Как найти медиану равнобедренного треугольника зная основание

В данной статье мы рассмотрим определение и свойства медиан, проведенных к основанию и боковым сторонам равнобедренного треугольника, а также разберем пример решения задачи для закрепления теоретического материала.

  • Определение медианы

  • Свойства медианы в равнобедренном треугольнике

    • Свойство 1

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

    • Свойство 6

  • Пример задачи

Определение медианы

Медианой называется отрезок в треугольнике, который соединяет вершину и середину противоположной стороны.

Медиана в равнобедренном треугольнике проведенная к основанию

  • BD – медиана △ABC;
  • AD = DC.

Треугольник является равнобедренным, если две его стороны равны (боковые), а третья сторона – это основание фигуры.

  • AB = BC – боковые стороны;
  • AC – основание.

Свойства медианы в равнобедренном треугольнике

Свойство 1

Медиана в равнобедренном треугольнике, проведенная к основанию, одновременно является высотой, опущенной на основание, и биссектрисой угла, из которого она проведена.

Медиана проведенная к основанию равнобедренного треугольника

  • BD – медиана и высота, опущенная на основание AC, а также биссектриса угла ABC.
  • ∠ABD = ∠CBD

Свойство 2

В равнобедренном треугольнике медианы пресекаются в одной точке (центр тяжести) и делятся в этой точке в отношении 2:1.

Деление медиан в точке пересечения в равнобедренном треугольнике

  • O – центр тяжести или центроид треугольника;
  • AO = 2OF;
  • BO = 2OD;
  • CO = 2OE.

Свойство 3

Медиана делит равнобедренный треугольник на 2 равных по площади (равновеликих) треугольника. Следовательно, S1 = S2.

Деление медианой равнобедренного треугольника на 2 равновеликих треугольника

Свойство 4

Если провести три медианы в равнобедренном треугольнике, образуются 6 равновеликих треугольников (S1 = S2 = S3 = S4 = S5 = S6).

Деление медианами равнобедренного треугольника на 6 равновеликих треугольников

Свойство 5

Длину медианы в равнобедренном треугольнике, проведенную к основанию, можно найти по следующей формуле:

Формула расчета медианы к основанию равнобедренного треугольника через длины его сторон

  • a – основание;
  • b – боковая сторона.

Свойство 6

Данной свойство, в отличие от перечисленных выше, не относится к медиане, опущенной на основание фигуры. Оно гласит:

Медианы, проведенные к боковым сторонам равнобедренного треугольника, равны между собой.

Медианы проведенные к боковым сторонам равнобедренного треугольника

AF = CE, следовательно, AE = EB = BF = FC.

Пример задачи

Основание равнобедренного треугольника равняется 7 см, а боковая сторона – 12 см. Найдите длину медианы, проведенной к основанию фигуры.

Решение
Воспользуемся формулой, представленной в Свойстве 5, подставив в нее известные нам по условиям задачи значения:

Расчет медианы к основанию равнобедренного треугольника через длины его сторон

Определение и свойства медианы в равнобедренном треугольнике

В данной статье мы рассмотрим определение и свойства медиан, проведенных к основанию и боковым сторонам равнобедренного треугольника, а также разберем пример решения задачи для закрепления теоретического материала.

Определение медианы

Медианой называется отрезок в треугольнике, который соединяет вершину и середину противоположной стороны.

Треугольник является равнобедренным, если две его стороны равны (боковые), а третья сторона – это основание фигуры.

  • AB = BC – боковые стороны;
  • AC – основание.

Свойства медианы в равнобедренном треугольнике

Свойство 1

Медиана в равнобедренном треугольнике, проведенная к основанию, одновременно является высотой, опущенной на основание, и биссектрисой угла, из которого она проведена.

  • BD – медиана и высота, опущенная на основание AC, а также биссектриса угла ABC.
  • ∠ABD = ∠CBD

Свойство 2

В равнобедренном треугольнике медианы пресекаются в одной точке (центр тяжести) и делятся в этой точке в отношении 2:1.

Свойство 3

Медиана делит равнобедренный треугольник на 2 равных по площади (равновеликих) треугольника. Следовательно, S1 = S2.

Свойство 4

Если провести три медианы в равнобедренном треугольнике, образуются 6 равновеликих треугольников (S1 = S2 = S3 = S4 = S5 = S6).

Свойство 5

Длину медианы в равнобедренном треугольнике, проведенную к основанию, можно найти по следующей формуле:

Свойство 6

Данной свойство, в отличие от перечисленных выше, не относится к медиане, опущенной на основание фигуры. Оно гласит:

Медианы, проведенные к боковым сторонам равнобедренного треугольника, равны между собой.

AF = CE, следовательно, AE = EB = BF = FC.

Пример задачи

Основание равнобедренного треугольника равняется 7 см, а боковая сторона – 12 см. Найдите длину медианы, проведенной к основанию фигуры.

Решение
Воспользуемся формулой, представленной в Свойстве 5, подставив в нее известные нам по условиям задачи значения:

Равнобедренный треугольник: свойства, признаки и формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, AH = HC и BH — медиана.

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

Как найти медиану в равнобедренном треугольнике

Вчера ко мне подошла старшая дочь и спросила: «Мам, ты знаешь, как найти медиану в равнобедренном треугольнике?» Я в панике начала вспоминать, а что такое медиана? Многое из геометрии я помню, но тема медиан вылетела из головы. Почитав немного теории в учебнике, конечно, я сразу вспомнила и про медианы, и про треугольники. И скажу, что на практике все намного проще, чем в теории.

Вычисление медианы по двум сторонам треугольника

Вообще, медиана – это отрезок, проведенный из угла треугольника к противоположной ему стороне, при этом поделив эту сторону на две равные части.

В равнобедренном треугольнике две стороны и два угла у основания равны. А медиана, проведенная к основанию, не только делит его пополам, но еще и является высотой. Высота в свою очередь образует с основанием прямой угол.

Равнобедренный треугольник поделился на два одинаковых прямоугольных. Высота h в таком треугольнике – это один из катетов. По теореме Пифагора найдем этот катет:

Квадрат катета – это разность квадрата гипотенузы и квадрата второго катета.
Значит, катет – квадратный корень из разности квадрата гипотенузы и квадрата второго катета.

Предположим, в условии даны стороны равнобедренного треугольника: a и b. Из этого следует, что в прямоугольном треугольнике получилась гипотенуза a и катет b / 2.

Подставляем значения и получаем, что высота равна:

Например, дано: a = 5, b = 6. Найти: h = ?

  1. a ^ 2 = 25
  2. (b ^ 2) / 4 = 9
  3. h ^ 2 = (a ^ 2) – (b ^ 2)
  4. h ^ 2 = 25 – 9
  5. h ^ 2 = 16
  6. h = 4

Вычисление медианы по основанию и площади треугольника

Если из условия задачи мы знаем площадь равнобедренного треугольника и его основание, то без труда найдем медиану.

  • Площадь равнобедренного треугольника находится по формуле:
    S = (b * h) / 2
  • Выражаем h:
    h = 2S / b
  • Например, дано: площадь S = 12, основание b = 6. Найти медиану h.
    h = 2 * 12 / 6
    h = 4

Пока я помогала дочери решать задачи, поняла, что их школьное детство намного проще нашего. Мало того, что все формулы есть в интернете, так еще есть и онлайн-калькуляторы, которые выдают правильный ответ и подробное решение за секунду! Однако это скорее минус. Нам приходилось запоминать все формулы и правила, а сегодняшние дети полагаются на мобильных помощников.

Теперь вы знаете, как найти медиану в равнобедренном треугольнике, это просто и быстро: всего несколько коротких действий. В учебнике по математике найдется много вариантов этой задачи, но само решение основывается на теореме Пифагора. Эта теорема запоминается еще с первых уроков геометрии и остается в памяти навсегда.

источники:

http://skysmart.ru/articles/mathematic/chto-takoe-ravnobedrennyj-treugolnik

http://dobriy-sovet.ru/kak-najti-medianu-v-ravnobedrennom-treugolnike/

Вчера ко мне подошла старшая дочь и спросила: «Мам, ты знаешь, как найти медиану в равнобедренном треугольнике?» Я в панике начала вспоминать, а что такое медиана? Многое из геометрии я помню, но тема медиан вылетела из головы. Почитав немного теории в учебнике, конечно, я сразу вспомнила и про медианы, и про треугольники. И скажу, что на практике все намного проще, чем в теории.

Как найти медиану в равнобедренном треугольнике

Вычисление медианы по двум сторонам треугольника

Вообще, медиана – это отрезок, проведенный из угла треугольника к противоположной ему стороне, при этом поделив эту сторону на две равные части.

В равнобедренном треугольнике две стороны и два угла у основания равны. А медиана, проведенная к основанию, не только делит его пополам, но еще и является высотой. Высота в свою очередь образует с основанием прямой угол.

Равнобедренный треугольник поделился на два одинаковых прямоугольных. Высота h в таком треугольнике – это один из катетов. По теореме Пифагора найдем этот катет:

Квадрат катета – это разность квадрата гипотенузы и квадрата второго катета.
Значит, катет – квадратный корень из разности квадрата гипотенузы и квадрата второго катета.

Предположим, в условии даны стороны равнобедренного треугольника: a и b. Из этого следует, что в прямоугольном треугольнике получилась гипотенуза a и катет b / 2.

Подставляем значения и получаем, что высота равна:

Как найти медиану в равнобедренном треугольникеНапример, дано: a = 5, b = 6. Найти: h = ?

  1. a ^ 2 = 25
  2. (b ^ 2) / 4 = 9
  3. h ^ 2 = (a ^ 2) – (b ^ 2)
  4. h ^ 2 = 25 – 9
  5. h ^ 2 = 16
  6. h = 4

Вычисление медианы по основанию и площади треугольника

Если из условия задачи мы знаем площадь равнобедренного треугольника и его основание, то без труда найдем медиану.

  • Площадь равнобедренного треугольника находится по формуле:
    S = (b * h) / 2
  • Выражаем h:
    h = 2S / b
  • Например, дано: площадь S = 12, основание b = 6. Найти медиану h.
    h = 2 * 12 / 6
    h = 4

Пока я помогала дочери решать задачи, поняла, что их школьное детство намного проще нашего. Мало того, что все формулы есть в интернете, так еще есть и онлайн-калькуляторы, которые выдают правильный ответ и подробное решение за секунду! Однако это скорее минус. Нам приходилось запоминать все формулы и правила, а сегодняшние дети полагаются на мобильных помощников.

Как найти медиану в равнобедренном треугольникеТеперь вы знаете, как найти медиану в равнобедренном треугольнике, это просто и быстро: всего несколько коротких действий. В учебнике по математике найдется много вариантов этой задачи, но само решение основывается на теореме Пифагора. Эта теорема запоминается еще с первых уроков геометрии и остается в памяти навсегда.

Видео по теме


Подпишитесь на наши интересные статьи в соцетях!

Или подпишитесь на рассылку


A triangle is said to be isosceles if it has any of the two sides equal. Median is a line, joining a vertex of an isosceles triangle to the mid point of the opposite side. Median of Isosceles triangle is same as altitude as it is drawn from vertex. The intersection of all three median is called as centroid. With two equal sides, the Euler line coincides with the axis of symmetry. Calculate median of two sides by using this median of Isosceles triangle calculator.

Calculate Median of Two Sides

A triangle is said to be isosceles if it has any of the two sides equal. Median is a line, joining a vertex of an isosceles triangle to the mid point of the opposite side. Median of Isosceles triangle is same as altitude as it is drawn from vertex. The intersection of all three median is called as centroid. With two equal sides, the Euler line coincides with the axis of symmetry. Calculate median of two sides by using this median of Isosceles triangle calculator.

Code to add this calci to your website Expand embed code Minimize embed code

Formula:

m=√(a2+2b2)/2

Where,
m = median of two sides of isosceles triangle
b = base length of isosceles triangle
a = side length of isosceles triangle

Example:

An Isosceles triangle with base length as 12cm and side length as 9cm. Find the median of two sides of isosceles triangle.

Solution

m = √(a2+2b2)/2)
= √(92+2×122)/2)
= 9.6047 cm

Related Calculators:

  • Centroid Of Isosceles Triangle Calculator
  • Circumcenter Of A Triangle
  • Orthocenter Of A Triangle
  • Draw A Triangle
  • Base Length Of An Isosceles Triangle Calculator
  • Base Median Of Isosceles Triangle Calculator

Как и при нахождении медианы произвольного треугольника по трем его сторонам, медиана  боковой стороны равнобедренного треугольника может быть найдена с помощью дополнительного построения.

Задача.

Основание равнобедренного треугольника равно 8√2 см, а боковая сторона — 12 см. Найти длину медианы треугольника проведенной к боковой стороне.

Mediana bokovoy storonyi ravnobedrennogo treugolnikaДано: ∆ ABC,

AB=BC=12 см,

AC=8√2 см,

AO — медиана.

Найти: AO.

Решение:

Mediana k bokovoy storone ravnobedrennogo treugolnika

1) На луче AO отложим отрезок OD, OD=AO.

Mediana ravnobedrennogo treugolnika k bokovoy storone

2) Соединим точку D с точками B и C.

3) Рассмотрим четырехугольник ABDC.

BO=CO (так как AO — медиана треугольника ABC по условию);

AO=DO (по построению).

Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ABDC — параллелограмм (по признаку).

По свойству диагоналей параллелограмма,

    [A{D^2} + B{C^2} = 2(A{B^2} + A{C^2})]

    [A{D^2} + {12^2} = 2({12^2} + {(8sqrt 2 )^2})]

    [A{D^2} = {12^2} + 64 cdot 2]

    [A{D^2} = {12^2} + 2 cdot 64 cdot 2]

    [A{D^2} = 400]

    [AD = 20]

    [AO = frac{1}{2}AD = frac{1}{2} cdot 20 = 10(cm)]

Ответ: 10 см.

Mediana k bokovoy storone

Если ввести обозначение AC=a, AB=BC=b, то получим формулу для нахождения медианы равнобедренного треугольника, проведенной к боковой стороне:

    [A{D^2} + {b^2} = 2({a^2} + {b^2})]

    [A{D^2} = 2{a^2} + {b^2}]

    [AD = sqrt {2{a^2} + {b^2}} ]

    [AO = frac{1}{2}sqrt {2{a^2} + {b^2}} ]

    [AO = {m_b}, Rightarrow underline {{m_b} = frac{1}{2}sqrt {2{a^2} + {b^2}} } ]

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти обувь по штрих коду
  • Как найти iphone на сайте apple
  • Как найти соседа в социальная сеть
  • Как найти массу нефтепродукта
  • Ошибка h2o в стиральной машине indesit как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии