Лабораторная работа № 5
Тема: «ИЗМЕРЕНИЕ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ»
Цель: определить коэффициент поверхностного натяжения воды методом отрыва капель.
Оборудование: сосуд с водой, шприц, сосуд для сбора капель.
Теория.
Молекулы поверхностного слоя жидкости обладают избытком потенциальной энергии по сравнению с энергией молекул, находящихся внутри жидкости
Как и любая механическая система, поверхностный слой жидкости стремится уменьшить потенциальную энергию и сокращается. При этом совершается работа А:
где σ — коэффициент поверхностного натяжения. Единицы измерения Дж/м2 или Н/м
или
где F – сила поверхностного натяжения, l – длина границы поверхностного слоя жидкости.
Поверхностное натяжение можно определять различными методами. В лабораторной работе используется метод отрыва капель.
Опыт осуществляют со шприцом, в котором находится исследуемая жидкость. Нажимают на поршень шприца так, чтобы из отверстия узкого конца шприца медленно падали капли. Перед моментом отрыва капли сила тяжести Fтяж=mкапли·g равна силе поверхностного натяжения F, граница свободной поверхности – окружность капли
l=π·dкапли
Следовательно:
Опыт показывает, что dкапли =0,9d, где d – диаметр канала узкого конца шприца.
Массу капли можно найти, посчитав количество капель n и зная массу всех капель m.
Масса капель m будет равна массе жидкости в шприце. Зная объем жидкости в шприце V и плотность жидкости ρ можно найти массуm=ρ·V
Ход работы.
1. Подготовьте оборудование: Начертите таблицу:
№ опыта |
Масса капель m, кг |
Число капель n |
Диаметр канала шприца d, м |
Поверхност-ное натяжение σ, Н/м |
Среднее значение поверхностного натяжения σср, Н/м |
Табличное значение σтаб, Н/м |
Относительная погрешность δ % |
1 |
1*10-3 |
2,5*10-3 |
0,072 |
||||
2 |
2*10-3 |
2,5*10-3 |
|||||
3 |
3*10-3 |
2,5*10-3 |
Опыт 1
- Наберите в шприц 1 мл воды («один кубик»).
- Подставьте под шприц сосуд для сбора воды и, плавно нажимая на поршень шприца, добейтесь медленного отрывания капель. Подсчитайте количество капель в 1 мл и результат запишите в таблицу.
- Вычислите поверхностное натяжение по формуле
Результат запишите в таблицу.
- Повторите опыт с 2 мл и 3 мл воды.
- Найдите среднее значение поверхностного натяжения
Результат запишите в таблицу.
- Сравните полученный результат с табличным значением поверхностного натяжения с учетом температуры.
- Определите относительную погрешность методом оценки результатов измерений.
Результат запишите в таблицу.
- Сделайте вывод.
КОНТРОЛЬНЫЕ ВОПРОСЫ.
- Почему поверхностное натяжение зависит от рода жидкости?
- Почему и как зависит поверхностное натяжение от температуры?
- Изменится ли результат вычисления поверхностного натяжения, если опыт проводить в другом месте Земли?
- Изменится ли результат вычисления, если диаметр капель трубки будет меньше?
- Почему следует добиваться медленного падения капель?
Вариант выполнения лабораторной работы.
Результаты измерений:
Количество капель в 1 мл — 21
Количество капель в 2 мл — 40
Количество капель в 3 мл — 59
На представленной здесь картинке, капля задерживается на конце трубки за счет силы поверхностного натяжения. Сила эта пропорциональна длине границы между жидкостью и трубкой и равна
,
где — коэффициент поверхностного натяжения, измеряемый в ньютонах на метр, Н/м.
Капля не отрывается, очевидно, пока эта сила способна нейтрализовать силу тяжести, действующую на каплю в вертикальной проекции, то есть
При увеличении массы капли, то есть при ее росте, угол альфа будет стремиться к 90 градусам, и, в состоянии равновесия сил, формула примет вид
, откуда
масса капли
Рассчитав подобным образом массу и зная плотность жидкости, объем посчитать тривиально.
На самом деле, конечно, не вполне так, потому что место отрыва обычно немного ниже конца трубки, и отрыв происходит в месте формирования так называемой шейки, где диаметр несколько меньше чем диаметр трубки, но там, где не требуется очень большая точность, этим обычно пренебрегают.
Мне захотелось также оценить максимальный диаметр трубки, при котором еще возможно образование на ее конце капель. В оценке я исходил из того, что образование капли возможно тогда, когда силы поверхностного натяжения еще способны удерживать как минимум полусферу. Отсюда, опять же зная плотность жидкости, можно представить формулу следующим образом
и, соответственно,
Пара слов о калькуляторе ниже. Во первых, калькулятор не рассчитывает массу и объем капли при превышении диаметра трубки оценки, сделанной выше. Во-вторых, значения плотности и коэффициента поверхностного натяжения по умолчанию соответствуют воде.
Поверхностное натяжение. Масса и объем капли
Поверхностное натяжение, Н/м
Поверхностное натяжение жидкости, Н/м
Плотность жидкости, кг/м3
Ускорение св. падения, м/с2
Ускорение свободного падения, м/с2
Точность вычисления
Знаков после запятой: 3
Максимальная масса капли, г
Максимальный объем капли, cм3
Максимальный диаметр капилляра, м
Сталагмометрический метод основан на измерении массы капель Р, образующихся при вытекании жидкости из вертикальной трубки с радиусом выходного отверстия r. Расчет проводят по формуле
, (1.1.67)
где f (r/a) – некоторая функция, определяемая из таблиц Гаркинса и Брауна; а – капиллярная постоянная.
Если жидкости хорошо смачивают материал капилляра, то, пренебрегая различием между углами смачивания, можно проводить относительное измерение поверхностного натяжения, используя стандартную жидкость. В этом случае обычно принимают, что масса капли Р в момент отрыва пропорциональна поверхностному натяжению на границе раздела жидкость–пар, т.е.
Р = ks , (1.1.68)
где k – постоянная данного прибора.
Массу одной капли определяют, подсчитывая число капель (n), вытекающих из сталагмометра объемом V:
. (1.1.69)
При калибровке сталагмометра стандартной жидкостью , поэтому
. (1.1.70)
Рис. 1.10. Схема автоматизированного сталагмометра
Таким образом, зная плотность жидкости и число вытекающих капель, можно найти поверхностное натяжение исследуемой жидкости.
В общем случае сталагмометр, предназначенный для измерения поверхностного натяжения жидкости на границе с газом (паром) состоит (рис. 1.10) из толстостенной трубки 5 с калиброванным выходным отверстием; шарообразного сосуда с метками, ограничивающими объем жидкости, дози-рующего устройства 1 позволяющего изменять и стабилизировать скорость истечения жидкости из капилляра; специального устройства, фиксирующего моменты начала и конца истечения жидкости 2; устройства 3, устанавливающего или регистрирующего промежутки времени между двумя последовательно образующимися каплями. Устройство 4 может обрабатывать данные от блоков 2 и 3 и после обработки выдавать результат измерения в виде значений поверхностного натяжения с учетом поправочных коэффициентов.
Рис. 1.11. Схема простейшего сталагмометра
На рис. 1.11 показана схема простейшего сталагмометра, который представляет собой сферический пузырек В известного объема Vk, ограниченный метками b и d и соединенный с двумя калиброванными капиллярами, имеющими объем каждого деления vе. Сталагмометр заполняют жидкостью, затем позволяют мениску очень медленно перемещаться по капилляру, перекрывая частично доступ воздуха в капилляр А с помощью резиновой трубки и зажима таким образом, чтобы каждая капля образовывалась за время не менее 4 с. После падения первой капли проводится отсчет деления, соответствующего верхнему мениску a в капилляре А (n делений от метки a). Скорость последующего образование капель также контролируют и устанавливают время образования капли не менее 4–5 с. После достижения мениском метки, например e в нижнем капилляре C (m делений от метки d), определяют объем одной капли при числе подсчитанных вытекших из сталагмометра капель N :
. (1.1.71)
Если использовать относительный метод определения поверхностного натяжения водных растворов ПАВ с использованием в качестве стандартной жидкости воды, то его расчет можно проводить по формуле
. (1.1.72)
К недостаткам сталагмометрического метода можно отнести возможность испарения жидкости с поверхности капель при их длительном образовании и необходимость введения поправочных коэффициентов для точного определения поверхностного натяжения.
При учете всех поправок погрешность сталагмометрического метода не превышает 1%. Метод используется для измерения полустатического поверхностного натяжения при продолжительности образования капли 2–10 с. На практике допускается быстрое увеличение объема капли до V = 0,95 Vпр, где Vпр – предельный объем капли. Дальнейший рост объема необходимо проводить медленно — в течении нескольких минут. Кроме того, в процессе отрыва капли через определенный промежуток времени формируются две капли, меньшая из которых, известная как «сфера Плато», образуется из шейки первичной капли. Часто эта часть капли остается на конце капилляра. Поэтому на конце капилляра может оставаться до 40% массы первоначально сформировавшейся капли, а отрывается только часть капли, достигшая зоны нестабильности. Именно это учитывается поправкой f (r/a).
Метод взвешивания или счета капель можно использовать и для определения межфазного натяжения на границе двух жидкостей при выдавливании по каплям одной жидкости в другую. В этом случае для расчета используются те же уравнения с поправкой на массу жидкости, вытесненной при формировании капли.
Верного ответа на вопрос нет. Ведь и обычных капель не бывает. Если мы берем трубки с диаметров в 1 мм и в 1 см, то и с первой, и со второй сорвётся капля. Но размеры таковых будут разными, как и их вес. Но если мы возьмем две одинаковые трубочки, но две разные жидкости (масло и вода, вода и спирт), то получим разные капли. А если речь о сосульках, с которых стекают капли, то радиус таковых тоже разный.
Проще действительно отталкиваться от медицинских стандартов. Дозаторы на лекарствах создают таковыми, чтобы 1 мл водного раствора содержал 20 капель. То есть, объем капли равен 0,05 мл. То есть, с учетом плотности воды, около 0,05 мг. Потому на упаковках пишут, мол, 1 мл — это столько-то капель, если использовать капельницу на упаковке.
Сегодня поверхностно рассматриваем тему поверхностного натяжения и решаем соответствующие задачи по физике.
Даже если вы не большой любитель жидкости, подписывайтесь на наш телеграм-канал, это интересно и полезно для всех.
Поверхностное натяжение, задачи
Задача №1. Поверхностное натяжение
Условие
Для определения коэффициента поверхностного натяжения воды была использована пипетка с диаметром выходного отверстия d=2 мм. Оказалось, что n=40 капель имеют массу m=1,9 г. Каким по этим данным получится коэффициент поверхностного натяжения «сигма»?
Решение
На каплю действует сила тяжести и сила поверхностного натяжения. Эти силы уравновешивают друг друга. Из условия задачи можно найти массу одной капли m0 и длину ее окружности l:
Далее запишем условие равновесия капли:
Отсюда находим коэффициент поверхностного натяжения:
Ответ: 75,63*10^-3 Н/м.
Задача №2. Капиллярные явления
Условие
В капиллярной трубке радиусом 0,5 мм жидкость поднялась на высоту 11 мм. Оценить плотность данной жидкости, если ее коэффициент поверхностного натяжения равен 22 мН/м.
Решение
Для капилляра существует формула:
Альфа в этой формуле – угол смачивания стенки капилляра жидкостью. Пример его равным 90 градусов.
Ответ: 800 килограмм на кубический метр.
Задача №3. Поверхностное натяжение
Условие
В дне сосуда со ртутью имеется круглое отверстие диаметром 70 мкм. При какой максимальной высоте слоя ртути H она не будет вытекать через отверстие?
Решение
Ртуть не будет вытекать до тех пор, пока сила ее давления не превысит силу поверхностного натяжения:
Значения коэффициента поверхностного натяжения разных жидкостей берутся в справочнике.
Ответ: 0,2 м.
Задача №4. Поверхностное натяжение
Условие
Швейная игла имеет длину 3,5 см и массу 0,3 г. Будет ли игла лежать на поверхности воды, если ее положить аккуратно?
Решение
Найдем силу тяжести, которая действует на иглу и сравним ее с силой поверхностного натяжения.
Ответ: Так как сила тяжести больше, игла утонет.
Задача №5. Поверхностное натяжение
Условие
Тонкое алюминиевое кольцо радиусом 7,8 см соприкасается с мыльным раствором. Каким усилием можно оторвать кольцо от раствора? Температуру раствора считать комнатной. Масса кольца 7 г.
Решение
На кольцо действуют силы поверхностного натяжения, сила тяжести и внешняя сила, стремящаяся оторвать кольцо от поверхности. Найдем силу поверхностного натяжения:
Множитель «2» используется в формуле, так как кольцо взаимодействует с жидкостью двумя своими сторонами.
Теперь запишем условие отрыва кольца:
Значение поверхностного натяжения мыльного раствора при комнатной температуре возьмем из таблицы, подставим числа, и получим:
Ответ: 0,11 Н.
Вопросы на тему «Поверхностное натяжение и свойства жидкостей»
Вопрос 1. Что такое жидкость?
Ответ. Жидкость – физическое тело, которое не может самостоятельно сохранять свою форму. Агрегатное состояние вещества между твердым телом и газом.
Вопрос 2. Какие свойства жидкости вы знаете?
Ответ. Среди основных свойств жидкости можно выделить:
- текучесть;
- вязкость;
- сохранение объема;
- поверхностное натяжение.
Вопрос 3. Что такое поверхностное натяжение?
Ответ. Поверхностное натяжение – это явление, при котором жидкость стремиться приобрести форму с наименьшей возможной площадью поверхности.
Примеры поверхностного натяжения в природе:
- Именно благодаря поверхностному натяжению в поле силы тяжести Земли жидкость приобретает форму капли.
- В отсутствие силы тяжести жидкости капля примет шарообразную форму.
- Водомерка удерживается на поверхности воды благодаря силе поверхностного натяжения.
Коэффициент поверхностного натяжения – коэффициент, равный работе, которую необходимо совершить для образования поверхности жидкости площадью S при постоянной температуре.
Вопрос 4. Что такое капиллярные явления?
Ответ. Капиллярные явления – подъем или опускание жидкости в капиллярах (трубках малого диаметра).
Вопрос 5. Что называется смачиванием?
Ответ. Смачивание – это искривление поверхности жидкости вблизи твердого тела. Возникает из-за взаимодействия молекул жидкости с молекулами твердого тела.
Количественная характеристика этого явления – угол смачивания.
Нужна помощь в решении заданий по учебе? Профессиональный студенческий сервис всегда готов ее оказать! Оформляйте заявку в любое время суток и забудьте о наболевших вопросах.