Валентность — это способность атомов химических элементов образовывать определенное число химических связей с атомами других химических элементов.
Ковалентные связи могут образовываться по обменному и донорно-акцепторному механизмам.
Обменный механизм образования ковалентной связи — в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет по одному неспаренному электрону.
Донорно-акцепторный механизм — образование связи происходит за счет электронной пары одного из атомов (атом-донор) и вакантной орбитали другого атома (атом-акцептор):
Таким образом, атомы могут образовывать химическую связь не только за счет неспаренных электронов на внешнем энергетическом уровне, но и за счет неподеленных электронных пар, или свободных орбиталей на этом уровне.
Большинство элементов характеризуются высшей, низшей или промежуточной валентностью в соединениях.
Для большинства элементов высшая валентность, как правило, равна номеру группы, низшая валентность определяется по формуле: 8 — № группы. Промежуточная валентность – это число между низшей и высшей валентностями.
Например, высшая валентность хлора равна VII, низшая валентность хлора равна I, промежуточные валентности — III, V.
Обратите внимание! Степень окисления и валентность — это не одно и то же. Хотя иногда степени окисления совпадают с валентностями. Стпень окисления — это условный заряд атома, он может быть и положительным и отрицательным. А вот образовать отрицательное число связей атом никак не может.
Например, валентность (число связей) атома кислорода в молекуле O2 равна II, а вот степень окисления атома кислорода равна 0.
Большинство элементов проявляют переменную валентность в соединениях, но некоторые элементы проявляют постоянную валентность. Их необходимо запомнить:
Элемент | Валентность |
Фтор F | I |
Кислород О | II |
Металлы IA группы (Li, Na, K, Rb, Cs, Fr) | I |
Металлы IIA группы (Be, Mg, Ca, Sr, Ba, Ra) | II |
Алюминий Al | III |
Как определить валентность атома в соединении?
Рассмотрим валентные возможности атомов второго периода. В силу некоторых ограничений они не соответствуют традиционным «школьным» представлениям.
Итак, не внешнем энергетическом уровне лития 1 неспаренный электрон: 1s22s1.
+3Li 1s2 2s1
Следовательно, литий может образовывать одну связь и валентность лития I.
У бериллия на внешнем энергетическом уровне 2 электрона: 1s22s2.
+4Be 1s2 2s2
В возбужденном состоянии возможен переход электронов внешнего энергетического уровня с одного подуровня на другой: 1s22s12p1.
+4Be* 1s2 2s1
2p1
Таким образом, на внешнем энергетическом уровне бериллия в возбужденном энергетическом состоянии есть 2 неспаренных электрона и две вакантные электронные орбитали. Следовательно, бериллий может образовать 2 связи по обменному механизму, т.е. валентность бериллия равна номеру группы и равна II.
Например, в хлориде бериллия валентность бериллия равна II:
Электронная конфигурация атома бора в основном состоянии +5B 1s22s22p1:
+5B 1s2 2s2
2p1
В возбужденном состоянии: +5B* 1s22s12p2.
+5B 1s2 2s1
2p2
Следовательно, бор может образовывать 3 связи по обменному механизму (за счет неспаренных электронов). Валентность бора в соединениях — III.
Например, в трихлориде бора BCl3 валентность бора равна III.
Однако, при этом у бора остается еще одна вакантная электронная орбиталь. Следовательно, бор может выступать, как акцептор электронной пары.
У атома углерода в возбужденном состоянии на внешнем энергетическом уровне 4 неспаренных электрона: 1s22s12p3, следовательно, максимальная валентность углерода равна IV (как правило, в органических соединениях у углерода именно такая валентность). В основном состоянии у атома углерода 2 неспаренных электрона, и валентность II. Однако посмотрим внимательно: у атома углерода в основном состоянии не внешнем энергетическом уровне есть незанятая (вакантная) электронная орбиталь. Следовательно, он может образовывать еще одну связь — по донорно-акцепторному механизму. Таким образом, в некоторых случаях углерод может образовывать три связи (например, молекула угарного газа CO, строение которой мы рассмотрим позднее).
Валентные возможности атома азота определяются также строением его внешнего энергетического уровня. В основном состоянии электронная формула азота: +7N 1s22s22p3.
За счет 3 неспаренных электронов на p-подуровне азот может образовывать 3 связи по обменному механизму (валентность III), и еще 1 связь азот может образовать по донорно-акцепторному механизму за счет неподеленной электронной пары. Таким образом, максимальная валентность азота в соединениях — IV. На примере азота можно убедиться, что высшая валентность атома и максимальная степень окисления — разные величины, которые далеко не всегда совпадают. Возбужденное состояние с 5 неспаренными электронами для атома азота не реализуется, т.к. на 2 энергетическом уровне есть только s и p орбитали.
Как определить валентность по таблице Менделеева? Согласно школьному определению валентность — это способность химического элемента образовывать то или иное количество химических связей с другими атомами. Как известно, валентность бывает постоянной (когда химический элемент образует всегда одно и то же количество связей с другими атомами) и переменной (когда в зависимости от того или иного вещества валентность одного и того же элемента изменяется). Определить валентность нам поможет периодическая система химических элементов Д. И. Менделеева. Действуют такие правила: 1) Максимальная валентность химического элемента равняется номеру группы. Например, хлор находится в 7-й группе, а значит, у него максимальная валентность равна 7. Сера: она в 6-й группе, значит, у неё максимальная валентность равна 6. 2) Минимальная валентность для неметаллов равна 8 минус номер группы. Например, минимальная валентность того же хлора равна 8 – 7, то есть 1. Увы, из обоих правил имеются исключения. Например, медь находится в 1-й группе, однако максимальная валентность меди равна не 1, а 2. Кислород находится в 6-й группе, но у него валентность почти всегда 2, а вовсе не 6. Полезно помнить ещё следующие правила: 3) Все щелочные металлы (металлы I группы, главной подгруппы) всегда имеют валентность 1. Например, валентность натрия всегда равна 1, потому что это щелочной металл. 4) Все щёлочно-земельные металлы (металлы II группы, главной подгруппы) всегда имеют валентность 2. Например, валентность магния всегда равна 2, потому что это щёлочно-земельный металл. 5) Алюминий всегда имеет валентность 3. 6) Водород всегда имеет валентность 1. 7) Кислород практически всегда имеет валентность 2. Следует помнить, что в разных источниках определения валентности могут отличаться. Более или менее точно валентность можно определить как количество общих электронных пар, посредством которых данный атом связан с другими. Согласно такому определению, валентность азота в HNO3 равна 4, а не 5. Пятивалентным азот быть не может, потому что в таком случае вокруг атома азота кружилось бы 10 электронов. А такого не может быть, потому что максимум электронов составляет 8. автор вопроса выбрал этот ответ лучшим Каролина 9 лет назад Химические элементы могут быть постоянной или переменной валентности. Элементы с постоянной валентностью необходимо выучить. Всегда
Валентность можно определить по таблице Менделеева. Высшая валентность элемента всегда равна номеру группы, в которой он находится. Низшей переменной валентностью чаще всего обладают неметаллы. Чтобы узнать низшую валентность, из 8 вычитают номер группы — в результате будет искомая величина. Например, сера находится в 6 группе и её высшая валентность — VI, низшая валентность будет II (8–6=2). wildcat 6 лет назад Определять валентность по таблице Менделеева просто. Как правило она соответствует номеру группы в которой элемент расположен. Но есть элементы, которые в разных соединениях могут иметь разную валентность. В этом случае речь идет о постоянной и переменной валентности. Переменная может быть максимальной, равной номеру группы, а может быть минимальной или промежуточной. Но гораздо интереснее определять валентность в соединениях. Для этого существует ряд правил. Прежде всего легко определить валентность элементов если один элемент в соединении обладает постоянной валентностью, например это кислород или водород. Слева ставится восстановитель, то есть элемент с положительной валентностью, справа — окислитель, то есть элемент с отрицательной валентностью. Индекс элемента с постоянной валентностью умножается на эту валентность и делится на индекс элемента с неизвестной валентностью. Пример: оксиды кремния. Валентность кислорода -2. Найдем валентность кремния. SiO 1*2/1=2 Валентность кремния в моноксиде равна +2. SiO2 2*2/1=4 Валентность кремния в диоксиде равна +4. Элемент может иметь одну или несколько валентностей. Максимальная валентность элементов равна числу валентных электронов. Мы можем определить валентность, зная расположение элемента в периодической таблице. Максимальное число валентности равно номеру группы, в которой находится необходимый элемент. Валентность обозначается римской цифрой и, как правило, пишется в правом верхнем углу символа элемента. Некоторые элементы могут иметь разную валентность в разных соединениях. Например, сера имеет следующие валентности:
Правила определения валентности не как просты в использовании, поэтомуих нужно запомнить. Nelli4ka 6 лет назад Валентность какого-либо элемента можно определить по самой таблице Менделеева, по номеру группы. По крайней мере, так можно поступать в случае с металлами, ведь их валентность равна номеру группы. С неметаллами немного другая история: их высшая валентность (в соединениях с кислородом) также равна номеру группы, а вот низшую валентность (в соединениях с водородом и металлами) нужно определять по следующей формуле: «8 — номер группы». Чем больше работаешь с химическими элементами, тем лучше запоминаешь и их валентность. А для начала хватит и такой «шпаргалки»: Розовым цветом выделены те элементы, чья валентность непостоянна. moreljuba 6 лет назад В первую очередь стоит отметить, что химические элементы могут иметь как постоянную, так и переменную валентность. Что касается постоянной валентности, то такие элементы вам просто напросто необходимо заучить Итак: Одновалентными считаются щелочные металлы, водород, а также галогены; Двухвалентными принято считать щелочноземельные металлы, а также и кислород; А вот трёхвалентен бор и алюминий. Итак, теперь давайте пройдёмся по таблице Менделеева для определения валентности. Самая высокая валентность для элемента всегда приравнивается к его номеру группы Низшая валентность же узнаётся путём вычитания из 8 номера группы. Низшей валентностью наделены неметаллы в большей степени. Сайёра79 6 лет назад Валетность- это способность атомов одних химических элементов присоединить к себе атомы других элементов. Для успешного написания формул, правильного решения задач необходимо хорошо знать , как определить валентность. Для начала нужно выучить все элементы с постоянной валентностью. Вот они: 1. Водород, галогены, щелочные металлы( всегда одновалентны) ; 2. Кислород и щелочноземельные металлы ( двухвалентны) ; 3. B и Al ( трехвалентны). Чтобы определить валентность по таблице Менделеева , нужно выяснить в какой группе стоит химический элемент и определить, находится он в основной группе или побочной. Роман145658 4 года назад «…Максимальная валентность химического элемента равняется номеру группы…» Согласно данному утверждению максимальная валентность N — азота = 5 поскольку он находится в 5 группе Х.И… Однако википедия, излагая доказательства предела валентности, утверждает, что: «…Например, максимальная валентность атома бора, углерода и азота равна 4…» Что Вы на это скажите? Вы уже дали ответ на мой вопрос. Однако, он не проясняет ситуацию. Например есть у нас Mg3N2. Известно, что Mg3, в этом соединении, имеет валентность равную 2. Тогда какую валентность должен иметь азот N2 в этом соединении? Существует правило: Если у одного из атомов индекс отсутствует, то его валентность равна произведению валентности второго атома на его индекс. Согласно этому правилу валентность N2 = 6 что не верно ибо молекула нитрида магния Mg3N2 хорошо изучена и у N2 в ней валентность 4. Означает ли это, что правило сформулировано не верно, либо отсутствует уточнение об исключениях, обусловленными пределами ва… Azamatik 6 лет назад Валентность любого химического элемента — это его свойство, а точнее свойство его атомов (атомов этого элемента) удерживать какое — то количество атомов, но уже другого хим — ого элемента. Существуют Хим — ие элементы как с постоянной, так и с переменной валентностью, которая меняется в зависимости от того в соединение с каким элементом он (данный элемент) находится или же вступает. Валентности некоторых химических элементов: Перейдем теперь к тому, как же определяется валентность элемента по таблице. Итак, валентность можно определить по таблице Менделеева:
novachok88 2 месяца назад Валентность — это количество связей, которые может образовать атом определенного элемента с другими атомами. В химии валентность обычно определяется по количеству электронов во внешней оболочке атома (валентной оболочке), которые могут участвовать в химических связях. Общее количество электронов во внешней оболочке равно номеру группы элемента в периодической таблице. Так, например, элементы первой группы (литий, натрий, калий и т.д.) имеют валентность 1, а элементы второй группы (бериллий, магний, кальций и т.д.) — 2. Однако, есть элементы, которые могут образовывать несколько видов химических связей. Например, у серы валентность может быть 2, 4 или 6, в зависимости от того, с какими элементами она образует связи. Также следует учитывать, что валентность элемента может изменяться в зависимости от условий, например, при изменении температуры и давления. Кроме того, валентность может быть определена экспериментально, путем измерения свойств соединения, таких как молекулярная масса, электропроводность, точка плавления и т.д. Leona-100 8 лет назад Из школьного курса по химии мы знаем, что все химические элементы могут быть с постоянной или же переменной валентностью. Элементы у которых постоянная валентность нужно просто запомнить (например водород, кислород, щелочные металлы и другие элементы). Валентность легко определить по таблице Менделеева, которая есть в любом учебнике по химии. Высшая валентность соответствует своему номеру группы, в которой она расположена. Горизонт 6 лет назад Для того чтобы определить валентность того или иного вещества, вам нужно взглянуть на периодическую таблицу химических элементов Менделеева, обозначения римскими цифрами будут являться валентностями тех или иных веществ в этой таблице. К примеру, НО, водород (Н) будет всегда одновалентным а, а кислород (О) всегда двухвалентным. Вот ниже некая шпаргалка, которая как я полагаю поможет вам) Знаете ответ? |
Определение валентности
Определение валентности по химическим формулам соединений
Для бинарных соединений, т. е. образованных двумя элементами типа (где а, b — индексы; х, у — валентности), произведение индекса на валентность одного элемента равно произведению индекса на валентность другого элемента. Здесь соблюдается равенство ах = by. Поэтому, если три величины (скажем, а, b, х) известны, то можно найти четвертую: у = ах/b.
Если в формуле бинарного соединения нет индексов, то валентности элементов одинаковые. Зная валентность одного элемента, можно написать валентность другого, например:
Если валентность одного элемента равна единице, то валентность другого элемента равна индексу при одновалентном элементе, например:
Определение возможной валентности элемента по его положению в таблице Менделеева
- Максимальная или высшая валентность элемента часто равна номеру группы таблицы Менделеева, в которой расположен элемент. (Группы элементов — это вертикальные столбцы в таблице.) Например, высшие валентности некоторых элементов следующие: Si(IV), P(V), S(VI), Cl(VII).
- У элементов V—VII групп в дополнение к высшей валентности, равной номеру группы, бывает другая валентность, представляющая разность: 8 — № группы, т. е. у фосфора Р(III), у серы S(II), у хлора Сl(I). Как правило, это низшая валентность.
Чтобы составить химическую формулу бинарного соединения, надо знать последовательность элементов в формуле (какой элемент первый) и их валентность.
Правила очередности элементов в формуле и проявляемая валентность следующие.
- 1) Первым записывают металл, за ним — неметалл: FeO, AI2O3, Cu2S.
- 2) Если в формуле одни неметаллы, то сначала пишут символ элемента, расположенного в таблице Менделеева левее и ниже: NO2, РСl5, CS2, НСl, SiF4, PBr3.
- 3) Обычно 1-й элемент в формуле бинарного соединения проявляет свою высшую (или большую) валентность, а 2-й элемент проявляет низшую валентность
Примеры определения валентности
Пример 1.
Составьте формулу соединения (т.е. вещества) алюминия с кислородом (оксида алюминия).
Решение. Алюминий — металл, поэтому он 1-й в формуле: АlаОb. Валентности кислорода (II) и алюминия (III) — постоянные, следовательно, вид формулы:
Минимальные целые числа, удовлетворяющие равенству а • III = b • II, это а = 2, b = 3. Здесь валентность одного элемента равна индексу при другом элементе, х = b, у = а. Следовательно, искомая формула: Аl2O3.
Пример 2.
Составьте формулу соединения серы с кислородом при условии, что сера проявляет свою высшую валентность.
Решение. Сера и кислород — неметаллы. В таблице Менделеева сера находится ниже кислорода, она 1-я в формуле SaOb. Высшая валентность серы равна номеру ее группы (VI) в таблице Менделеева:
Минимальные целые числа, удовлетворяющие равенству а • VI = b • II, это а = 1, b = 3. Здесь валентность одного элемента не равна индексу при другом элементе, х ≠ b, у ≠ а. Искомая формула: SO3.
Пример 3.
Составьте формулу соединения серы с фосфором, в котором валентность фосфора — V.
Решение. Оба элемента S и Р — неметаллы. Первым в формуле записываем фосфор, так как он находится левее, чем сера, в таблице Менделеева: PaSb.
Валентность фосфора P(V) указана в задании. Сера (2-й элемент в формуле) проявляет свою низшую валентность S(II). Чтобы удовлетворялось равенство ах = by для соединения , индексы должны быть а = 2, b = 5. Искомая формула: P2S5.
Пример 4.
Составьте химические формулы бинарных соединений с кислородом (оксидов) следующих элементов: a) Li; б) Са; в) Sn(IV); г) С(II); д) Р(III); е) P(V).
Решение. Во всех этих формулах кислород — 2-й в формуле. Там, где валентности элементов нечетные, индекс при кислороде равен валентности соответствующего элемента, а индекс при элементе равен двум — валентности кислорода. В формулах оксидов веществ б) и г) индексов нет, т.к. валентности элементов одинаковые и равны II. В формуле оксида олова, чтобы суммарная валентность кислорода равнялась валентности олова, пишем при кислороде индекс «2». Формулы оксидов:
Конспект урока «Определение валентности на примерах».
Следующая тема: «Степень окисления химических элементов».
На уроках химии вы уже познакомились с понятием валентности химических элементов. Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.
Валентность и химический анализ
Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.
С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?
Понятие «валентность» — одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.
Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.
Зная это, ученые смогли описать природу химической связи. Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.
Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.
Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.
Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН4), по тому же принципу, – IV.
Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.
Как вы уже обратили внимание, обозначается валентность римскими цифрами.
Валентность и кислоты
Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H2SO3 валентность SO3 – I, в HСlO3 валентность СlO3 – I.
Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO2(I) – HNO2, S4O6 (II) – H2 S4O6.
Валентность и формулы
Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.
Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.
Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.
Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.
Чтобы было понятно, возьмем формулу оксида железа Fe2O3. Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.
- Пример: у вас есть формулы Mn2O7. Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.
Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.
- Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р2О5.
Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.
Например: оксиды меди имеют красную (Cu2O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН)2) цвета.
А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):
Характеристики валентности
Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.
Валентность может быть:
- постоянной (металлы главных подгрупп);
- переменной (неметаллы и металлы побочных групп):
- высшая валентность;
- низшая валентность.
Постоянной в различных химических соединениях остается:
- валентность водорода, натрия, калия, фтора (I);
- валентность кислорода, магния, кальция, цинка (II);
- валентность алюминия (III).
А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.
Валентность и электронная теория
В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.
В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.
Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе, соответсвует порядковому номеру группы в периодичнеской системе.
Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.
Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.
Таблица валентности химических элементов
Порядковый номер хим. элемента (атомный номер)
|
Наименование |
Химический символ |
Валентность |
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
Водород / Hydrogen
Гелий / Helium Литий / Lithium Бериллий / Beryllium Бор / Boron Углерод / Carbon Азот / Nitrogen Кислород / Oxygen Фтор / Fluorine Неон / Neon Натрий / Sodium Магний / Magnesium Алюминий / Aluminum Кремний / Silicon Фосфор / Phosphorus Сера / Sulfur Хлор / Chlorine Аргон / Argon Калий / Potassium Кальций / Calcium Скандий / Scandium Титан / Titanium Ванадий / Vanadium Хром / Chromium Марганец / Manganese Железо / Iron Кобальт / Cobalt Никель / Nickel Медь / Copper Цинк / Zinc Галлий / Gallium Германий /Germanium Мышьяк / Arsenic Селен / Selenium Бром / Bromine Криптон / Krypton Рубидий / Rubidium Стронций / Strontium Иттрий / Yttrium Цирконий / Zirconium Ниобий / Niobium Молибден / Molybdenum Технеций / Technetium Рутений / Ruthenium Родий / Rhodium Палладий / Palladium Серебро / Silver Кадмий / Cadmium Индий / Indium Олово / Tin Сурьма / Antimony Теллур / Tellurium Иод / Iodine Ксенон / Xenon Цезий / Cesium Барий / Barium Лантан / Lanthanum Церий / Cerium Празеодим / Praseodymium Неодим / Neodymium Прометий / Promethium Самарий / Samarium Европий / Europium Гадолиний / Gadolinium Тербий / Terbium Диспрозий / Dysprosium Гольмий / Holmium Эрбий / Erbium Тулий / Thulium Иттербий / Ytterbium Лютеций / Lutetium Гафний / Hafnium Тантал / Tantalum Вольфрам / Tungsten Рений / Rhenium Осмий / Osmium Иридий / Iridium Платина / Platinum Золото / Gold Ртуть / Mercury Талий / Thallium Свинец / Lead Висмут / Bismuth Полоний / Polonium Астат / Astatine Радон / Radon Франций / Francium Радий / Radium Актиний / Actinium Торий / Thorium Проактиний / Protactinium Уран / Uranium |
H
He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Сu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U |
I
0 I II III (II), IV (I), II, III, IV, V II I 0 I II III (II), IV I, III, V II, IV, VI I, (II), III, (IV), V, VII 0 I II III II, III, IV II, III, IV, V II, III, VI II, (III), IV, VI, VII II, III, (IV), VI II, III, (IV) (I), II, (III), (IV) I, II, (III) II (II), III II, IV (II), III, V (II), IV, VI I, (III), (IV), V 0 I II III (II), (III), IV (II), III, (IV), V (II), III, (IV), (V), VI VI (II), III, IV, (VI), (VII), VIII (II), (III), IV, (VI) II, IV, (VI) I, (II), (III) (I), II (I), (II), III II, IV III, (IV), V (II), IV, VI I, (III), (IV), V, VII 0 I II III III, IV III III, IV III (II), III (II), III III III, IV III III III (II), III (II), III III IV (III), (IV), V (II), (III), (IV), (V), VI (I), II, (III), IV, (V), VI, VII (II), III, IV, VI, VIII (I), (II), III, IV, VI (I), II, (III), IV, VI I, (II), III I, II I, (II), III II, IV (II), III, (IV), (V) II, IV, (VI) нет данных 0 нет данных II III IV V (II), III, IV, (V), VI |
В скобках даны те валентности, которые обладающие ими элементы проявляют редко.
Валентность и степень окисления
Понятие валентности можно считать родственным такой характеристике, как степень окисления. Тем не менее, обе эти характеристики не тождественным друг другу.
Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика, то степень окисления может быть отрицательной, положительной или равной нулю.
Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение, валентность и степень окисления могут совпадать (Н2О, СН4 и др.) и различаться (Н2О2, HNO3).
Заключение
Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.
Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.
Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.
Не забудьте поделиться ссылкой с друзьями в социальных сетях, чтобы они тоже могли воспользоваться этой полезной информацией.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules.
Description
The combining capacity, or affinity of an atom of a given element is determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1. Chlorine, as it has a valence of one, can be substituted for hydrogen. Phosphorus has a valence of 5 in phosphorus pentachloride, PCl5. Valence diagrams of a compound represent the connectivity of the elements, with lines drawn between two elements, sometimes called bonds, representing a saturated valency for each element.[1] The two tables below show some examples of different compounds, their valence diagrams, and the valences for each element of the compound.
Compound | H2 Hydrogen |
CH4 Methane |
C3H8 Propane |
C3H6 Propylene |
C2H2 Acetylene |
---|---|---|---|---|---|
Diagram | |||||
Valencies |
|
|
|
|
|
Compound | NH3 Ammonia |
NaCN Sodium cyanide |
PSCl3 Thiophosphoryl chloride |
H2S Hydrogen sulfide |
H2SO4 Sulfuric acid |
H2S2O6 Dithionic acid |
Cl2O7 Dichlorine heptoxide |
XeO4 Xenon tetroxide |
---|---|---|---|---|---|---|---|---|
Diagram | ||||||||
Valencies |
|
|
|
|
|
|
|
|
Modern definitions
Valence is defined by the IUPAC as:[2]
- The maximum number of univalent atoms (originally hydrogen or chlorine atoms) that may combine with an atom of the element under consideration, or with a fragment, or for which an atom of this element can be substituted.
An alternative modern description is:[3]
- The number of hydrogen atoms that can combine with an element in a binary hydride or twice the number of oxygen atoms combining with an element in its oxide or oxides.
This definition differs from the IUPAC definition as an element can be said to have more than one valence.
A very similar modern definition given in a recent article defines the valence of a particular atom in a molecule as «the number of electrons that an atom uses in bonding», with two equivalent formulas for calculating valence:[4]
- valence = number of electrons in valence shell of free atom – number of non-bonding electrons on atom in molecule,
and
- valence = number of bonds + formal charge.
Historical development
The etymology of the words valence (plural valences) and valency (plural valencies) traces back to 1425, meaning «extract, preparation», from Latin valentia «strength, capacity», from the earlier valor «worth, value», and the chemical meaning referring to the «combining power of an element» is recorded from 1884, from German Valenz.[5]
The concept of valence was developed in the second half of the 19th century and helped successfully explain the molecular structure of inorganic and organic compounds.[1]
The quest for the underlying causes of valence led to the modern theories of chemical bonding, including the cubical atom (1902), Lewis structures (1916), valence bond theory (1927), molecular orbitals (1928), valence shell electron pair repulsion theory (1958), and all of the advanced methods of quantum chemistry.
In 1789, William Higgins published views on what he called combinations of «ultimate» particles, which foreshadowed the concept of valency bonds.[6] If, for example, according to Higgins, the force between the ultimate particle of oxygen and the ultimate particle of nitrogen were 6, then the strength of the force would be divided accordingly, and likewise for the other combinations of ultimate particles (see illustration).
The exact inception, however, of the theory of chemical valencies can be traced to an 1852 paper by Edward Frankland, in which he combined the older radical theory with thoughts on chemical affinity to show that certain elements have the tendency to combine with other elements to form compounds containing 3, i.e., in the 3-atom groups (e.g., NO3, NH3, NI3, etc.) or 5, i.e., in the 5-atom groups (e.g., NO5, NH4O, PO5, etc.), equivalents of the attached elements. According to him, this is the manner in which their affinities are best satisfied, and by following these examples and postulates, he declares how obvious it is that[7]
A tendency or law prevails (here), and that, no matter what the characters of the uniting atoms may be, the combining power of the attracting element, if I may be allowed the term, is always satisfied by the same number of these atoms.
This «combining power» was afterwards called quantivalence or valency (and valence by American chemists).[6] In 1857 August Kekulé proposed fixed valences for many elements, such as 4 for carbon, and used them to propose structural formulas for many organic molecules, which are still accepted today.
Most 19th-century chemists defined the valence of an element as the number of its bonds without distinguishing different types of valence or of bond. However, in 1893 Alfred Werner described transition metal coordination complexes such as [Co(NH3)6]Cl3, in which he distinguished principal and subsidiary valences (German: ‘Hauptvalenz’ and ‘Nebenvalenz’), corresponding to the modern concepts of oxidation state and coordination number respectively.
For main-group elements, in 1904 Richard Abegg considered positive and negative valences (maximal and minimal oxidation states), and proposed Abegg’s rule to the effect that their difference is often 8.
Electrons and valence
The Rutherford model of the nuclear atom (1911) showed that the exterior of an atom is occupied by electrons, which suggests that electrons are responsible for the interaction of atoms and the formation of chemical bonds. In 1916, Gilbert N. Lewis explained valence and chemical bonding in terms of a tendency of (main-group) atoms to achieve a stable octet of 8 valence-shell electrons. According to Lewis, covalent bonding leads to octets by the sharing of electrons, and ionic bonding leads to octets by the transfer of electrons from one atom to the other. The term covalence is attributed to Irving Langmuir, who stated in 1919 that «the number of pairs of electrons which any given atom shares with the adjacent atoms is called the covalence of that atom».[8] The prefix co- means «together», so that a co-valent bond means that the atoms share a valence. Subsequent to that, it is now more common to speak of covalent bonds rather than valence, which has fallen out of use in higher-level work from the advances in the theory of chemical bonding, but it is still widely used in elementary studies, where it provides a heuristic introduction to the subject.
In the 1930s, Linus Pauling proposed that there are also polar covalent bonds, which are intermediate between covalent and ionic, and that the degree of ionic character depends on the difference of electronegativity of the two bonded atoms.
Pauling also considered hypervalent molecules, in which main-group elements have apparent valences greater than the maximal of 4 allowed by the octet rule. For example, in the sulfur hexafluoride molecule (SF6), Pauling considered that the sulfur forms 6 true two-electron bonds using sp3d2 hybrid atomic orbitals, which combine one s, three p and two d orbitals. However more recently, quantum-mechanical calculations on this and similar molecules have shown that the role of d orbitals in the bonding is minimal, and that the SF6 molecule should be described as having 6 polar covalent (partly ionic) bonds made from only four orbitals on sulfur (one s and three p) in accordance with the octet rule, together with six orbitals on the fluorines.[9] Similar calculations on transition-metal molecules show that the role of p orbitals is minor, so that one s and five d orbitals on the metal are sufficient to describe the bonding.[10]
Common valences
For elements in the main groups of the periodic table, the valence can vary between 1 and 7.
Group | Valence 1 | Valence 2 | Valence 3 | Valence 4 | Valence 5 | Valence 6 | Valence 7 | Valence 8 | Typical valences |
---|---|---|---|---|---|---|---|---|---|
1 (I) | NaCl | 1 | |||||||
2 (II) | MgCl2 | 2 | |||||||
13 (III) | BCl3 AlCl3 Al2O3 |
3 | |||||||
14 (IV) | CO | CH4 | 4 | ||||||
15 (V) | NO | NH3 PH3 As2O3 |
NO2 | N2O5 PCl5 |
3 and 5 | ||||
16 (VI) | H2O H2S |
SO2 | SO3 | 2 and 6 | |||||
17 (VII) | HCl | HClO2 | ClO2 | HClO3 | Cl2O7 | 1 and 7 | |||
18 (VIII) | XeO4 | 8 |
Many elements have a common valence related to their position in the periodic table, and nowadays this is rationalised by the octet rule.
The Greek/Latin numeral prefixes (mono-/uni-, di-/bi-, tri-/ter-, and so on) are used to describe ions in the charge states 1, 2, 3, and so on, respectively. Polyvalence or multivalence refers to species that are not restricted to a specific number of valence bonds. Species with a single charge are univalent (monovalent). For example, the Cs+ cation is a univalent or monovalent cation, whereas the Ca2+ cation is a divalent cation, and the Fe3+ cation is a trivalent cation. Unlike Cs and Ca, Fe can also exist in other charge states, notably 2+ and 4+, and is thus known as a multivalent (polyvalent) ion.[11] Transition metals and metals to the right are typically multivalent but there is no simple pattern predicting their valency.[12]
Valence | More common adjective‡ | Less common synonymous adjective‡§ |
---|---|---|
0-valent | zerovalent | nonvalent |
1-valent | monovalent | univalent |
2-valent | divalent | bivalent |
3-valent | trivalent | tervalent |
4-valent | tetravalent | quadrivalent |
5-valent | pentavalent | quinquevalent, quinquivalent |
6-valent | hexavalent | sexivalent |
7-valent | heptavalent | septivalent |
8-valent | octavalent | — |
9-valent | nonavalent | — |
10-valent | decavalent | — |
12-valent | dodecavalent | — |
multiple / many / variable | polyvalent | multivalent |
together | covalent | — |
not together | noncovalent | — |
† The same adjectives are also used in medicine to refer to vaccine valence, with the slight difference that in the latter sense, quadri- is more common than tetra-.
‡ As demonstrated by hit counts in Google web search and Google Books search corpora (accessed 2017).
§ A few other forms can be found in large English-language corpora (for example, *quintavalent, *quintivalent, *decivalent), but they are not the conventionally established forms in English and thus are not entered in major dictionaries.
Valence versus oxidation state
Because of the ambiguity of the term valence,[13] other notations are currently preferred. Beside the system of oxidation states (also called oxidation numbers) as used in Stock nomenclature for coordination compounds,[14] and the lambda notation, as used in the IUPAC nomenclature of inorganic chemistry,[15] oxidation state is a more clear indication of the electronic state of atoms in a molecule.
The oxidation state of an atom in a molecule gives the number of valence electrons it has gained or lost.[16] In contrast to the valency number, the oxidation state can be positive (for an electropositive atom) or negative (for an electronegative atom).
Elements in a high oxidation state have an oxidation state higher than +4, and also, elements in a high valence state (hypervalent elements) have a valence higher than 4. For example, in perchlorates ClO−4, chlorine has 7 valence bonds (thus, it is heptavalent, in other words, it has valence 7), and it has oxidation state +7; in ruthenium tetroxide RuO4, ruthenium has 8 valence bonds (thus, it is octavalent, in other words, it has valence 8), and it has oxidation state +8.
In some scenarios, the difference between valence and oxidation state arises. Valence and oxidation state of the same atom may not be the same. For example, in disulfur decafluoride molecule S2F10, each sulfur atom has 6 valence bonds (5 single bonds with fluorine atoms and 1 single bond with sulfur atom), thus, each sulfur atom is hexavalent, in other words, it has valence 6, but has oxidation state +5. In dioxygen molecule O2, each oxygen atom has 2 valence bonds, thus, each oxygen atom is divalent, in other words, it has valence 2, but has oxidation state 0. In acetylene H−C≡C−H, each carbon atom has 4 valence bonds (1 single bond with hydrogen atom and 3 single bonds with carbon atom), thus, each carbon atom is tetravalent, in other words, it has valence 4, but has oxidation state −1.
Examples
Compound | Formula | Valence | Oxidation state | Diagram |
---|---|---|---|---|
Hydrogen chloride | HCl | H = 1 Cl = 1 | H = +1 Cl = −1 | H−Cl |
Perchloric acid * | HClO4 | H = 1 Cl = 7 O = 2 | H = +1 Cl = +7 O = −2 | |
Methane | CH4 | C = 4 H = 1 | C = −4 H = +1 | |
Dichloromethane ** | CH2Cl2 | C = 4 H = 1 Cl = 1 | C = 0 H = +1 Cl = −1 | |
Ferrous oxide *** | FeO | Fe = 2 O = 2 | Fe = +2 O = −2 | Fe=O |
Ferric oxide *** | Fe2O3 | Fe = 3 O = 2 | Fe = +3 O = −2 | O=Fe−O−Fe=O |
Sodium hydride | NaH | Na = 1 H = 1 | Na = +1 H = −1 | Na−H |
* The perchlorate ion ClO−4 is monovalent, in other words, it has valence 1.
** Valences may also be different from absolute values of oxidation states due to different polarity of bonds. For example, in dichloromethane, CH2Cl2, carbon has valence 4 but oxidation state 0.
*** Iron oxides appear in a crystal structure, so no typical molecule can be identified. In ferrous oxide, Fe has oxidation state +2; in ferric oxide, oxidation state +3.
Compound | Formula | Valence | Oxidation state | Diagram |
---|---|---|---|---|
Hydrogen | H2 | H = 1 | H = 0 | H−H |
Chlorine | Cl2 | Cl = 1 | Cl = 0 | Cl−Cl |
Hydrogen peroxide | H2O2 | H = 1 O = 2 | H = +1 O = −1 | |
Hydrazine | N2H4 | H = 1 N = 3 | H = +1 N = −2 | |
Disulfur decafluoride | S2F10 | S = 6 F = 1 | S = +5 F = −1 | |
Dithionic acid | H2S2O6 | S = 6 O = 2 H = 1 | S = +5 O = −2 H = +1 | |
Hexachloroethane | C2Cl6 | C = 4 Cl = 1 | C = +3 Cl = −1 | |
Ethylene | C2H4 | C = 4 H = 1 | C = −2 H = +1 | |
Acetylene | C2H2 | C = 4 H = 1 | C = −1 H = +1 | H−C≡C−H |
Mercury(I) chloride | Hg2Cl2 | Hg = 2 Cl = 1 | Hg = +1 Cl = −1 | Cl−Hg−Hg−Cl |
«Maximum number of bonds» definition
Frankland took the view that the valence (he used the term «atomicity») of an element was a single value that corresponded to the maximum value observed. The number of unused valencies on atoms of what are now called the p-block elements is generally even, and Frankland suggested that the unused valencies saturated one another. For example, nitrogen has a maximum valence of 5, in forming ammonia two valencies are left unattached; sulfur has a maximum valence of 6, in forming hydrogen sulphide four valencies are left unattached.[17][18]
The International Union of Pure and Applied Chemistry (IUPAC) has made several attempts to arrive at an unambiguous definition of valence. The current version, adopted in 1994:[19]
- The maximum number of univalent atoms (originally hydrogen or chlorine atoms) that may combine with an atom of the element under consideration, or with a fragment, or for which an atom of this element can be substituted.[2]
Hydrogen and chlorine were originally used as examples of univalent atoms, because of their nature to form only one single bond. Hydrogen has only one valence electron and can form only one bond with an atom that has an incomplete outer shell. Chlorine has seven valence electrons and can form only one bond with an atom that donates a valence electron to complete chlorine’s outer shell. However, chlorine can also have oxidation states from +1 to +7 and can form more than one bond by donating valence electrons.
Hydrogen has only one valence electron, but it can form bonds with more than one atom. In the bifluoride ion ([HF2]−), for example, it forms a three-center four-electron bond with two fluoride atoms:
- [F−H F− ↔ F− H−F]
Another example is the three-center two-electron bond in diborane (B2H6).
Maximum valences of the elements
Maximum valences for the elements are based on the data from list of oxidation states of the elements. They are shown by the color code at the bottom of the table.
Maximum valences of the elements |
|||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
Group → | |||||||||||||||||||
↓ Period | |||||||||||||||||||
1 | 1 H |
2 He |
|||||||||||||||||
2 | 3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne |
|||||||||||
3 | 11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar |
|||||||||||
4 | 19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
|
5 | 37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
|
6 | 55 Cs |
56 Ba |
71 Lu |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn |
|
7 | 87 Fr |
88 Ra |
103 Lr |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Nh |
114 Fl |
115 Mc |
116 Lv |
117 Ts |
118 Og |
|
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
||||||
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
||||||
Maximum valences are based on the List of oxidation states of the elements | |||||||||||||||||||
Primordial From decay Synthetic Border shows natural occurrence of the element |
See also
- Abegg’s rule
- Oxidation state
References
- ^ a b Partington, James Riddick (1921). A text-book of inorganic chemistry for university students (1st ed.). OL 7221486M.
- ^ a b IUPAC Gold Book definition: valence
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- ^ Parkin, Gerard (May 2006). «Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts». Journal of Chemical Education. 83 (5): 791. doi:10.1021/ed083p791. ISSN 0021-9584.
- ^ Harper, Douglas. «valence». Online Etymology Dictionary.
- ^ a b Partington, J.R. (1989). A Short History of Chemistry. Dover Publications, Inc. ISBN 0-486-65977-1.
- ^ Frankland, E. (1852). «On a New Series of Organic Bodies Containing Metals». Philosophical Transactions of the Royal Society of London. 142: 417–444. doi:10.1098/rstl.1852.0020. S2CID 186210604.
- ^ Langmuir, Irving (1919). «The Arrangement of Electrons in Atoms and Molecules». Journal of the American Chemical Society. 41 (6): 868–934. doi:10.1021/ja02227a002.
- ^ Magnusson, Eric (1990). «Hypercoordinate molecules of second-row elements: d functions or d orbitals?». J. Am. Chem. Soc. 112 (22): 7940–7951. doi:10.1021/ja00178a014.
- ^ Frenking, Gernot; Shaik, Sason, eds. (May 2014). «Chapter 7: Chemical bonding in Transition Metal Compounds». The Chemical Bond: Chemical Bonding Across the Periodic Table. Wiley – VCH. ISBN 978-3-527-33315-8.
- ^ Merriam-Webster, Merriam-Webster’s Unabridged Dictionary, Merriam-Webster, archived from the original on 2020-05-25, retrieved 2017-05-11.
- ^ «Lesson 7: Ions and Their Names». Clackamas Community College. Archived from the original on 21 January 2019. Retrieved 5 February 2019.
- ^ The Free Dictionary: valence
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the «Gold Book») (1997). Online corrected version: (2006–) «Oxidation number». doi:10.1351/goldbook.O04363
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the «Gold Book») (1997). Online corrected version: (2006–) «Lambda». doi:10.1351/goldbook.L03418
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the «Gold Book») (1997). Online corrected version: (2006–) «Oxidation state». doi:10.1351/goldbook.O04365
- ^ Frankland, E. (1870). Lecture notes for chemical students(Google eBook) (2d ed.). J. Van Voorst. p. 21.
- ^ Frankland, E.; Japp, F.R (1885). Inorganic chemistry (1st ed.). pp. 75–85. OL 6994182M.
- ^ Muller, P. (1994). «Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)». Pure and Applied Chemistry. 66 (5): 1077–1184. doi:10.1351/pac199466051077. S2CID 195819485.