Как найти массу спутника формула

Характеристики планет Солнечной системы были известны еще в средневековье, во времена Кеплера и Галилея. То есть, массу планет приблизительно можно было определить даже простыми методами и инструментами. В современной астрономии есть несколько методов расчета характеристик планет, звезд, скоплений и галактик.

Планеты солнечной системы

Планеты солнечной системы

Интересный факт: 99,9% всей массы Солнечной системы сосредоточена в самом Солнце. На все планеты вместе взятые приходится не более 0,01%. При этом из этих 0,01%, в свою очередь, 99% массы приходится на газовые гиганты (в том числе 90% только на Юпитер и Сатурн).

Содержание:

  • 1 Рассчитываем массу Земли и Луны
  • 2 Общие методики определения масс планет
  • 3 Значения масс планет Солнечной системы
  • 4 Определение масс звезд и галактик

Рассчитываем массу Земли и Луны

Чтобы измерить массу планет солнечной системы, проще всего в первую очередь найти значения для Земли. Как мы помним, ускорение свободного падения определяется по формуле F=mg, где m – масса тела, а F – действующая на него сила.

Параллельно вспоминаем универсальный закон всемирного тяготения Ньютона:

Сопоставив эти две формулы, и зная значение гравитационной постоянной 6,67430(15)·10−11 м³/(кг·с²), можно рассчитать массу Земли. Ускорение свободного падения на Земле мы знаем, 9,8 м/с2, радиус планеты тоже. Подставив все данные на выходе получим приблизительно 5,97 х 10²⁴ кг.

Земля и луна

Земля и луна

Зная массу Земли, мы легко рассчитает параметры по другим объектам Солнечной системы – Луна, планеты, Солнце и так далее. С Луной вообще все довольно просто. Здесь достаточно учесть, что расстояния от центров тел до центра масс соотносятся обратно их массам. Подставив эти цифры для Земли и ее спутника получим массу Луны 7.36 × 10²² килограмма.

Перейдем теперь к методикам измерения массы планет земной группы – Меркурий, Венера, Марс. После чего рассмотрим газовые гиганты, и в самом конце – экзопланеты, звезды и галактики.

Общие методики определения масс планет

Наиболее классический способ, как узнать массу планет – расчет при помощи формул третьего закона Кеплера. Он гласит, что квадраты периодов обращения планет соотносятся так же, как кубы больших полуосей орбит. Ньютон немного уточнил этот закон, внеся в формулу массы небесных тел. На выходе получилась такая формула –

Таким способом можно найти массу всех планет Солнечной системы и самого Солнца.И периоды обращения, и большие полуоси орбит планет Солнечной системы легко измеряются астрономическими методиками, доступными даже без сложных инструментов. А так как массу Земли мы уже рассчитали, можно все цифры подставить в формулу и найти конечный результат.

В отношении же экзопланет и других звезд (но только двойных) в астрономии обычно применяется метод анализа видимых возмущений и колебаний. Он основан на том факте, что все массивные тела “возмущают” орбиты друг друга.

Такими расчетами были открыты планеты Нептун и Плутон, еще до их визуального обнаружения, как говорят “на кончике пера”.

Значения масс планет Солнечной системы

Итак, мы разобрались с общими методиками расчета масс разных небесных тел и посчитали значения для Луны, Земли и Галактики. Давайте теперь составим рейтинг планет нашей системы по их массе.

Возглавляет рейтинг с наибольшей массой планет Солнечной системы – Юпитер, которому не хватило одного порядка чтобы наша система стала двойной. Еще чуть-чуть и у нас могло быть два Солнца, второе вместо Юпитера. Итак, масса этого газового гиганта равняется 1,9 × 10²⁷ кг.

Интересно, что Юпитер – единственная планета нашей системы, центр масс вращения с Солнцем которой расположен вне поверхности звезды. Он отстоит примерно на 7% расстояния между ними от поверхности Солнца.

Вторая по массе планета – Сатурн, его масса 5,7 × 10²⁶ кг. Следующим идет Нептун – 1 × 10²⁶. Четвёртая по массе планета, газовый гигант Уран, масса которого – 8,7 × 10²⁵ кг.

Далее идут планеты земной группы, каменистые тела, в отличие от газовых гигантов с их большим радиусом и относительно малой плотностью.

Тела солнечной системы, расположенные по убыванию массыСамой тяжелой из этой группы является наша планета, ее массу мы уже рассчитали. Далее идет Венера, масса этой планеты равняется 4,9 × 10²⁴ кг. После нее в рейтинге идет Марс, он почти в 10 раз легче – 6,4 × 10²³кг. И замыкает его, как планета самой маленькой массы, Меркурий – 3,3 × 10²³кг. Что интересно, Меркурий даже легче, чем два спутника в Солнечной системе – Ганимед и Каллисто.

Определение масс звезд и галактик

Для того чтобы найти характеристики одинарных звездных систем применяется гравиметрический метод. Его суть в измерении гравитационного красного смещения света звезды. Оно измеряется по формуле ∆V=0,635 M/R, где M и R – масса и радиус звезды, соответственно.

Косвенно можно также вычислить массу звезды по видимому спектру и светимости. Сначала определяется ее класс светимости по диаграмме Герцшпрунга-Рассела, а потом вычисляется зависимость масса/светимость. Такой способ не подходит для белых карликов и нейтронных звезд.

Масса галактик вычисляется в основном по скорости вращения ее звезд (или просто по относительной скорости звезд, если это не спиральная галактика). Все тот же всемирный закон тяготения Ньютона нам гласит, что центробежную силу звезд в галактике можно выразить в формуле:

Только в этот раз в формулу мы подставляем расстояние от Солнца до центра нашей галактики и его массу. Так можно рассчитать массу Млечного Пути, которая равняется 2,2 × 10⁴⁴г.

Не забываем, что эта цифра – это масса галактики без учета звезд, орбиты которых располагаются вне орбиты вращения Солнца. Поэтому для более точных расчетов берутся самые внешние звезды рукавов спиральных галактик.

Для эллиптических галактик способ нахождения массы схож, только там берется зависимость между угловым размером, скоростью движения звезд и общей массой.

В статье обсуждаются несколько подходов и некоторые примеры проблем о том, как вычислить массу по гравитационной силе.

Каждый объект с массой во Вселенной оказывает гравитационное воздействие на другой. Вот почему сила тяжести прямо пропорциональна массе объекта. Таким образом, используя различные формулы, связанные с гравитационной силой, мы можем вычислить ненулевую массу объекта. 

Узнайте больше о Как рассчитать массу по силе и расстоянию.

Как рассчитать массу по гравитационной силе, используя второй закон движения Ньютона

Как рассчитать массу по гравитационной силе?

Как рассчитать массу по гравитационной силе?

Рассчитаем массу, используя второй закон движения Ньютона:

Во втором законе движения Ньютон описывает, что сила действует на объект с ненулевой массой, чтобы ускорить его в том же направлении. Гравитационная сила — это естественная сила, которая всегда действует вниз на каждый объект, чтобы ускорить его, в зависимости от его массы. 

Мы уже изучили два основных типа сил которые действуют на тела. гравитационная сила или гравитация, бесконтактная сила, всегда действует между массами каждого объекта.

Согласно второму закону Ньютона,

F = ма ………………… (*)

Когда действует сила тяжести, каждый объект ускоряется в соответствии со вторым законом движения. Ускорение, вызванное силой тяжести, постоянно, называется ускорение силы тяжести ‘грамм’. Поскольку гравитация всегда действует на нас, возникла идея нашего «веса» как «mg», который включает нашу массу m и ускорение «a». По этой причине гравитационную силу также называют силой тяжести. сила веса.

Как рассчитать массу по гравитационной силе?

Сила тяжести как сила веса
(Кредит: Shutterstock)

Следовательно, формула второго закона Ньютона принимает следующий вид: 

Fg = мг …………………………. (1)

Согласно уравнениям (*) и (1), 

Чтобы поднять более тяжелое тело, мы должны создать восходящую силу (ма), превышающую силу тяжести (мг).

Поскольку g имеет постоянное значение 9.8 м / с2, гравитационная сила Fg зависит только от массы объекта m. Чем массивнее объект, тем больше силы требуется для его ускорения.

Если к объекту приложена сила тяжести, мы можем вычислить его массу по формуле второго закона движения Ньютона..

Узнайте больше о Законы движения Ньютона.

Сила тяжести, действующая на бегающую в парке девушку, равна 490. Вычислите массу девушки.

Данный:

Fg = 490 Н

g = 9.8 м / с

Найти: м =?

Формула:

F = ma

Решение:

Масса девушки рассчитывается с помощью Второй закон движения Ньютона формула,

F = ma

Компания сила гравитации дан кем-то,

Fg = мг

m=Fg/g

м=490/9.8

m = 50 кг …………………………………. а)

Масса бегущей в парке девушки 50 кг.

Как найти массу с гравитационной силой и радиусом?

Давайте вычислим массу с гравитационной силой, используя закон тяготения Ньютона следующим образом:

Закон тяготения обнаруживает, что гравитационная сила между двумя объектами прямо пропорциональна их массам и обратно пропорциональна квадрату радиуса между их центрами масс. Если второй объект — Земля с фиксированной массой, мы можем вычислить массу первого объекта.  

Согласно закону всемирного тяготения Ньютона,

Fg=G(мМ/р2)……………..(2)

Вся масса объекта сосредоточена в одной конкретной точке, в основном в его центральной точке, называемой его центр масс (см). Радиус r измеряет расстояние или разделение между центрами масс двух объектов.

Небольшая масса в 1 кг, разделенная радиусом 1, испытывала небольшую гравитационную силу 6.67 x 10-11 Нм.2/ кг2, совместимый с каждым объектом. Следовательно, это постоянное значение является значением постоянной пропорциональности в законе всемирного тяготения, также называемой величиной Универсальная гравитационная постоянная G.

Проще вычислить Fg между объектом и Землей как планетой с фиксированной массой M = 5.98 x 1024 кг, а также фиксированный радиус r от центра земли, r = 6.38 x 106

Сила тяжести, действующая на девушку, бегающую трусцой в парке, равна 490. Вычислите массу девушки, используя закон всемирного тяготения Ньютона.

Данный:

Fg = 490 Н

М = 5.98 х 1024 kg

г = 6.38 х 106

G = 6.67 х 10-11 nm2/ кг2

Найти: м =?

Формула:

Fg=G(мМ/р2)

Решение:

Масса девушки рассчитывается по Закон всемирного тяготения Ньютона является,

Fg=G(мМ/р2)

Переставляем на массу m,

м=Fgr2/ГМ

Подставляя все значения,

Из (а) и (б) мы заметили расчетная масса с использованием второго закона Ньютона и формулы закона всемирного тяготения такая же

Закон всемирного тяготения может применяться к двум объектам, имеющим одинаковые или разные массы.

Как рассчитать массу, используя закон всемирного тяготения?

Сила тяжести между двумя объектами
имея разные массы
(Кредит: Shutterstock)

Сила притяжения между вами и вашим коллегой составляет 3 x 10.-7 N, когда вы оба приближаетесь на расстоянии 1 м друг от друга в школьном коридоре. Поскольку ваша масса 60 кг, рассчитайте массу вашего коллеги. 

Данный:

Fg = 3 x 10-7 N

г = 1 м

m1 = 60 кг

G = 6.67 х 10-11 nm2/ кг2

Найти: м2 =?

Формула:

Fg=G(м1m2/r2)

Решение:

Масса коллеги рассчитывается по формуле Закон всемирного тяготения Ньютона является,

Fg=G(м1m2/r2)

Перестановка на массу m2,

m2=Fgr2/Гм1

Подставляя все значения,

Масса вашего коллеги 75 кг.

Как рассчитать массу по гравитационной силе, используя формулу центростремительной силы?

Рассчитаем массу с гравитационной силой, используя центростремительная сила формула следующим образом:

Когда объект движется по кругу, его скорость постоянно меняется в зависимости от его направления. Направление ускорения — к центру, вызванное центростремительной силой. Поскольку масса всего объекта сосредоточена в его центре, мы можем рассчитать ее по формуле центростремительной силы. 

Центростремительная сила получается из второго закона движения Ньютона.

Поскольку ускорение — это круговой путь, нам нужно учитывать радиус; вот почему ускорение становится

v2/r

Следовательно, согласно уравнению (*) центростремительная сила определяется как

Fc=мв2/r

Центростремительная сила — это центристская сила который действует на объект, чтобы двигаться по кругу к его центру. Земля оказывает центростремительное сила, действующая на спутник, чтобы поддерживать его круговое движение вокруг. 

Как рассчитать массу по формуле центростремительной силы?

Центростремительная сила Земли на Спутнике

Спутник непрерывно движется по орбите вокруг Земли со скоростью 20 м / с. Гравитационная сила между Землей и спутником составляет 500 Н, что создает центростремительную силу около 200 Н. Вычислите массу спутника. 

Данный:

Fg = 500 Н

Fc = 200 Н

v = 20 м / с

M = масса Земли = 5.98 x 1024 kg

G = 6.67 х 10-11 nm2/ кг2

Найти: м =?

Формула:

Fg=G(мМ/р2)

Fc=мв2/r

Решения:

Масса спутника рассчитывается по формуле закон всемирного тяготения Ньютона,

Fg=G(мМ/р2)

Компания центростремительная сила на спутнике есть,

Fc=мв2/r

Решая формулу для радиуса r,

г=мв2/Fc

Подставляя вышеприведенное уравнение в закон всемирного тяготения Ньютона, получаем

Fg=Fc2[ГМ/мв4]

Решая массу m,

Подставляя все значения,

м=159.4/8

м = 19.94 примерно 20 кг

Масса спутника, движущегося вокруг Земли, составляет 20 кг.


Тема: Законы Кеплера. Определение масс  небесных  тел

Цель занятия: Освоить методику решения задач, используя законы движения планет.

                                                      Теоретические сведения

При решении задач неизвестное движение сравнивается с уже известным путём применения законов Кеплера и формул синодического периода обращения.

Первый закон Кеплера. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

Первый закон Кеплера

Второй закон Кеплера. Радиус-вектор планеты описывает в равные времена равные площади.

Второй закон Кеплера

Третий закон Кеплера. Квадраты времен обращения планет относятся как кубы больших полуосей их орбит:

Третий закон Кеплера

Для определения масс небесных тел применяют обобщённый третий закон Кеплера с учётом сил всемирного тяготения:

Обобщённый третий закон Кеплера,

где М1 и М2 -массы каких-либо небесных тел, а m1 и m2 — соответственно массы их спутников.

Обобщённый третий закон  Кеплера применим и к другим системам, например, к движению планеты вокруг Солнца и спутника вокруг планеты. Для этого сравнивают движение Луны вокруг Земли с движением спутника вокруг той планеты, массу которой определяют, и при этом массами спутников в сравнении с массой центрального тела пренебрегают. При этом в исходной формуле индекс надо отнести к движению Луны вокруг Земли массой , а индекс 2 –к движению любого спутника вокруг планеты массой . Тогда масса планеты вычисляется по формуле:

Обобщённый третий закон Кеплера,

где Тл и αл— период и большая полуось орбиты спутника планеты , М⊕ -масса Земли.

Формулы, определяющие соотношение между сидерическим (звёздным) Т и синодическим периодами S планеты и периодом обращения Земли , выраженными в годах или сутках,

а) для внешней планеты формула имеет вид:

б) для внутренней планеты:

Выполнение работы

Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?

Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км

Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?

Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.

Задание 5. Марс дальше от Солнца, чем Земля, в 1.5 раза. Какова продолжительность года на Марсе? Орбиты планет считать круговыми.

Задание 6. Синодический период планеты 500 суток. Определите большую полуось её орбиты и звёздный (сидерический) период обращения.

Задание 7.  Определить период обращения астероида Белоруссия если большая полуось его орбиты    а=2,4 а.е.

Задание 8. Звёздный период обращения Юпитера вокруг Солнца Т=12 лет. Каково среднее расстояние от Юпитера до Солнца?

Примеры решения задач 1-4

Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?

 За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?

Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км

Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км

Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?

Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?

Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.

Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.

  • Печать

Страницы: [1]   Вниз

A A A A

Тема: Как рассчитывать формулу максимальной массы спутника  (Прочитано 2320 раз)

0 Пользователей и 1 Гость просматривают эту тему.

По какой формуле можно рассчитать максимальную массу спутника который может вращаться вокруг планеты Х? Какие тогда должны быть известны данные о планете Х?
пОМОГИТЕ ПОЖАЛУЙСТА, СРОЧНО НАДО!!!!

« Последнее редактирование: 17 Июн 2009 [20:19:51] от Pluto »


Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.


Насколько я знаю, такой формулы нет. У астероидов и земноподобных планет (спутники которых образуются путем захвата или отрыва) соотношение масс может быть любым, вплоть до 1:1 (астероид Антиопа). У планет-гигантов (спутники которых образуются в основном из дисков, как планеты), должен быть верхний предел массы спутника, но он теоретически не определен (?). Эмпирические данные: Юпитер тяжелее своей спутниковой системы в 4800 раз, Сатурн в 4000, Уран в 9500, Нептун в 4800.


Записан


Если спутником планеты считаем только такие тела, центр масс которых с планетой находится внутри планеты, то необходимо знать массу планеты и ее радиус (либо массу и среднюю плотность, приняв форму планеты шарообразной). Но тогда Харон — не спутник Плутона :-)


Записан


Насколько я знаю, такой формулы нет. У астероидов и земноподобных планет (спутники которых образуются путем захвата или отрыва) соотношение масс может быть любым, вплоть до 1:1 (астероид Антиопа). У планет-гигантов (спутники которых образуются в основном из дисков, как планеты), должен быть верхний предел массы спутника, но он теоретически не определен (?). Эмпирические данные: Юпитер тяжелее своей спутниковой системы в 4800 раз, Сатурн в 4000, Уран в 9500, Нептун в 4800.

Наиболее поразительной особенностью всех этих систем является то, что все отношения масс спутниковых систем весьма близки друг к другу, несмотря на громадное различие их пространственно-временных масштабов и состава. Между ними есть и ещё одна общность – спутники располагаются не как попадя, а в определённых положениях к наибольшему по массе спутнику http://astronomij.narod.ru/zakon20.htm . Всё это можно объяснить универсальным принципом формирования всех этих систем, при котором вначале формируется главный спутник, который помогает формированию всех остальных.


Записан


Насколько я знаю, такой формулы нет. У астероидов и земноподобных планет (спутники которых образуются путем захвата или отрыва) соотношение масс может быть любым, вплоть до 1:1 (астероид Антиопа). У планет-гигантов (спутники которых образуются в основном из дисков, как планеты), должен быть верхний предел массы спутника, но он теоретически не определен (?). Эмпирические данные: Юпитер тяжелее своей спутниковой системы в 4800 раз, Сатурн в 4000, Уран в 9500, Нептун в 4800.

Речь идет о спутниках планет-гигантов. На сайте Extrasolar visions  у некоторых экзопланет указана максимальная масса спутника.Значит очень приблизительно предел определен :)


Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.


На сайте Extrasolar visions  у некоторых экзопланет указана максимальная масса спутника.

Например?


Записан



Записан


Максимальная масса спутника <= массе обьекта вокруг которого вращается. Спутник ведь должен быть меньше по массе  ;)


Записан

Телескоп Алькор
Доб 150 мм в разработке


Возьмите двойные звезды, там отношение M1/M2 варируется в широких пределах. По крайней мере от 0.01 до 100.
Если звезды на ГП и одной массы то их различить не возможно, то кто из них спутник?

Возьмем пример ЧД и обычная звезда, опять отношение варируеся в пределах 0.1 — 10.
И кто из них кто?

По тому часто говорят не спутник, а компаньен.


Записан


На сайте Extrasolar visions  у некоторых экзопланет указана максимальная масса спутника.

Например?

HD  168746 B
Max Moon Mass:  < 0.0001 Earths 
233.2015 x Phobos 

HD 195019
Max Moon Mass:  0.3662 Earths 3
3.4085 x Mars 

HD 37605
Max Moon Mass:  0.0056 Earths 
2.6442 x Pluto 


Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.



Записан



Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.


  • Печать

Страницы: [1]   Вверх

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти подход к коту
  • Как найти собаку для прогулки
  • Гидрофосфат кальция формула как составить
  • Как составить пособие для детей
  • Как правильно составить духи

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии