного прямолинейного движения! Пишем:

(x={{x}_{0}}+{{V}_{x}}cdot t)

Делов-то! Начнем подставлять известные величины для таракана. Из задачи знаем, что в начале отсчета таракан находится на втором сантиметре линейки…

Стоп. «Сантиметре…»

Никогда не теряй бдительность, боец. Всегда проверяй величины. 

Переведем все, что есть, в СИ. Скорость – в м/с. Отлично, уже есть. Как быть с линейкой? Просто перевести сантиметры в метры!

Таракан был на втором сантиметре, а значит на 0.02 метре линейки!

Теперь можем записать уравнение его движения:

(x=0.02+0.1cdot t)

Чтобы узнать, где окажется таракан через 2 секунды, просто подставим цифру 2 в это уравнение: 

(x=0.02+0.1cdot 2=0.22)м

На 0.22 метре линейки! Получили ответ. Но в задаче спрашивается, на каком сантиметре будет находится таракан. Переводим наш ответ в сантиметры и получаем, что таракан будет находится на 22-ом сантиметре линейки!

Задача 3. По коридору мчится восьмиклассник Петя, уравнение его движения можно описать следующим уравнением: (x=6+2cdot t). За ним несётся разъяренный директор Максим Михайлович, уравнение его движения: (x=3+3cdot t).

Догонит ли директор Петю и, если догонит, когда и на каком метре коридора это произойдет? Скорость измерять в м/с, время в секундах.

Решение:

Итак, давай разберемся. Что вообще значит «догонит»? То же самое, что «встретит», верно?

Мы знаем, что такое встреча. Это такое событие, при котором координаты тел в один и тот же момент времени совпадают.

Чтобы понять, встретятся ли они вообще, давай построим графики движения Пети (П) и директора (Д):

Видим, что прямые пересекаются. В какой-то момент времени их координаты действительно одинаковы.

Но как узнать, в какой?

Что-что? Видно по графику? Ну уж нет! Думаешь, там координата 12? А вдруг там 11.999?

Всегда нужно проверять себя аналитически.

Запишем два уравнения:

({{x}_{P}}=6+2cdot t) — Пети

({{x}_{D}}=3+3cdot t) — директора

При встрече у них одинаковые координаты: ({{x}_{P}}={{x}_{D}})

Да… Наверное, другие части уравнений приравнять будет полезнее:

(6+2cdot t=3+3cdot t)

Отсюда легко вычислить время встречи:

(t=3) c

Значит, через три секунды после начала отсчета их координаты будут одинаковы, они встретятся. Найдем место встречи, просто подставив время в одно из двух (какое больше нравится 🙂 ) уравнений:

({{x}_{B}}=6+2cdot 3=12) м

Директор догонит Петю через 3 секунды. Это произойдет на 12-ти метрах от начала коридора.

Задачи на графики

Задача 4. Написать уравнение движение тела, если график этого движения:

Решение:

Какое это движение? Видим, что графиком движения является прямая. Значит, это равномерное прямолинейное движение.

Удивительно, но начнем с уравнения:

(x={{x}_{0}}+{{V}_{x}}cdot t)

График очень информативный. По крайней мере мы уже знаем начальную координату: ({{x}_{0}}=8) м

Имеем:

(x=8+{{V}_{x}}cdot t)

Как найти проекцию скорости? Ну, давай ее выразим для начала.

({{V}_{x}}=frac{x-8}{t}) м/с

Дальше все очень просто: сделаем так, чтобы она осталось единственной неизвестной. Подставим в уравнение координату и время из графика, абсолютно любую пару, вот так:

Считаем:

({{V}_{x}}=frac{6-8}{2}=-1) м/с

Проекция скорости отрицательна. И правда: с течением времени тело приближается к началу координат, то есть движется против оси.

Подставим в уравнение:

(x=8-t) — уравнение движения тела.

Задача 5. Тело движется вдоль оси Х. Описать движение на каждом участке графика. Найти проекции скоростей. Построить графики проекции скорости и пройденного пути от времени.

Решение:

Опишем движение. Какое оно?

«Ха! Это не прямая, — скажешь ты, — а ломаная!»

И будешь абсолютно прав.

А я скажу: «А что такое ломаная? Это просто соединенные между собой отрезки! А отрезки — части прямых!»

Поэтому давай рассматривать этот график частями!

С первым отрезком все понятно: равномерное прямолинейное движения, ведь эта часть графика – прямая. С течением времени тело приближается к началу координат, значит движется против оси.

Найдем проекцию скорости.

Для начала, что есть скорость?

Мы помним, что скорость – отношение перемещения к промежутку времени.

(vec{V}=frac{{vec{S}}}{t})

Знаем, что это справедливо и для проекций:

({{V}_{x}}=frac{{{S}_{x}}}{t})

Ну, время у нас есть. А проекцию перемещения откуда взять?

Давай вспомним, что это такое. Перемещение – вектор, проведенный из начального положения тела в конечное. А проекция перемещения – проекция этого вектора. Логично, правда? То есть:

({{S}_{x}}=x-{{x}_{0}})

Подробнее о проекциях можно узнать в Большой теории по векторам. 

Вот и нашли проекцию скорости:

({{V}_{x}}=frac{x-{{x}_{0}}}{t})

Подставим в уравнение выше значения необходимых величин:

({{V}_{x}}=frac{4-10}{2}=-3) м/с

Проекция скорости на первом участке графика равна -3м/с.

Второй отрезок необычнее: тело не меняет координату. Тело на этом участке неподвижно.

Так как в условии сказано, что тело движется именно вдоль оси Х, модуль проекции скорости на эту ось равен длине вектора скорости.

Так как тело не меняет координату, проекция его перемещения равна нулю. А значит и проекция скорости равна нулю.

Третий отрезок описывает равномерное прямолинейное движение. Тело отдаляется от начала координат и движется туда же, куда направлена ось.

Найдем проекцию скорости на третьем участке:

({{V}_{x}}=frac{9-4}{12-7}=1) м/с

Так. Давай разберемся, почему там 12-7.

Помнишь, мы считаем отношение проекции перемещения к ПРОМЕЖУТКУ времени. А от 7 до 12 секунды промежуток времени составляет 5 секунд.

Проекция скорости на третьем участке равна 1м/с.

Всё нашли, осталось лишь построить графики! Начнем с графика зависимости проекции скорости от времени. Начертим и обозначим оси, обязательно обозначив единицы измерения и помня, что проекция может быть отрицательна:

Работаем с первой частью:

Мы выяснили, что в течение первых двух секунд проекция скорости была постоянна (как-никак, равномерное прямолинейное движение 🙂 ) и равна -3 м/с.

Давай нарисуем!

На втором участке проекция скорости равна нулю, а на третьем – единице.

Избавимся от вспомогательных линий и получим:

Что-то мне подсказывает, что на графике пути тоже будет три участка. Приступим.

Нарисуем оси и обозначим их:

Логично будет утверждать, что, пока тело не начало двигаться, оно и путь никакой не прошло. Отметим это точкой на графике:

Первые две секунды тело двигалось равномерно со скоростью 3 метра в секунду. Значит, за две секунды тело прошло (3cdot 2=6) метров! Отметим это!.. Нет, не так, на графике отметим:

Движемся дальше. Мы знаем, что на втором участке тело было неподвижно, а значит путь никакой не проходило. За промежуток времени второго участка тело не прошло никакой путь.

Однако суммарно за всё свое движение тело все так же прошло 6 метров:

На третьем участке тело движется. Значит, суммарно пройденный путь увеличится. Оно двигалось со скоростью 1м/с. Посмотрим сколько оно прошло за 5 (12-7) секунд.

Оно пройдет 5 метров.

Добавим их к нашим уже пройденным 6 метрам и получим 11 метров:

Остается только соединить точки прямой:

Задача 6. Найти проекцию перемещения тела по графику

Решение:

Определимся, из чего вообще складывается то, что нам нужно найти. В разные промежутки времени тело двигалось с разными постоянными скоростями.

Значит, проекция перемещения складывается из проекций перемещения в разных промежутках времени! Их 6:

({{S}_{x}}={{S}_{x1}}+{{S}_{x2}}+{{S}_{x3}}+{{S}_{x4}}+{{S}_{x5}}+{{S}_{x6}})

Попробуем найти первую проекцию. Помнишь, мы знаем, что проекция перемещения есть площадь под графиком?

«Под графиком» означает «между графиком и осью», то есть вот эта:

Что ж, давай найдем перемещение:

Проекция скорости есть -2м/с, а промежуток времени – 3с.

Поэтому: ({{S}_{x1}}=-2cdot 3=-6)м

Попробуем найти площадь второго прямоугольника:

Сразу обрати внимание на то, что промежуток времени – с третьей по пятую секунду, то есть 2 секунды!

({{S}_{x2}}=2cdot 2=4)м

Аналогично для остальных:

({{S}_{x3}}=3cdot 3=9)м

({{S}_{x4}}=2cdot 1=2)м

({{S}_{x5}}=1cdot 1=1)м

({{S}_{x6}}=-3cdot 2=-6)м

Посмотрим, чему равна проекция перемещения:

({{S}_{x}}=-6+4+9+2+1-6=4)м

Тяжело в учении – легко в бою. Давай поднажмём и составим график зависимости проекции перемещения от времени.

Когда мы включили таймер, она была равна нулю:

В конце первого промежутка времени она становится равна -6м:

А, ну дальше-то все легко: отмечаем 4, потом отмечаем 9… Нет!

Мы ведь работаем с ОБЩЕЙ проекцией. А общая проекция есть сумма.

Тогда в конце второго промежутка проекция будет равна:

({{S}_{x}}={{S}_{x1}}+{{S}_{x2}})

Дальше – больше слагаемых.

Следующая точка: (-6+4=-2) м

А после нее:(-6+4+9=7) м и т.д.

Теперь соединяем точки по порядку:

Задача 7. Постройте траекторию движения колибри, если начальное положение его по оси Х – 1 м, по оси Y – 3 м, а проекция его скорости на оси, расположенные перпендикулярно друг другу, описывается следующими графиками:

Решение:

Увидел сложную задачу – пиши всё, что знаешь! Зачем? Так надо! Пиши!

Скорость изменяется скачками, но на отдельных промежутках она постоянна. Тело движется равномерно.

Тело изменяет свое положение в пространстве. Изменяет свою координату.

Вспомним, как записывается уравнение координаты тела при равномерном прямолинейном движении:

(x={{x}_{0}}+{{V}_{x}}cdot t)

(y={{y}_{0}}+{{V}_{y}}cdot t)

Мы учились делать это раньше. Построим графики зависимости координаты от времени.

Итак, по оси Х у нас 3 участка, обозначим их вспомогательными линиями на нашем новом графике:

Начнем с первого участка. Знаем проекцию скорости и даже начальную координату! Подарок судьбы.

(x=1+2cdot t)

Строим его на первом промежутке:

Теперь координата тела – 17м и тело начинает двигаться с другой скоростью. Из координаты 17 тело движется со скоростью… А, ни с какой скоростью. Проекция скорости на эту ось равна нулю, поэтому:

(x=17+0cdot t)

Координата не меняется. Рисуем:

Тело на 17 м. Оттуда продолжаем движение с проекцией скорости -2 м/с. Тогда: (x=17-2cdot t)

Аналогично строим график для оси Y. Теперь у нас есть два графика:

Построим траекторию движения в плоскости. Для этого нам нужны оси Х и Y одновременно!

Давай построим их:

Всегда бери длину с запасом! Чтобы потом не перечерчивать оси. Наибольшее значение по Х – 17м. По Y – 15м. На всякий случай будем брать 20Х20.

Давай будем анализировать по секундам. Каковы были координаты тела в момент начала отсчета? Давай посмотрим.

В начальный момент времени координата по Х равна 1м, по Y – 3м. В конечный момент по Х координата равна 13, по Y – 15м.

Отметим эти точки:

Дальше будем рассматривать «переломные моменты». Для первого графика это 8 и 10с, для второго – 4 и 6с.

То есть секунды: 4, 6, 8, 10.

Запишем координаты точек для нужных нам секунд:

4: (9;15)

6: (13; 9)

8: (17;11)

10: (17;13)

Отметим их и соединим прямой, укажем последовательность:

Задача решена!

Теперь ты знаешь, как работать с графиками равномерного прямолинейного движения и их уравнениями! Движемся дальше. Иронично звучит 🙂

Средняя скорость по перемещению. Средняя путевая скорость

Хочешь, покажу фокус?

Смотри.

Из горной пещеры вылетает дракон, а за ним в ту же секунду выбегает доблестный рыцарь. Дракон хочет разрушить замок, находящийся от пещеры на расстоянии 7 километров. Задача рыцаря – добраться до замка первым и остановить дракона.

Рыцарь скачет на лошади прямо к замку по равнине в течении 20 минут. Он обнаруживает, что мост через реку на пути к замку разрушен, поэтому решает переплыть реку, и (спасибо его хорошей подготовке) у него уходит лишь 5 минут на то, чтобы снять с себя доспехи и сделать это. Затем в течении 10 минут он продолжает движение к замку.

Дракон после вылета из пещеры движется вперед и вверх, на это у него уходит 15 минут. На какой-то высоте он останавливается, потому что видит стаю пролетающих мимо уток. Драконы, динозавры, птицы… Смекаешь, да? Он решает поиграться со своими «родственниками», на что у него уходит 15 минут. Затем он вспоминает о замке и стремительно пикирует к нему на протяжении 5 минут.

Давай всё это изобразим для наглядности:

Дракон и рыцарь совершили одинаковые перемещения, так? 7 км, ведь они оказались у замка, двигаясь из пещеры.

Давай посчитаем время каждого в пути. И для дракона, и для рыцаря оно составило 35 минут. Они прибыли к замку одновременно.

Так что ж получается… Они совершили одинаковое перемещение за одинаковый промежуток времени.

Но их траектории были очень различны! И двигались они по-разному!

Для того, чтобы описать это, существует средняя скорость по перемещению.

Средняя скорость тела – векторная физическая величина, равная отношению перемещения тела на определенном участке траектории ко времени, за которое оно совершено.

Можно в виде формулы: ({{vec{V}}_{cp}}=frac{{vec{S}}}{t})

Средняя скорость дракона и рыцаря по перемещению одинакова, ведь они пришли одновременно в одно и то же место.

Есть подвох, о котором тебе на математике не рассказали. Ты все время работал не с этой средней скоростью. А с этой:

Средняя путевая скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Понял, да? Путевая – про путь, а не про перемещение. Средняя путевая скорость совпадает (по модулю) со средней скоростью по перемещению только в том случае, если тело двигалось по прямой в одном направлении.

Средняя путевая скорость дракона сильно отличается от средней путевой скорости рыцаря.

Если не помнишь, в чем отличие пути от перемещения, советую посмотреть основные определения кинематики!

Относительность движения. Операции над скоростями

Давай вспомним одну из важнейших вещей, когда мы говорим про движение. Мы давали ему определение, когда говорили о кинематике в целом.

Это тело отсчета. То тело, относительно которого мы рассматриваем движение.

Мы уже знаем, что относительно одного тела тело может нестись с бешеной скоростью, а относительно другого не двигаться вовсе.

От системы отсчета зависит изменение положения тела. А что еще от нее зависит? Траектория зависит?

Оказывается, да!

Однажды человек изобрел колесо и изменил мир. Давай воспользуемся этим изобретением для того, чтобы найти ответ на вопрос выше.

Возьмем какую-то точку на колесе и пусть оно катится по дороге! Как движется эта точка относительно оси колеса? По кругу.

А относительно Земли?

Вот так:

Круто, да?

Эта кривая называется циклоида. И она точно отличается от траектории движения точки относительно оси колеса.

Сегодня мы научимся определять и связывать скорости в разных системах отсчета.

А еще на относительности основан главный закон скоростей – закон об их сложении.

Поступим как настоящие ученые. Готовые формулы – для слабаков. Мы будем выводить их сами.

Рассмотрим ситуацию.

По реке плывет плот (П) со спортсменом (С). На берегу реки сидит рыбак (Р) и наблюдает за этим. В какой-то момент пловец прыгает с плота и движется к другому берегу реки. Их несёт течение реки.

Давай изобразим это:

Давай нарисуем вектор перемещения спортсмена относительно плота и назовем его относительным перемещением:

Теперь нарисуем вектор перемещения плота, которого несет течение. Назовем этот вектор переносным:

А теперь посмотрим, как спортсмен двигался относительно рыбака, и назовем вектор этого перемещения абсолютным:

Ты только посмотри! У нас тут треугольник!

Нет, оставь свои теории заговора и иллюминатов. Не тот треугольник. Треугольник суммы векторов!

Переносное перемещение и относительное в сумме дают абсолютное!

({{vec{S}}_{a}}={{vec{S}}_{n}}+{{vec{S}}_{o}})

Как связать перемещение со скоростью? Нужно поделить его на время!

Та-а-ак… А его откуда брать?

Оно для всех течёт одинаково. Смело делим:

(frac{{{{vec{S}}}_{a}}}{t}=frac{{{{vec{S}}}_{n}}}{t}+frac{{{{vec{S}}}_{o}}}{t})

И получаем:

({{vec{V}}_{a}}={{vec{V}}_{n}}+{{vec{V}}_{o}})

А теперь давай разбираться.

Что такое абсолютная скорость? В нашем случае это скорость пловца относительно берега.

Абсолютная скорость – скорость движения тела относительно неподвижной системы отсчета.

Что такое переносная скорость? Скорость плота, скорость течения реки относительно берега.

Переносная скорость – скорость движущейся системы отсчета относительно неподвижной.

Что такое относительная скорость? Это скорость спортсмена относительна плота.

Относительная скорость – скорость движения тела относительно подвижной системы отсчета.

Таким образом,

Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно движущейся системы отсчета и скорости движущейся системы отсчета относительно неподвижной.

Иначе говоря:

Абсолютная скорость есть векторная сумма относительной и переносной скоростей.

Чем хороши векторные уравнения? Они не заставляют тебя думать о знаках.

Знаки ты определишь в проекциях. Это будет зависеть от условия задачи.

Внимание, практика!

Решение задач на среднюю скорость и действия со скоростями

Задача 8 (продолжение задачи 3 🙂 ). Поймавший Петю директор пишет замечание в его дневник, его ручка движется по листу бумаги со скоростью 0.05 м/с. Через 3 секунды Петя взмолится перед Максимом Михайловичем, его ручка станет двигаться со скоростью 0.03 м/с на протяжении 4 секунд.

А если бедному ученику повезёт и ручка начнет плохо писать, то, чтобы расписать ее, директор будет давить на нее сильнее в течение 5 секунд и скорость ее станет равна 0.01 м/с.

Найдите среднюю путевую скорость ручки. Зная, что длина красноречивого замечания равна 24 см, найдите среднюю скорость ручки по перемещению.

Решение: 

Если в задаче много букв – составляй ее план. Давай это сделаем и переведем все в СИ, если необходимо.

3с – 0.05 м/с

4с – 0.03 м/с

5с – 0.01 м/с

24см=0.24м

Что значит «длина замечания»? Фактически, расстояние от начала до конца, то есть это кратчайшая ПРЯМАЯ. Запишем ее как вектор – получим перемещение.

Ведь перемещение есть вектор, проведенный из начального положение в конечное.

Давай посчитаем, сколько времени директор писал замечание:

(3+4+5=12) с

Значит, мы уже можем найти среднюю скорость по перемещению!

Сделаем это:

({{V}_{cp}}=frac{0.24}{12}=0.02) м/с

Почему там не вектор? Помни: мы не можем приравнивать векторные величины к скалярным. Когда нам сказали, чему равно перемещение, нам дали ДЛИНУ вектора перемещения. А длина есть величина скалярная.

Приступим к средней путевой скорости. Для начала нам нужно найти путь, время у нас уже есть.

Путь будет состоять из трёх участков, в которых тело двигалось с разными скоростями:

(L={{L}_{1}}+{{L}_{2}}+{{L}_{3}})

Каждый из них можно найти умножением скорости на участке на время движения с этой скоростью. Вот так:

(L={{V}_{1}}cdot {{t}_{1}}+{{V}_{2}}cdot {{t}_{2}}+{{V}_{3}}cdot {{t}_{3}})

Давай подставим:

(L=0.05cdot 3+0.03cdot 4+0.01cdot 5=0.32)

А теперь можем найти среднюю путевую скорость:

({{V}_{cpL}}=frac{0.32}{12}approx 0.027) м/с

Задача решена!

Задача 9. В небе летят два вертолёта. Скорость одного из них – 350 км/ч, другого – 400 км/ч. Найти скорость второго вертолёта относительно первого.

Решение:

Вот тебе дело: найди одно очень важное потерянное условие.

Дело в том, что в задаче не сказано, летят ли они в одном направлении или в разных. Рассмотрим оба случая.

Случай 1. Вертолеты движутся в одном направлении.

Давай вспомним главное уравнение:

({{vec{V}}_{a}}={{vec{V}}_{n}}+{{vec{V}}_{o}})

Мы ищем скорость одного вертолета относительно другого. Скорость одного движущегося тела относительно другого движущегося тела называется относительной. Выразим ее:

({{vec{V}}_{o}}={{vec{V}}_{a}}-{{vec{V}}_{n}})

Помним, что с векторами рука об руку идут их проекции. Давай начертим схему задачи и построим ось, на которую будем проецировать векторы скорости:

Всё это, конечно, здорово, но какая скорость абсолютная, а какая переносная?

Давай разбираться.

Переносная скорость – скорость движущейся системы отсчета относительно неподвижной.

В система отсчета, которую требует задача, все происходит относительно первого вертолета. Он – тело отсчета.

Значит, переносная скорость – скорость первого вертолета относительно земли.

Абсолютная скорость – скорость движения тела относительно неподвижной системы отсчета. То есть это скорость второго вертолета, данная в задаче.

Вернемся к уравнению и запишем его по-новому:

({{vec{V}}_{o}}={{vec{V}}_{a}}-{{vec{V}}_{n}})

({{vec{V}}_{o}}={{vec{V}}_{2}}-{{vec{V}}_{1}})

Мы помним, что с векторами рука об руку идут проекции. Давай запишем это уравнение в проекции на ось Х.

Обе этих скорости направлены по направлению оси. Значит, их проекции положительны:

({{V}_{ox}}={{V}_{2x}}-{{V}_{1x}})

Мы выбрали ось так, чтобы векторы были ей параллельны, поэтому мы смело можем утверждать, что проекции по модулю равны длинам векторов:

({{V}_{o}}={{V}_{2}}-{{V}_{1}})

Считаем:

({{V}_{o}}=400-350=50) км/ч

Случай 2. Вертолеты движутся в разных направлениях.

Нарисуем схему снова:

Нетрудно догадаться, что теперь проекция уравнения на ось будет иметь другой вид. Проекция скорости первого вертолета будет отрицательна: она направлена против оси.

({{vec{V}}_{o}}={{vec{V}}_{2}}-{{vec{V}}_{1}})

({{V}_{o}}={{V}_{2}}-(-{{V}_{1}})={{V}_{2}}+{{V}_{1}})

Скорости складываются. И правда: оба вертолета стремятся отдалиться друг от друга, никто никого не догоняет.

({{V}_{o}}=400+350=750) км/ч

Таким образом, скорость второго вертолета относительно первого равна 50 км/ч, если они движутся в одном направлении, и 750 км/ч, если движутся в разных.

Задача 10. Дядя Стэн, с уверенностью открыв сезон рыбалки, мчится на моторной лодке против течения реки в течение 3 ч и преодолевает 4 км, пока не вспоминает, что забыл дома свой любимый сборник анекдотов. Скорость течения реки – 2.5 км/ч.

Сколько времени понадобится Стэну, чтобы преодолеть то же самое расстояние, возвращаясь обратно?

Решение:

Давай сделаем рисунок. Это в большинстве случаев упрощает задачу!

Сначала нарисуем реку с течением:

А теперь лодку Стэна, которая плывет против течения. Обозначим ее собственную скорость.

Давай посмотрим, как мы можем связать эти две скорости с путем и временем.

Для начала вспомним формулу:

({{vec{V}}_{a}}={{vec{V}}_{n}}+{{vec{V}}_{o}})

Пройденный путь и время будет определять абсолютная скорость – та, что характеризует движение тела относительно неподвижной системы отсчета. В нашем случае – берега.

Можно объяснять проекциями, а можно просто понять. Куда легче плыть? По течению или против? Конечно, по течению! Оно подгоняет тебя.

В нашей ситуации Стэн сначала плывет против течения. Абсолютная скорость будет меньше собственной скорости лодки, ведь ее тормозит течение.

Давай запишем:

({{V}_{a1}}={{V}_{L}}-{{V}_{T}}) или (frac{L}{{{t}_{1}}}={{V}_{L}}-{{V}_{T}}), где ({{t}_{1}}) — время против течения.

Хорошо. Посмотрим, что может дать нам вторая часть задачи.

Здесь лодка идет по течению. Уравнение имеет вид:

(frac{L}{{{t}_{2}}}={{V}_{L}}+{{V}_{T}}), где ({{t}_{2}}) — время по течению

Таким образом, у нас есть система уравнений:

(frac{L}{{{t}_{2}}}={{V}_{L}}+{{V}_{T}})

(frac{L}{{{t}_{1}}}={{V}_{L}}-{{V}_{T}})

Нам неизвестна собственная скорость лодки. А нам она и не нужна! Вычтем одно уравнение из другого и получим:

(frac{L}{{{t}_{2}}}-frac{L}{{{t}_{1}}}=2cdot {{V}_{T}})

Отсюда нужно выразить время по течению:

({{t}_{2}}=frac{L}{2cdot {{V}_{T}}+frac{L}{{{t}_{1}}}})

Считаем:

({{t}_{2}}=frac{4}{2cdot 2.5+frac{4}{3}}approx 0.6) ч

36 минут потребуется Стэну, чтобы приплыть обратно.

Задача 11. По узкой лесной тропе колонной длиной в 30 метров идут туристы со скоростью 5 км/ч. Замыкающий посылает одного туриста в начало строя, чтобы тот передал гиду карту местности. Турист бежит в начало строя со скоростью 8 км/ч и, выполнив поручение, тут же бежит обратно с той же скоростью.

Сколько времени потребуется туристу, чтобы добежать до начала строя и вернуться обратно?

Решение: 

Начнем с рисунка. Есть колонна определенной длины (пусть будет l), она движется с определенной скоростью. Из начала выходит турист (Т) и движется с другой скоростью:

Смотри. Пока турист движется, колонна тоже движется. Значит туда он пробежит путь больше, чем обратно:

Выглядит сложно.

Ну да, конечно! Это как идти в школу в соседнем дворе и для этого каждый раз покупать билет в Антарктиду.

Нужно выбрать удобную систему отсчета!

Сделаем так, чтобы колонна была неподвижна. Будем рассматривать все относительно нее. Можно даже представить, что ты один из туристов 🙂

Сделаем другую картинку!

Если ты один из туристов, будет очевидно, что туда и обратно «посыльный» будет двигаться с разной скоростью.

Например, когда ты едешь по шоссе, кто кажется быстрее: машины, которые обгоняют твою или машины, которые едут на встречу? Очевидно, что те, кто едут навстречу.

 Теперь осталось определить, с какой скоростью турист движется туда и обратно.

Изначально он движется с колонной в одном направлении, то есть пытается ее обогнать. Результирующая скорость будет меньше его собственной:

({{V}_{1}}={{V}_{T}}-{{V}_{K}})

({{V}_{1}}=8-5=3) км/ч

Когда он движется обратно, колонна будет идти ему навстречу. Результирующая скорость будет больше:

({{V}_{2}}={{V}_{T}}+{{V}_{K}})

({{V}_{2}}=8+5=13) км/ч

Слишком быстро? Посиди и подумай. Мне не удастся просто вложить знания в твою голову. Ты сам тоже должен стараться!

Итак, из чего складывается время, затраченное туристом? Из времени туда и обратно!

(t={{t}_{1}}+{{t}_{2}})

Время в пути есть путь, деленный на скорость. Давай подставим:

(t=frac{l}{{{V}_{1}}}+frac{l}{{{V}_{2}}}=frac{l}{{{V}_{T}}-{{V}_{K}}}+frac{l}{{{V}_{T}}+{{V}_{K}}})

Теперь можем посчитать!

(t=frac{0.03}{3}+frac{0.03}{13}approx 0.0123)ч

Или приблизительно 44 секунды!

Задача решена! Оказывается, она очень простая, если верно выбрать систему отсчета.

Задачи в плоскости

Задача 12. Индейцы переплывают реку. Один из них, Красный Джо, встает напротив маленького причала и прыгает в воду, начиная плыть в его сторону со скоростью 2 м/с. Расстояние от причала до берега – 120 м. Течение реки имеет скорость 3 км/ч.

Куда на самом деле приплывет Красный Джо, позабывший духовную (и не только) связь своей скорости с рекой, и сколько времени на это уйдет?

Решение.

Итак, в мыслях индейцах он плыл бы так:

И это было бы верно, если бы он плыл в стоячей воде! Но течение изменяет его движение:

Он движется вперед и его еще переносит река! Обозначим расстояние, на которое его перенесет от причала, за Х. Его и нужно найти.

Еще нам дано расстояние до причала. Покажем на рисунке:

Как можно найти Х? Давай посмотрим, как движется тело по горизонтали. Оно просто смещается со скоростью течения, верно?

Значит, Х можно найти самым простым уравнением пути, которое мы знаем еще с пятого класса!

(X={{V}_{T}}cdot t)

Но как найти время?

Для этого нужно понять, что сносить его будет ровно столько времени, сколько он движется вперед.

То есть это то же время, что он затратил бы в стоячей воде, чтобы переплыть реку!

(t=frac{l}{{{V}_{K}}})

Подставим в уравнение выше:

(X={{V}_{T}}cdot frac{l}{{{V}_{K}}})  

Теперь можем ответить на все вопросы задачи! Только не забудь перевести все в единую систему единиц измерения.

В задачах на движение не особенно важно (если не сказано иное), какие использовать единицы измерения. Главное, чтобы везде в решении они были одинаковые, например, везде километры или везде метры, везде часы или везде секунды. Как тебе удобно.

3 км/ч примерно равняется 0.83 м/с.

Подставляем значения в формулы:

(X=0.83cdot frac{120}{2}=49.8)м

Найдем время:

(t=frac{120}{2}=60)c

Таким образом, Красному Джо потребуется 1 минута на то, чтобы переплыть реку и оказаться на расстоянии 49.8 метров от причала.

Но есть и другой способ решения, если этот кажется тебе подозрительно легким 🙂

Попробуем решить эту задачу геометрией!

Вектор скорости течения параллелен отрезку Х, который нам нужно найти. Давай используем параллельный перенос и поставим его в более удобное место:

Сумма векторов скорости Красного Джо и течения даст нам абсолютную скорость – скорость, с которой тело движется относительно берега.

Вектор абсолютной скорости будет лежать на пунктире, конец которого – положение Джо после преодоления реки.

А теперь рассмотрим подобные треугольники:

Теперь запишем для них уравнение подобия, используя известные нам величины:

(frac{l}{{{V}_{K}}}=frac{X}{{{V}_{T}}})

Отсюда можем легко найти Х:

(X=frac{lcdot {{V}_{T}}}{{{V}_{K}}})

У нас получилась та же самая формула!

Задача 13. При скорости ветра 12 м/с капли дождя падают под углом 30 градусов к вертикали. При какой скорости ветра они будут падать под углом 45 градусов?

Решение:

Приятно и легко смотреть на дождь в окне. А еще легче решить эту задачу.

Если в физике видишь углы, ты точно будешь использовать тригонометрию. От нее не убежишь.

Начертим рисунок. Прежде всего, у нас есть вектор скорости ветра и какая-то вертикаль:

Как бы падали капли без ветра? Просто вниз:

Для удобства будем рассматривать одну каплю.

В этой задаче ветер можно сравнить с течением реки!  Давай сделаем рисунок по этому сравнению!

Но где тут угол? Все просто: это будет угол вектора суммы! 

Именно этот вектор принадлежит абсолютной скорости – той, что описывает движение капли относительно земли (и вертикали)

Давай разбираться. Скорость капли при отсутствии ветра нам неизвестна.

Не пугайся. Надежда на то, что неизвестные сократятся, всегда умирает последней.

Нам известна скорость ветра. И угол.

Рассмотрим получившийся у нас треугольник: он прямоугольный, его гипотенуза – абсолютная скорость. Она тоже неизвестна.

Давай попробуем с помощью угла связать два катета этого треугольника! Здесь поможет тангенс. Это отношение противолежащего катета к прилежащему, то есть:

(tgalpha =frac{{{V}_{B}}}{{{V}_{K}}})

Без векторов, потому что мы рассматриваем их длины и работаем с треугольником!

Давай выразим скорость капли в безветренную погоду, она ведь не изменится, она просто дана (вообще-то не дана, ну ладно) нам как факт.

({{V}_{K}}=frac{{{V}_{B}}}{tgalpha })

То есть когда скорость ветра и угол изменятся, мы все еще можем записать:

({{V}_{K}}=frac{{{{{V}’}}_{B}}}{tgbeta })

Давай приравняем:

(frac{{{V}_{B}}}{tgalpha }=frac{{{{{V}’}}_{B}}}{tgbeta })

Нужно найти новую скорость ветра. Выразим ее:

(frac{{{V}_{B}}cdot tgbeta }{tgalpha }={{V}_{B}}^{prime })

Можем подставить значения:

({{{V}’}_{B}}=frac{12cdot tg{{45}^{o}}}{tg{{30}^{o}}}=frac{12cdot 3}{sqrt{3}}approx 20.8) м/с

Задача решена!

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Заключение

Мы разобрались с самым простым видом движения.

Необходимо очень хорошо разбираться даже в тех вещах, которые кажутся очевидными.

Дальше будет легче, ведь у нас уже есть хорошая база! Теперь будут меняться лишь характеристики движения.

Надеюсь, тебе понравились задачи 🙂

Все ли было понятно? Узнал ли ты что-то, о чем не рассказывали в школе?

Физическую задачу в кинематике можно решить несколькими способами:

  •  аналитический — решение задачи основано на формулах (физических законах), которые связывают искомую величину и данные в условии задачи;
  •  графический — решение задачи осуществляется с помощью графика.

Основные закономерности графического способа решения задач по кинематике

1.1. График зависимости модуля скорости (v(t)) равномерного движения от времени — прямая линия, параллельная оси (OX) (рис. (1)).

geogebra-export (15).png

Рис. (1). График модуля скорости равномерного движения

Если изображается зависимость проекции скорости от времени (v_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

1.2. Модуль перемещения (или пройденный путь при одномерном прямолинейном движении) на графике (v(t)) в момент времени (t_1) будет равен площади фигуры (прямоугольника) под графиком модуля скорости (рис. (2)).

график2.PNG

Рис. (2). Определение модуля перемещения по графику скорости

2.1. График модуля перемещения (s(t)) для равномерного движения (рис. (3)) — прямая под углом ({alpha}) к оси времени: 

график_перемещения.PNG

Рис. (3). График модуля перемещения

Если изображается зависимость проекции перемещения от времени (s_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

2.2. Модуль скорости равномерного движения на графике модуля перемещения (s(t)) равен тангенсу угла (tgalpha) наклона прямой на графике (рис. (4)).

График_перемещения2.PNG

Рис. (4). Определение модуля скорости по графику модуля перемещения

Решение задачи аналитическим и графическим способами

Два катера, между которыми расстояние (30) м, равномерно движутся навстречу друг другу со значениями модулей скоростей υ1 (=) (2) м/с и υ2 (=) (4) м/c. Определи время встречи катеров. Какой путь успеет пройти первый катер до встречи?

Дано:

начальная координата первого катера —

x01

 (=) (0) м, а второго —

x02

 (=) (30) м.  

Вектор скорости первого катера (vec{v_1}) сонаправлен оси (OX), его проекция будет положительна ({v_1}_x > 0), а вектор скорости второго катера (vec{v_2}) направлен противоположно оси (OX), поэтому его проекция будет отрицательна: ({v_2}_x < 0) (рис. (5)).

задание.PNG

Рис. (5). Задача

Аналитический способ решения

1. Запишем уравнения движения тел, исходя из формулы (x(t) = x_0 + v_x(t — t_0)).

2. В момент встречи (t_{встр}) тела будут иметь одинаковую координату (x_1 = x_2):

2tвстр=30−4tвстр;6tвстр=30;[tвстр]=мм/с=c;tвстр=306=5c.

 — расчёт времени встречи катеров.

3. Для ответа на второй вопрос воспользуемся следующей формулой:  

L=υ1⋅tвстр;[L]=мc⋅c=м;L=2⋅5=10м.

 — расчёт пути, пройденного первым катером до момента встречи (t_{встр}).

Графический способ решения

1. Запишем для первого катера уравнение движения:

x1=0+2t=2t

.

2. Заполним таблицу значений (x(t)) для построения графика движения первого катера.

(x), м (0) (2) (4)
(t), с (0) (1) (2)

3. Запишем для второго катера уравнение движения:

x2=30−4t

.

4. Заполним таблицу значений (x(t)) для построения графика движения второго катера.

(x), м (30) (26) (22)
(t), с (0) (1) (2)

5. Построим графики движений двух катеров.

анал играф.png

Рис. (6). График движения катеров

6. Находим по графику (рис. (6)):

а) время встречи (точка пересечения)

tвстр

 (=) (5) c;

б) путь, пройденный первым катером, равен изменению координаты (L) (=) (x(t_{встр})) 

x01

(=) (10) м.

Ответ: (5) с; (10) м.

Источники:

Рис. 1. График модуля скорости равномерного движения. © ЯКласс.

Рис. 2. Определение модуля перемещения по графику скорости. © ЯКласс.

Рис. 3. График модуля перемещения. © ЯКласс.

Рис. 4. Определение модуля скорости по графику модуля перемещения. © ЯКласс.

Рис. 5. Задача. © ЯКласс.

Рис. 6. График движения катеров. © ЯКласс.

Как найти место встречи двух тел

x = -3 + 2 * t – уравнение движение второго тела.

Необходимо найти время t и место встречи тел.

Для того, чтобы найти время встречи тел, приравняем оба уравнения (так как в месте встречи координаты х обоих тел будут одинаковы):

5 – 8 * t = -3 + 2 * t

2 * t + 8 * t = 5 + 3

Теперь найдем координату:

х = 5 – 8 * t = 5 – 8 * 0,8 = 5 – 6,4 = -1.4

Ответ: время встречи t = 0,8 секунд, место встречи х = -1,4.

  • 10 – 11 классы
  • Физика
  • 6 баллов

Найти место и время встречи двух тел 2 способами (графич. и аналит.)

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Ответ

Проверено экспертом

по графику видно: на расстоянии 16 метров через 4 секунды

Вопрос по физике:

Найти место и время
встречи двух тел 2 способами (графич. и аналит.)

Ответы и объяснения 2

Привет на это задаче 16 и 1000

Дано:
S1=2500м
S2=6000м
t1=40с
t2=20с
Найти место и время встречи двух тел.
решение:
Первое тело двигалось в правильном направлении по графику, второе тело двигалось в неправильном направлении по графику. Так первое тело проехало путь 2500м за 40с. Второе тело прошло путь 6000м за 20с. По графику видно, что они встретились в точке, где путь равен 1000м.
так навреное!

Знаете ответ? Поделитесь им!
Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи – смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Уравнение координаты при равноускоренном прямолинейном движении

Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.

В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:

а)

б)

в)

г)

По уравнениям движения двух тел х1 = 20t и х2 = 250 — 5t определите: а) место и время встречи этих тел;

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

2.2.1 Как перевести из км/ч в м/с и т. д?

В задачах часто необходимо переводить из одних единиц измерения в другие:

1 км/ч = (1000 м)/(3600 с) = 5/18 м/с,

1 м/с = 18/5 км/ч,

1 км/с = 1000 м/с,

1 см/с = 0,01 м/с,

1 м/мин = 1/60 м/с.

Например, если nu =36км/ч, то для того, чтобы перевести в м/с, нужно умножить на 5/18:

36 км/ч=36 умножить на дробь: числитель: 5, знаменатель: 18 конец дроби =10 м/с.

2.2.2 Как найти скорость тела, если известен закон движения?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Видим, что в этой формуле скорость стоит коэффициентом перед временем. Поэтому, если в условии задачи дан закон движения, необходимо посмотреть на коэффициент перед t — это и есть скорость.

Например, пусть закон движения имеет вид: x=3 плюс 5t. В данном случае коэффициент перед t равен 5, следовательно, nu_x=5 м/с.

2.2.3 Как определить скорость по графику координаты от времени?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Графиком этого закона является прямая линия. Так как nu_x — коэффициент перед t, то nu_x является угловым коэффициентом прямой.

Для графика 1:

nu_x_1= левая круглая скобка Delta x_1 правая круглая скобка / левая круглая скобка Delta t_1 правая круглая скобка .

То, что график 1 «поднимается вверх», означает — тело едет в положительном направлении оси Ox.

Для графика 2:

nu_x_2= левая круглая скобка Delta x_2 правая круглая скобка / левая круглая скобка Delta t_2 правая круглая скобка .

То, что график 2 «опускается вниз», означает — тело едет в отрицательном направлении оси Ox.

Для определения Delta x и Delta t выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.

2.2.4 Как найти закон движения, если известны координаты тела в моменты времени t_1 и t_2?

Пусть в момент времени t_1 тело находилось в точке с координатой x_1, а в момент времени t_2 тело находилось в точке с координатой x_2.

Для времени t_1 имеем:

x_1=x_0 плюс nu_x t_1.

Для времени t_2 имеем:

x_2=x_0 плюс nu_x t_2.

Решая систему уравнений (2.19) и (2.20), получим

nu_x= дробь: числитель: x_1 минус x_2, знаменатель: t_1 минус t_2 конец дроби , x_0= дробь: числитель: x_2 t_1 минус x_1 t_2, знаменатель: t_1 минус t_2 конец дроби .

2.2.5 Как найти графически момент и координату встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu _x_2 t. Согласно пункту 2.5 графиками обоих законов являются прямые линии. Необходимо на одном графике построить оба закона.

Графики пересекаются в одной точке. Координаты этой точки и являются временем и местом встречи.

2.2.6 Как аналитически найти координату и время встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu_x_2 t. В момент встречи тела оказываются в одной координате, то есть x_1=x_2, и необходимо решить уравнение:

x_01 плюс nu_x_1 t=x_02 плюс nu_x_2 t.

Решение уравнения имеет вид:

t_встр= дробь: числитель: |x_01 минус x_02|, знаменатель: |nu_x_1 минус nu_x_2| конец дроби .

Для нахождения координаты достаточно подставить вместо t найденное значение  t_встр в любой из законов движения:

x_встр=x_01 плюс nu_x_1 t_встр,

или

x_встр=x_02 плюс nu_x_2 t_встр.

2.2.7 Как найти среднюю скорость, если тело половину пути проехало со скоростью nu_1, а вторую половину пути nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как на каждой половине пути тело едет с постоянной скоростью, то

t=t_1 плюс t_2= дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_1 конец дроби 	 плюс дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_2 конец дроби = дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби

Получаем

nu_ср= дробь: числитель: L, знаменатель: дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби конец дроби = дробь: числитель: 2nu_1nu_2, знаменатель: nu_1 плюс nu_2 конец дроби .

В общем случае, если весь путь разбить на n равных участков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: n, знаменатель: дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 конец дроби плюс дробь: числитель: 1, знаменатель: nu_3 конец дроби плюс ... плюс дробь: числитель: 1, знаменатель: nu_n конец дроби конец дроби .

Формула справедлива только если весь путь разбит на равные участки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.8 Как найти среднюю скорость, если тело половину времени проехало со скоростью nu_1, а вторую половину времени nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как каждую половину времени тело едет с постоянной скоростью, то

L=L_1 плюс L_2= дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2.

Получаем

nu_ср= дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2, знаменатель: t конец дроби = дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка , знаменатель: t конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка .

В общем случае, если все время разбито на n равных промежутков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: 1, знаменатель: n конец дроби левая круглая скобка nu_1 плюс nu_2 плюс nu _3 плюс ⋯ плюс nu _4 правая круглая скобка .

Формула справедлива только если все время разбито на равные промежутки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.9 Как найти скорость, с которой движется моторная лодка по течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

При движении по течению вектора overrightarrownu_0 и vecu направлены в одну сторону, следовательно, получаем сложение двух векторов, направленных в одну сторону — используем формулу (1.15):

nu =nu_0 плюс u.

Таким образом, при движении любого тела по течению его скорость определяется формулой nu =nu_0 плюс u.

2.2.10 Как найти скорость, с которой движется моторная лодка против течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли) равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

Перепишем формулу в виде:

vecnu=overrightarrownu_0 минус левая круглая скобка минус vecnu правая круглая скобка .

Вектора overrightarrownu_0 и  левая круглая скобка минус vecnu правая круглая скобка направлены в одну сторону, следовательно, получаем вычитание двух векторов, направленных в одну сторону — используем формулу c=|a минус b|:

nu =nu_0 минус u.

2.2.11 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена перпендикулярно течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

В данном случае вектора overrightarrownu_0 и vecnu направлены перпендикулярно, следовательно, получаем задачу о сложении взаимно перпендикулярных векторов — используем формулу c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате .

2.2.12 Как найти расстояние, на которое снесет лодку, если ее скорость направлена перпендикулярно скорости реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OD. В результате, когда тело окажется на противоположном берегу, оно попадет в точке D, и его снесет на длину CD=S.

Треугольник OAB подобен треугольнику OCD:

 дробь: числитель: CD, знаменатель: AB конец дроби = дробь: числитель: OC, знаменатель: OA конец дроби Rightarrow дробь: числитель: S, знаменатель: u конец дроби = дробь: числитель: h, знаменатель: nu_0 конец дроби Rightarrow S=h дробь: числитель: u, знаменатель: nu_0 конец дроби .

2.2.13 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена под углом φ к скорости течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. Как видим, получили треугольник, в котором известен один из углов — левая круглая скобка 180 градусов минус фи правая круглая скобка . Тогда по теореме косинусов:

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате минус 2nu _0 u косинус ⁡ левая круглая скобка 180 градусов минус фи правая круглая скобка = корень из: начало аргумента: nu _0 конец аргумента в квадрате плюс u в квадрате плюс 2nu_0 u косинус ⁡ фи .

2.2.14 Как найти расстояние, на которое снесет лодку, если ее скорость направлена под углом  фи к скорости течения реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. В результате, когда тело окажется на противоположном берегу, оно попадет в точке В, и его снесет на длину АВ=S.

В задачах, когда движение происходит в плоскости, то есть и вдоль оси Ox, и вдоль оси Oy, необходимо введение системы координат для того, чтобы упростить рассмотрение задачи.

Проекция nu_x:

nu_x=nu _0 косинус ⁡ фи плюс u.

Проекция nu_y:

nu _y=nu_0 синус ⁡ фи .

Формулы nu_x=nu _0 косинус ⁡ фи плюс u и nu _y=nu_0 синус ⁡ фи не просто результат математической операции нахождения проекции, nu_x и nu_y имеют физический смысл: со скоростью nu_x тело плывет вдоль оси Ox, то есть по течению; со скоростью nu_y тело переплывает реку. Например, время, за которое тело переплывет реку, можно найти просто поделив ширину реки на nu_y:

t_0= дробь: числитель: h, знаменатель: nu_y конец дроби = дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби .

Тогда

S=nu_xt_0= дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби левая круглая скобка nu_0 косинус фи плюс u правая круглая скобка .

2.2.15 Под каким углом α нужно направить собственную скорость лодки, чтобы за минимальное время переплыть реку?

Согласно формуле nu _y=nu_0 синус ⁡ фи скорость, с которой лодка переплывает реку, равна:

nu_y=nu_0 синус ⁡ фи .

Очевидно, что время будет минимальным, если nu_y будет максимальным, то есть  фи =90 градусов= дробь: числитель: Пи , знаменатель: 2 конец дроби .

2.2.16 С какой скоростью машина обгоняет вторую машину, если они движутся в одну сторону?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина также движется вправо со скоростью overrightarrownu_2. Скорость обгона — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как overrightarrownu_1 и overrightarrownu_2 направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_обгона=nu_1 минус nu_2.

Заметим, что при обгоне, естественно nu_1 больше nu_2, поэтому nu_обгона больше 0.

2.2.17 За какое время проедут мимо друг друга два поезда, двигающиеся в одном направлении?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_обгона конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 минус nu_2 конец дроби .

2.2.18 С какой скоростью машина едет навстречу вторую машину, если они движутся в противоположных направлениях?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется влево со скоростью overrightarrownu_2. Скорость движения навстречу — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Перепишем эту формулу в виде:

overrightarrownu_отн=overrightarrownu_1 минус левая круглая скобка минус overrightarrownu_2 правая круглая скобка .

Так как overrightarrownu_1 и  левая круглая скобка минус overrightarrownu_2 правая круглая скобка направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_встр=nu_1 минус левая круглая скобка минус nu_2 правая круглая скобка =nu_1 плюс nu_2.

2.2.19 За какое время проедут мимо друг друга два поезда, двигающиеся в противоположных направлениях?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_встр конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 плюс nu_2 конец дроби .

2.2.20 Как найти относительную скорость, если тела движутся по взаимно перпендикулярным направлениям?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется перпендикулярно первой со скоростью overrightarrownu_2. Относительная скорость определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как вектора overrightarrownu_1 и overrightarrownu_2 перпендикулярны, то воспользуемся формулой c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu_отн= корень из: начало аргумента: nu_1 конец аргумента в квадрате плюс nu_2 в квадрате .

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Installing drivers failed samfirm как исправить
  • Как найти сторону через коэффициент подобия треугольников
  • Как найти пропорции лица
  • Как по почтовому адресу найти человека
  • Как правильно составить речь для защиты в суде

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии