Как найти ковалентную химическую связь

Содержание:

Ковалентная связь:

Свойство вещества определяется его химическим составом, последовательностью соединения атомов в его молекуле и их взаимодействием. Совокупность сил, связывающих друг с другом атомы в молекуле, называется химической связью. Теория строения атома раскрывает природу химической связи и механизм образования молекулы.

Было установлено, что образование и природа химической связи строение непосредственно связаны со строением наружных электронных слоев взаимодействующих атомов элементов. Имеющиеся к настоящему времени сведения об агомах и молекулах подтверждают электронное происхождение всех химических связей. По правилу октета, при образовании химической связи наружные энергетические уровни завершаются в большинстве случаев образуются восьмиэлектронные октеты …ns2np6, а в некоторых случаях (для атомов и ионов H , He0, Li+, Be2+, B+3) двухэпектронное дуплетное строение 1s2.

Электроны, участвующие в образовании связи, называются валентными электронами. В различных химических соединениях химические связи по механизму образования и типу отличаются друг от друга. Электроотрицательность элементов влияет на распределение электронов между взаимодействующими друг с другом атомами. По характеру распределения электронов в веществах различают четыре основных типа химической связи.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Химическая связь, возникающая в результате образования общих (связывающих) электронных пар, называется ковалентной связью. Ковалентная связь образуется между атомами неметаллов с одинаковыми или мало отличающимися друг от друга электроотрицательностями. Образование большинства молекул связано с созданием ковалентной связи.

Ковалентная связь это локализованная двухэлектронная связь с двумя центрами. Локализованная связь подразумевает такую связь, которая действует лишь между двумя атомами на ограниченном участке. Одна ковалентная связь образуется одной электронной парой. Т.е. ковалентную связь показывают парными точками или линиями. Эти электроны расположены в наружных электронных слоях обоих атомов.

Ковалентная связь в основном возникает по двум различным механизмам:

1.    Механизм обмена. Каждый атом, образующий ковалентную связь, отдаёт одинаковое количество электронов для образования общей электронной пары. Общую электронную пару образуют неспаренные (одиночные |) электроны атомов, образующих связь. При этом спаренные электроны должны обладать антипараллельными спинами Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

2.    Донорно-акцепторный механизм. Ковалентная связь образуется за счет неподеленной электронной пары одного атома и незаполненных (пустых) орбиталей другого атома. Схематически это выглядит так:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Здесь атом D, предоставляющий свою неподеленную электронную пару для общего пользования, называется донором, а атом А, имеющий свободную орбиталь, акцептором. Образованная таким путем ковалентная связь называется донорно-акцепторной или координативной связью.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами Этот механизм химической связи был открыт в 1893 ем году
Альфредом Вернером, создавшим координационную теорию
комплексных соединений. В связи с этим, донорно акцепторная связь раньше называлась координативной связью.

Ион аммония (NHКовалентная связь в химии - виды, типы, формулы и определения с примерами), угарный газ (СО), ион гидроксония (НзО+) образуются по донорно-акцепторному механизму.

  • а) Донорно-акцепторная связь указывается стрелкой, которая всегда направлена от донора (N) в сторону акцептора (H);
  • б) При образовании донорно-акцепторной связи валентность атома-донора увеличивается на одну единицу. Степень окисления не меняется.
Молекулы и ионы Донор-атом
Валентность Степень окисления
NHКовалентная связь в химии - виды, типы, формулы и определения с примерами 4 -3
NH3 3 -3
H2O 2 -2
H3O+ 3 -2

Установлено, что все связи N H ионе аммония (NHКовалентная связь в химии - виды, типы, формулы и определения с примерами) обладают одинаковыми свойствами. Значит, ковалентная связь, образованная по механизму обмена, не отличается от связи, созданной по донорно-акцепторному механизму. Если неподеленную электронную пару атома азота в аммиаке (NH3) представить в виде двух точек, а свободную орбиталь иона водорода (H+) в форме четырехугольника, тогда схему образования иона аммония, угарного газа и иона гидроксония можно изобразить так:

Механизм образования иона аммония
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Все кислоты, кроме кремниевой кислоты (H2SiO3), при растворении а воде образуют ион гидроксония (H3O+). Образование иона гидроксония также происходит по донорно акцепторному механизму.

Механизм образования иона гидроксония:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Механизм образования угарного газа
Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Вещество или ион Донор Акцептор Число электронов, участвующих в образовании связей
у донора у акцептора
NHКовалентная связь в химии - виды, типы, формулы и определения с примерами N H 5 3
СО O C 4 2
H3O+ O H 4 2

Виды ковалентной связи

Начертите схему связи и электронов, образующих эту связь.
1. H2S→ Ковалентная связь в химии - виды, типы, формулы и определения с примерами 2. N2Ковалентная связь в химии - виды, типы, формулы и определения с примерами 3. SO2Ковалентная связь в химии - виды, типы, формулы и определения с примерами 4. F2Ковалентная связь в химии - виды, типы, формулы и определения с примерами 5. H2SO4Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Какие виды ковалентной связи существуют? Чем они отличаются друг от друга?

Существует два вида ковалентной связи, образованной по механизму обмена:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Неполярная ковалентная связь

Ковалентная связь, образованная между атомами неметаллов одного вида (или между атомами с одинаковой электроотрицательностью), называется неполярной ковалентной связью:
H2, N2, O2, F2, Cl2, Br2,I2, P4, S8

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Неполярная ковалентная связь

При образовании ковалентной связи между атомами с одинаковой электроотрицательностью электронные пары между ядрами атомов размещаются симметрично. В образовавшейся в результате
этого молекуле центры положительных и отрицательных зарядов совпадают.

Полярная ковалентная связь

Ковалентная связь, образованная между атомами различных видов неметаллов (или между атомами неметаллов с различными электроотрицательностями), называется полярной ковалентной связью.

Вещества с полярной ковалентной связью:
HCl, СО, SO2, NO2, P2O5, HNO3, H2CO3, H3PO4, SiO2, SiC, CS2, CH4, CF4  

В большинстве полярных молекул центры положительных и отрицательных зарядов не совпадают. Одна сторона молекулы частично заряжается положительно, а другая сторона частично отрицательно. В результате создается диполь (поляризация в молекуле). Электронная пара перемещается в сторону атома с большей электроотрицательностью. Молекулы, образующие диполь, бывают полярными.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Полярная ковалентная связь

Слово «диполь» на греческом «polos» означает «полярный». +δ  и δ  (дельта) относительные заряды.
Их абсолютное значение бывает меньше 1.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Несмотря на то, что в молекулах некоторых веществ все связи полярноковалентные, однако из-за неспособности молекулы к поляризации (т.е. к созданию диполя), они являются неполярными (СО2, СН4).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

σ (сигма) и π(пи) — связи

Сущность образования электронных пар, создающих связь, объясняется перекрыванием электронных облаков. В зависимости от направления перекрывания атомных орбиталей, ковалентные связи делятся на две части.
σ — связь. Если электронные облака перекрываются по прямой линии, соединяющей центры связывающих атомов, то такая связь называется сигма-связью. Вращение одного из атомов вокруг прямой линии, соединяющей ядра обоих атомов, не разрывает связи, σ- связь может образоваться во время перекрывания двух s-, двух р-, одного s- и одного р- электронных облаков в отдельности, а также всех гибридных электронных облаков.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

При наличии между атамами одной ковалентной связи ее называют одинарной связью. Все одинарные связи σ— связи.

πсвязь:

При образовании второй и третьей ковалентных связей между двумя атомами перекрывание электронных облаков происходит не по линии, соединяющей центры атомов. Электронные облака в атоме расположены в отношении друг к другу под определенным углом. И поэтому перекрывание электронных облаков происходит по обе стороны от линии, пересекающей центры атомов.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
π- связь.

Ковалентная связь, созданная за счет перекрывания орбиталей по обе стороны от оси, соединяющей центры атомов, называется π- связью, πсвязь образуется перекрыванием двух р- орбиталей по обе стороны от оси, соединяющей центры атомов, π— связь могут образовать негибридизированные р- орбитали (р- электроны).

В результате образования π— и σ- связей, находящихся на перпендикулярно расположенных друг к другу плоскостях в пространстве в составе одной молекулы, создаются двойные и тройные связи.

Все одинарные связи являются σ- связью, из двойных же связей одна σ- связь, а другая σ- связь, из тройных связей одна σ- связь, а две π— связи.

Вещество Ковалентная связь в химии - виды, типы, формулы и определения с примерами Ковалентная связь в химии - виды, типы, формулы и определения с примерами Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Количество σ- связей 1 1 1
Количество π- связей 0 1 2

Пространственное строение молекул и гибридизация

Определите соответствие.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Какое значение имеют гибридные орбитали в процессе гибридизации? Какие формы гибридизации вы знаете?

Пространственное строение молекулы зависит от формы и направления электронных орбиталей её атомов. Процесс образования новых орбиталей с одинаковыми энергией и формой из комбинации различных орбиталей (s- и р-) называется гибридизацией. Образовавшиеся новые орбитали называются гибридными орбиталями.

  1. Гибридизация орбиталей атомов происходит во время химических реакций.
  2. При образовании связи от гибридизированных орбиталей выделяется ещё больше энергии и связь становится более прочной.
  3. Число образованных гибридных орбиталей равно числу орбиталей, участвующих в гибридизации.

Для s- и р-орбиталей возможны три типа гибридизации.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

sp- гибридизация:

При участии одной s- и одной р-орбитали образуются 2 sp- гибридные орбитали, расположенные под углом 180°. Подобная гибридизация характерна для некоторых элементов II группы: ZnCl2, BeCl2, Mgl2 и др. Электронное строение внешнего электронного слоя бериллия имеет вид 2s22p°. При возбуждении атома бериллия один из s- электронов переходит на р- подуровень, а затем, в результате гибридизации одной s- и одной р- орбиталей, образуются две sp-гибридные орбитали с одинаковой энергией,
расположенные под углом 180°.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Образовавшиеся две sp-гибридные орбитали, оттолкнувшись друг от друга, располагаются под углом 180°, т.е. вдоль прямой линии, двигаясь в противоположных направлениях. В результате перекрывания двух sp- гибридных электронных облаков атома Be р-электроными облаками атомов Cl образуется BeCl2 линейного строения.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

BeF2, BeCl2, BeBr2, Bel2, СО2 это вещества линейного строения, образованные за счет перекрывания sp- гибридных орбиталей.

sp2— гибридизация:

При участии одной s- и двух р- орбиталей образуются три sp2— гибридные орбитали одинаковой формы, расположенные на одной плоскости под углом 120°. Подобный тип гибридизации характерен для некоторых элементов III группы.

Электронное строение внешнего энергетического уровня атома бора следующее: 2s22p1. При возбуждении атома бора один из электронов переходит с S- орбитали на р- орбиталь и в итоге образуются три одинаковые sp2 гибридные орбитали.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Эти три возбужденных гибридных электронных облака атома бора перекрываются р- электронными облаками атомов фтора и в результате образуется молекула BF3 треугольной формы. Все три образовавшиеся связи находятся на одной плоскости. BCl3, ВВr3, Bl3 также обладают подобным плоским строением.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

sp3— гибридизация:

Процесс образования в пространстве четырех гибридных орбиталей из комбинации одной s- и трех р- орбиталей называют sp3— гибридизацией. Для некоторых элементов IV группы характерна sp3— гибридизация: СН4, CCl4, CF4 и др. В нормальном состоянии имеющиеся в наружном электронном слое атома углерода четыре электрона находятся в состоянии 2s22p2. При возбуждении атома углерода во время реакции один из электронов с 2s2— орбитали переходит на 2р- орбиталь и в результате гибридизации в возбужденном состоянии одного S- и трех р- электронных облаков образуются четыре одинаковые sp3— гибридные орбитали.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В метане все гибридные орбитали атома углерода (С), находящегося в состоянии sр3-гибридизации, образуют связь, и молекула приобретает форму тетраэдра (симметрическую), а угол связи составляет -109o28′.

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиКовалентная связь в химии - виды, типы, формулы и определения с примерами

Содержащийся в молекуле воды аnом кислорода не возбуждается. В результате гибридизации двух орбиталей, содержащих по одному электрону, и двух орбита-лей, содержащих по два электрона, образуются четыре sр3-гибридные орбитали.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Гибридные орбитали, содержащие электронные пары атома кислорода в молекуле воды, отталкивают другие гибридные орбитали и в результате молекула приобретает неправильную (несимметрическую) форму тетраэдра, образуя угол связи 104o5′.

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиКовалентная связь в химии - виды, типы, формулы и определения с примерами

В атоме азота в молекуле аммиака возбуждение не происходит. В результате гибридизации трех орбиталей, содержащих по одному электрону, и одной орбитали, содержащей два электрона, создаются 3sp3— гибридные орбитали.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Гибридные орбитали, содержащие электронные пары атома азота в молекуле аммиака, отталкивают другие гибридные орбитали и в результате молекула приобретает неправильную (несимметрическую) форму тетраэдра, а угол связи составляет 107o3′.

Свойства ковалентной связи

Основными характерными свойствами ковалентной связи являются ее прочность, энергия, насыщенность, направленность, полярность, длина и кратность.

Прочность ковалентной связи

Чем больше электронная плотность между ядрами атомов, тем прочнее будет связь. Прочность химической связи зависит от:
1) насыщенности связи; 2) длины связи; 3) полярности связи.

Энергия связи

Энергия связи это количество минимальной энергии, необходимой для того, чтобы разорвать связь. Единицей энергии связи является кДж/моль, которая предусмотрена для 1 моль связи. Энергия связи 1 моль водорода равна 436 кДж/моль. Процесс разрыва связи можно выразить в виде термохимического уравнения:
H      H — 2Н      436 кДж/моль или ΔH=+436 кДж/моль

Энергия связи для 1 молекулы равна соотношению между минимальной энергией, необходимой для разрыва связи, и постоянной Авогадро.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Для вычисления энергии, необходимой для разрыва одной связи в многоатомных молекулах, следует поделить общую энергию связи на количество связей. Энергия связи в молекуле метана(СН4)

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

ΔH=+1647 кДж/моль      Эсвязи= 1647 : 4 ≈ 412 кДж/моль

Однако действительное значение каждой отдельно взятой энергии связи несколько отличается от ее среднего значения.

Пользуясь понятием энергии связи, можно определить, являются ли химические реакции экзотермическими или эндотермическими.

Разница между суммой энергий связи между атомами продуктов реакции и суммой энергий связи между атомами веществ, вступивших в реакцию, определяет тепловой эффект химической реакции. Если эта разница положительная, то реакция экзотермическая, а при отрицательной разнице эндотермическая. При вычислении же по изменению энтальпии (ΔH) бывает наоборот.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Qpeaн.=(6 . QС H + QС С )       (4 ∙ QС H + QС=С + QH H ); ΔH= Q

В общем виде вычисляется следующим образом:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Δ H равен тепловому эффекту реакции с противоположным значением, называется изменением энтальпии. Оно находится только посредством вычислений.  

Насыщенность связи

Насыщенность ковалентной связи определяется валентными возможностями атомов. Возможность образования ковалентной связи определяется числом валентных электронов (или образующих ковалентную связь орбиталей). Например, в атоме углерода, имеющем в наружном электронном слое всего 4 орбитали, в возбужденном состоянии содержится 4 одиночных электрона и поэтому атом углерода способен образовать не более 4-х ковалентных связей. Валентные возможности атомов определяются числом неподеленных электронных пар, которые могут быть отданы другим атомам с незаполненными орбиталями на наружном энергетическом уровне.

Направленность связи

Это свойство ковалентной связи обуславливает пространственное строение молекул. Направленность химических связей объясняется различным расположением электронных облаков в пространстве. Во время взаимного перекрывания электронных облаков в пространстве могут образоваться соединения, молекулы которых будут иметь линейную форму или форму угла. Н2, N2, F2, НСl, СО, NO имеют линейное строение, а H2O, SO2, NO2 форму угла.

Кратность связи определяется числом электронных пар (числом ковалентных связей), соединяющих два атома. В молекуле кислорода кратность связи равна 2. На внешнем энергетическом уровне каждого атома кислорода содержатся два неспаренных одиночных электрона: O=O

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В молекуле азота кратность связи равна 3. На внешнем энергетическом уровне каждого атома азота содержатся три неспаренных одиночных электрона. N Ковалентная связь в химии - виды, типы, формулы и определения с примерамиN

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Длина связи это расстояние между ядрами атомов, образующих связь; измеряется в нанометрах (нм). Чем короче длина химической связи, тем прочнее будет связь.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Полярность связи зависит от смещения электронной пары, образующей ковалентную связь, в сторону одного из атомов.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В галогенидах водорода (HF, HC1, HBr, HI) в связи с увеличением радиуса по мере возрастания порядкового номера галогена, увеличивается и длина связи. Так как F (фтор) самый сильный неметалл, HF отличает большей полярностью и прочностью. В связи с увеличением длины связи в HF, HC1, HBr, HI, по мере увеличения радиуса, их полярность, прочность связи уменьшаются, а кислотность, восстановительные свойства усиливаются.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
полярность, прочность связи уменьшаются, кислотность, восстановительные свойства усиливаются.

Природа и типы химической связи

При обычных условиях химические элементы существуют в форме различных атомных частиц в составе простых и сложных веществ. Из них только простые вещества благородных газов (элементов VIIIA-группы) являются одноатомными молекулами, а остальные представляют собой самые разнообразные соединения. Число атомов в таких соединениях колеблется от двух до сотен и тысяч. Силы, которые обеспечивают существование таких агрегатов (молекул, радикалов, кристаллов и др.), получили название химическая связь.

Химическая связь — это взаимодействие, которое связывает отдельные атомы в более сложные системы (молекулы, радикалы, кристаллы и т. д.).

Причиной образования химической связи является стремление атомов путем взаимодействия с другими атомами достичь более устойчивого состояния, т. е. состояния с минимально возможным запасом энергии. Следовательно, основным условием образования химической связи является понижение полной энергии Е многоатомной системы по сравнению с суммарной энергией изолированных атомов, т. е.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

в случае образования вещества АВ из атомов А и В.

Таким образом, образование химической связи всегда сопровождается выделением энергии.

Природа сил химической связи — электростатическая, т. е. обусловлена различными видами взаимодействий положительно заряженных ядер и отрицательно заряженных электронов (рис. 15).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Главную роль при образовании химической связи между атомами играют их валентные электроны, т. е. те электроны, которые обычно находятся на внешнем энергетическом уровне и наименее прочно связаны с ядром атома. У атома на внешнем энергетическом уровне может содержаться от одного до восьми электронов. Завершенными, а поэтому и самыми устойчивыми, являются внешние электронные оболочки атомов благородных газов: у гелия там находится два электрона (1s2) и у остальных — по восемь электронов (ns2np6, где n — номер периода).

У атомов остальных элементов внешние энергетические уровни являются незавершенными, и поэтому в процессе химического взаимодействия атомы стремятся их завершить, т. е. приобрести электронное строение атома ближайшего благородного газа. Это соответствует нахождению двух электронов на внешнем уровне у атомов водорода, который расположен в одном периоде с гелием, и восьми электронов (октет) — у всех остальных атомов. Достичь такого электронного состояния атомы могут только за счет обобществления электронов, т. е. их совместного использования атомами, соединяющимися между собой. При этом образуются общие электронные пары, которые связывают атомы друг с другом — между ними возникает химическая связь.

В зависимости от способа обобществления электронов различают три основных типа химической связи: ковалентную, ионную и металлическую.

Ковалентная связь:

Ковалентная связь возникает обычно между двумя атомами неметаллов с одинаковыми или близкими значениями электроотрицательности. Рассмотрим образование ковалентной связи на примере простейшей молекулы — молекулы водорода Н2. У атома водорода всего один электрон, находящийся на внешнем (первом) энергетическом уровне, до завершения которого не хватает одного электрона.

При сближении двух атомов водорода за счет сил притяжения, действующих между их ядрами и электронами, происходит частичное перекрывание электронных облаков неспаренных электронов с антипараллельным спином (это одно из условий образования общей электронной пары!). В зоне их перекрывания плотность двухэлектронного облака увеличивается. Ядра атомов стягиваются к этой области повышенного отрицательного заряда до тех пор, пока не наступит равновесие между силами межъядерного отталкивания и силами притяжения. Расстояние между ядрами атомов уменьшается, энергия системы, состоящей из двух атомов водорода, также понижается. Область повышенной электронной плотности связывает два атома водорода в молекулу Н2 (рис. 16).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Образование химической связи между атомами водорода в молекуле можно показать различными способами. Например, с помощью электронных формул, в которых Указывают символы элементов и валентные электроны в виде точек:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В графических (или структурных) формулах пару электронов обозначают с помощью черточки:  

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В случае молекулы водорода эта единственная черточка символизирует ковалентную связь.

Химическая связь, возникающая в результате обобществления электронов с образованием общих электронных пар между атомами, называется ковалентной связью.

Образование ковалентной связи можно показать и с помощью электронно-графических схем, на которых обычно указываются только орбитали внешнего энергетического уровня:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Волнистая линия между двумя орбиталями 1s указывает на то, что каждый электрон как бы одновременно находится как на одной, так и на другой орбитали. В данном случае ковалентная связь образована в результате перекрывания двух s-opбиталей (или s-облаков) (рис. 17).

Подобным образом образуется ковалентная связь и между двумя атомами фтора в молекуле F2. Атом фтора имеет 7 электронов на внешнем электронном слое, один из них — неспаренный электрон. При сближении двух атомов фтора происходит перекрывание электронных облаков их неспаренных электронов, образуется общая электронная пара и внешний энергетический уровень каждого атома фтора завершается до октета (8 электронов):
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Схема образования молекулы фтора с помощью электронных формул:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а графическая формула молекулы:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В данном случае образование ковалентной связи произошло за счет перекрывания р-электронных облаков (рис. 18).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Одинарная связь:

И в молекуле водорода, и в молекуле фтора атомы связаны электронной парой, образующей одну химическую связь, называемую одинарной. В обоих случаях перекрывание электронных облаков (как s-, так и р-) происходит вдоль линии, соединяющей центры взаимодействующих атомов. Эту условную прямую называют линией (или осью) связи.

Ковалентная связь, образованная за счет перекрывания атомных орбиталей вдоль линии связи, называется Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связью (сигма-связью).

Пару электронов, образующих ковалентную связь, называют связывающей в отличие от электронных пар, которые не участвуют в образовании связей и, следовательно, являются несвязывающими. Такие пары часто также называют неподеленными, поскольку они принадлежат только одному атому.

У атомов водорода в молекуле Н2 нет несвязывающих пар, а в молекулах F2, С12, Вr2 или I2 у каждого из атомов галогенов их по три:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

  • Причиной образования химической связи является стремление атомов к достижению более устойчивого состояния, что приводит к выделению энергии при образовании связей.
  • Природа сил химической связи — электростатическая, т. е. определяется различными видами взаимодействий электронов и ядер в системе связанных атомов.
  • Различают три основных типа химической связи — ковалентную, ионную и металлическую.
  • Ковалентная связь — это химическая связь, возникающая в результате образования общих электронных пар между двумя атомами.

Кратные связи. Полярная и неполярная ковалентная связь

Два атома могут быть связаны между собой не только одной, но и несколькими ковалентными связями. В таком случае говорят о кратности связи, понимая под этим термином число электронных пар, участвующих в образовании ковалентной связи.

Кратные связи

У атомов азота (элемента VA-группы) до завершения внешнего энергетического уровня не хватает трех электронов:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Поэтому при образовании молекулы N2 атомы азота обобщают уже не одну, а три пары электронов:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Схема образования молекулы азота:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а графическая формула молекулы:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Одна из ковалентных связей, образовавшаяся в результате перекрывания р-электронных облаков вдоль линии связи, представляет собой Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь. Две другие образуются за счет перекрывания вертикально направленных облаков р-электронов. Такое перекрывание происходит уже не вдоль линии, соединяющей центры атомов, а по обе стороны от нее. Образуется не одна, а две области перекрывания (рис. 19).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Такая ковалентная связь получила название Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связи.

 Ковалентная связь в химии - виды, типы, формулы и определения с примерами-Связь — это ковалентная связь, возникающая при перекрывании электронных облаков по обе стороны от линии, соединяющей ядра атомов.

Облака s-электронов не могут образовывать Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связи. В образовании Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связей могут участвовать только p— и d-облака. Возникновение Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связей происходит между двумя атомами только тогда, когда они уже связаны Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связью.

Если ковалентная связь между двумя атомами образуется двумя общими электронными парами, то такая ковалентная связь называется двойной связью, и она обозначается двумя черточками. Например, в молекуле этена С2Н4 атомы углерода соединены между собой двойной связью:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

одна из которых — Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь, а вторая — Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связь.

Если в молекуле имеется тройная связь, как, например, в молекуле азота N2, то одна из них — Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь, а две другие — Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связи, расположенные во взаимно перпендикулярных плоскостях (рис. 20).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Полярная и неполярная ковалентная связь

До сих пор мы рассматривали ковалентную связь, образованную атомами одного и того же элемента. В этом случае общая пара электронов располагается симметрично между двумя атомами с одинаковой электроотрицательностью. Такая ковалентная связь называется неполярной.

Если же взаимодействуют атомы с различными электроотрицательностями, т. е. атомы разных элементов, то общая электронная пара смещается к атому с большей электроотрицательностью. В таких случаях возникает полярная ковалентная связь.

Например, в молекуле хлороводорода HCI общая электронная пара смещена в сторону более электроотрицательного элемента, каким является хлор:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В данном случае перекрываются сферическое s-электронное облако атома водорода и гантелеобразное р-облако атома хлора (рис. 21).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Схема такого перекрывания:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В результате смещения общей электронной пары в молекуле HCl на атоме хлора возникает частичный отрицательный заряд, а на атоме водорода — такой же по величине, по положительный заряд:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

(греческая буква Ковалентная связь в химии - виды, типы, формулы и определения с примерами (дельта) обозначает частичный заряд, т.е. заряд меньше единицы).

Значение заряда Ковалентная связь в химии - виды, типы, формулы и определения с примерами можно рассматривать как меру полярности связи: чем больше частичные заряды на атомах, тем больше полярность связи. Например: связь Н — F более полярна, чем Н —Cl, так как частичные заряды на атомах Н и F равны 0,43+ и 0,43- соответственно, а на атомах Н и Cl — 0,18+ и 0,18—. Если молекула состоит из двух атомов, связанных между собой полярной связью, то она также называется полярной, т. е. представляет собой диполь (рис. 22).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Чем больше разность электроотрицательностей связанных атомов, тем более полярна химическая связь межту ними.

С помощью ковалентной связи образуются молекулы и более сложных веществ, состоящих из трех, четырех и более атомов. В качестве примера рассмотрим образование молекулы аммиака NH3. Электронно-графическая схема взаимодействия трех атомов водорода и одного атома азота следующая:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Общая схема образования аммиака:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а графическая формула молекулы:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Таким образом, три неспаренных электрона атома азота принимают участие в образовании трех ковалентных связей с атомами водорода, а на внешнем энергетическом уровне у атома азота остается еще неподеленная пара электронов. Каждая связь N — Н является полярной. В целом вся молекула NH;i представляет собой диполь, так как она имеет форму пирамиды с атомом азота в ее вершине. Однако существует много молекул, которые содержат полярные связи, но сами являются неполярными. Это объясняется особенностями их пространственного строения. Об этом мы поговорим в следующих параграфах.

  • Кратность связи определяется числом общих электронных пар между двумя связанными атомами.
  • Ковалентная связь, при образовании которой области перекрывания электронных облаков находятся по обе стороны от линии, соединяющей ядра атомов, называется Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связью.
  • При соединении двух атомов с разными электроотрицательностями возникает ковалентная полярная связь.

Механизмы образования ковалентной связи

Различают два основных механизма образования ковалентной связи — обменный и донорно-акцепторный.

Обменный механизм образования связи

Ковалентная связь образуется двумя атомами с помощью двух электронов с антипараллельным спином, т. е. химическая связь находится (локализована) между двумя атомами. Так как нахождение двух электронов в поле действия двух ядер энергетически выгоднее, чем пребывание каждого электрона в поле своего ядра, то в образовании ковалентной связи принимают участие все одноэлектронные орбитали внешнего энергетического уровня. Например, атом азота имеет три не-спаренных электрона на внешнем уровне:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

атом кислорода — два:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а атом фтора — один:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Поэтому эти атомы могут образовывать за счет таких электронов соответственно три, две и одну ковалентные связи.

Число неспаренных электронов может увеличиваться при переходе атома в возбужденное состояние. Например, на внешнем энергетическом уровне атома углерода находится только два неспаренных электрона.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Однако в большинстве своих соединений углерод проявляет валентность, равную 4, образуя четыре ковалентные связи, например: С02, СН4, ССl4 и т.д. Такая валентность атома углерода становится возможной благодаря тому, что его атом при образовании химических связей с другими атомами переходит в возбужденное состояние (т. е. в состояние с большей энергией) за счет распаривания пары электронов 2s2 и перехода одного из них па подуровень :

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В возбужденном состоянии атом углерода имеет четыре неспаренных электрона, за счет которых он может образовывать четыре ковалентные связи с атомами других элементов. Распаривание электронов требует затраты энергии, но эта затрата с избытком компенсируется энергией, выделяющейся при образовании дополнительных связей. Распаривание, как правило, происходит лишь в пределах данного энергетического уровня, поскольку переход электронов на свободные орбитали другого уровня энергетически не выгоден. Поэтому в возбужденное состояние могут перейти атомы только тех элементов второго периода, у которых имеются свободные орбитали (бериллий, бор, углерод). У атомов азота, кислорода и фтора нет свободных орбиталей на втором энергетическом уровне, а переход электронов на третий уровень потребует слишком больших затрат энергии, которые не компенсируются выделением энергии при образовании дополнительных связей.

В то же время атомы элементов третьего и следующих периодов имеют на внешнем энергетическом уровне d-подуровень, на который при возбуждении могут переходить s- и р-электроны:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Благодаря этому атом хлора способен образовывать не одну, а несколько ко-валентных связей, вплоть до семи, как, например, в оксиде Сl207.

Таким образом, атомы при образовании ковалентных связей используют все свои неспаренные электроны, как находящиеся в основном состоянии, так и образовавшиеся при распаривании.

  • Механизм образования ковалентной связи за счет обобществления не-спаренных электронов двух взаимодействующих атомов называется обменным.

Донорно-акцепторный механизм образования ковалентной связи

Образование ковалентной связи возможно и при взаимодействии атомов, один из которых имеет пару неподеленных электронов (Ковалентная связь в химии - виды, типы, формулы и определения с примерами), а другой — свободную орбиталь (Ковалентная связь в химии - виды, типы, формулы и определения с примерами). В этом случае атом А предоставляет атому В в общее пользование пару электронов, и она становится связывающей парой, образуя между этими атомами ковалентную связь:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Атом, предоставляющий электронную пару для образования связи, называется донором, а участвующий в обобществлении пары за счет свободной орбитали, — акцептором. Такой механизм образования ковалентной связи получил название донорно-акцепторного.

Механизм образования ковалентной связи за счет неподеленной пары электронов одного атома и свободной орбитали другого называется донорно-акцепторным.

Примером такого механизма может служить образование иона аммония Ковалентная связь в химии - виды, типы, формулы и определения с примерами при взаимодействии аммиака NH3 и хлороводородной кислоты HCl в растворе:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Сокращенно ионное уравнение этой реакции:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Составим электронную схему такого взаимодействия, обозначив точками электроны, принадлежащие атому азота, а звездочками — атомам водорода:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой. И хотя одна из этих связей образована по донорно-акцепторному механизму, она не отличается по своим характеристикам от остальных ковалентных связей, образованных по обменному механизму.

Донорно-акцепторный механизм позволяет объяснить существование иона гидроксония Н30+, в виде которого находится в водных растворах ион водорода. Эта частица образуется в результате гидратации иона водорода:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Электронная схема этого процесса:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

  • Обменным называется механизм образования ковалентной связи, при котором каждый атом предоставляет для формирования общей электронной пары один неспаренный электрон.
  • Механизм образования ковалентной связи за счет электронной пары одного атома и свободной орбитали другого называется донорно-акцепторным.

Свойства ковалентной связи

Вы уже познакомились с одной из характеристик ковалентной связи — полярностью. Полярность связи и всей молекулы в целом во многом определяет физические и химические свойства вещества, такие, как температуры кипения и плавления, растворимость и даже способность вступать в химические реакции с другими веществами.

Рассмотрим еще некоторые характеристики ковалентной связи.

Энергия и длина связи

Одной из важнейших характеристик химической связи является ее прочность. Прочность связей определяет реакционную способность вещества.

Мерой прочности связи является та энергия, которую необходимо затратить на ее разрыв. Эту характеристику называют энергией связи. В случае веществ с двухатомными молекулами ее величину рассчитывают на 1 моль вещества. Так. у молекулы водорода Н2 энергия связи Н — Н равна 435 кДж/моль, у молекулы фтора F2 — 159 кДж/моль, а у молекулы азота эта характеристика равна 943 кДж/моль. Чем меньше энергия связи, тем менее прочной является ковалентная связь, тем больше реакционная способность вещества.

Еще одной характеристикой прочности связи является длина связи — расстояние между ядрами химически связанных атомов. С увеличением радиусов атомов длина связи между ними увеличивается, а прочность — уменьшается. Ковалентная связь Н—Н более прочная, чем связь F—F, так как ее длина равна 0,074 нм, а связи F—F — 0,142 нм.

Увеличение кратности связи приводит к уменьшению межъядерного расстояния и упрочнению связи между атомами (табл. 9).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Из таблицы 9 видно, что энергия двойной связи Ковалентная связь в химии - виды, типы, формулы и определения с примерами (или тройной Ковалентная связь в химии - виды, типы, формулы и определения с примерами) меньше удвоенной (или утроенной) энергии одинарной связи Ковалентная связь в химии - виды, типы, формулы и определения с примерами, следовательно, Ковалентная связь в химии - виды, типы, формулы и определения с примерами и Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи не одинаковы по прочности: Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь слабее Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи, поэтому при химических реакциях Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь разрывается первой.

Насыщаемость

Ковалентная связь характеризуется насыщаемостью. Это свойство состоит в том, что образование связывающей два атома электронной пары исключает ее участие в других химических взаимодействиях. Благодаря этому общее число ковалентных связей, которые способен образовывать тот или иной атом, ограничено. Оно определяется числом орбиталей атома, использование которых для образования химических связей энергетически выгодно. Так, элементы второго периода, у атомов которых внешний энергетический уровень состоит только из четырех орбиталей (одна s- и три р-типа), могут образовать не более четырех ковалентных связей. У атомов следующих периодов в образовании ковалентных связей могут принимать участие и d-орбитали как внешнего, так и предвнешнего энергетических уровней.

Поэтому ковалентные соединения имеют строго определенный состав.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Направленность ковалентной связи

Ковалентная связь между двумя атомами располагается таким образом, чтобы обеспечить максимальное перекрывание электронных облаков. Поскольку в образовании связей принимают участие электронные облака различной формы и ориентации в пространстве, то и ковалентные связи, образованные этими облаками, также характеризуются определенной направленностью.

Если ковалентная связь образуется путем перекрывания сферических s-электронных облаков, как, например, в молекуле Н2, то она может располагаться в любом направлении (рис. 23) относительно центра данного атома.

А вот в молекуле Сl2, где ковалентная связь образована за счет перекрывания р-облаков, область перекрывания располагается только вдоль линии связи, определенной пространственной ориентацией р-облака (рис. 24).

Следовательно, направленность ковалентных связей объясняется различным расположением электронных облаков в пространстве.

  • Основными характеристиками ковалентной связи являются ее длина, энергия, полярность, насыщаемость.
  • Ковалентные химические связи характеризуются определенной направленностью.

Понятие о стереохимии и атомные кристаллические решетки

Каждая молекула представляет собой систему взаимосвязанных атомов, расположенных определенным образом относительно друг друга. Следовательно, молекула характеризуется определенным пространственным строением, или, говоря иначе, геометрией (формой).

Вопросы строения молекул рассматривает один из разделов химии, который называется стереохимией (в буквальном переводе с греческого языка — пространственная химия).

Согласно стереохимическим представлениям, когда один атом образует несколько связей, они будут направлены под определенными углами друг к другу. Угол между связями (или валентный угол) — это угол между воображаемыми прямыми, проходящими через ядра химически связанных атомов. Такие прямые, как вы уже знаете, называются линиями связи (рис. 25).

Например, в молекуле Н20 атом кислорода образует две Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи с атомами водорода за счет р-облаков внешнего энергетического уровня, ориентированных в атоме взаимно перпендикулярно (см. §11). Следовательно, угол между двумя линиями связи О—Н должен быть близок к 90° (рис. 26).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Аналогично в молекуле NH3 углы между связями N—Н, образованные тремя р-орбиталями атома азота, также должны быть близки к 90° (рис. 27), а вся молекула в целом должна иметь форму треугольной пирамиды с атомом азота в вершине.

Действительные значения углов между связями (104,5° в молекуле Н20 и 107° в молекуле NH3) отличаются от ожидаемых. Увеличение валентных углов можно объяснить взаимным отталкиванием положительно заряженных атомов водорода. Например, уже в молекуле H2S такое отталкивание слабее, чем в молекуле Н20 (так как радиус атома серы больше радиуса атома кислорода), и угол Н—S—Н ближе к 90°, чем угол Н—О—Н.

За счет ковалентной связи образуются не только молекулы. Некоторые простые и сложные вещества построены из атомов, связанных друг с другом ковалентными связями, и образуют протяженные кристаллические структуры — атомные кристаллические решетки.

Примерами таких веществ являются простые вещества — бор, алмаз, кремний. В кремнии (как и в кристалле алмаза)(рис. 28) каждый атом связан четырьмя ковалентными связями с другими атомами.

Подобное строение имеют и сложные вещества: карбид кремния SiC и оксид кремния Si02 (кварц).

Атомных кристаллов сравнительно немного. Благодаря высокой прочности ковалентных связей они имеют очень высокие температуры плавления, большую твердость. Так, самым твердым природным веществом является алмаз — его температура плавления более 3500 °С. Карбид кремния SiC также является одним из самых твердых веществ с очень высокой температурой плавления — более 2700 °С.

  • Стереохимия — раздел химии, рассматривающий пространственное строение молекул или кристаллов.
  • Кристаллические структуры, построенные из атомов, связанных друг с другом ковалентными связями, называются атомными кристаллическими решетками.

Гибридизация атомных орбиталей

Вы уже знаете, что в образовании ковалентных связей принимают участие как s-, так и р-электроны, орбитали которых имеют разную форму и направленность в пространстве. Вместе с тем связи, которые образуются при их участии, оказываются равноценными и расположенными симметрично.

В рамках электронной теории химической связи эти факты объясняются на основе концепции гибридизации атомных валентных орбиталей. Согласно данной концепции в образовании ковалентных связей участвуют не «чистые», а так называемые гибридные, усредненные по форме и размерам (а следовательно, и по энергии) орбитали. Число таких орбиталей равно числу исходных орбиталей. Гибридные орбитали более вытянуты в пространстве (рис. 29), что обеспечивает их более полное перекрывание с орбиталями соседних атомов при образовании связей. Гибридные орбитали, вследствие особой симметрии, в образовании Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связей участия не принимают, так как не могут обеспечить перекрывание между собой в двух областях пространства по обе стороны от линии связи (рис. 30).

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиКовалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Условия устойчивой гибридизации:

  1. в гибридизации могут участвовать орбитали с близкими значениями энергий, т. е. s- и р-орбитали внешнего энергетического уровня и d-орбитали внешнего или предвнешнего уровня;
  2. гибридная атомная орбиталь должна более полно перекрываться с орбита-лями другого атома при образовании связей;
  3. в    гибридизации участвуют орбитали с достаточно высокой электронной плотностью, которыми в большинстве случаев являются орбитали элементов начальных периодов;
  4. гибридные орбитали должны быть ориентированы в пространстве таким образом, чтобы обеспечить максимальное взаимное удаление друг от друга. В этом случае энергия их отталкивания (и, следовательно, энергия всей системы) минимальна.

Ориентация гибридных орбиталей определяет геометрическую структуру молекулы и молекулярных ионов. Так, при комбинации одной s- и одной р-орбитали возникают две sp-гибридные орбитали, расположенные симметрично под углом 180° (рис. 31). Соответственно связи, образованные с участием электронов этих орбиталей, также располагаются под углом 180°. Например, у атома бериллия sp-гибридизация орбиталей проявляется в молекуле ВеСl2, которая вследствие этого имеет линейную форму (рис. 32).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Комбинация трех орбиталей (одной s- и двух р-типа) приводит к образованию трех sp2-гибридных орбиталей, расположенных в одной плоскости под углом 120° (рис. 33) (например, в молекуле BF3) (рис. 34).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Комбинация четырех орбиталей (одной s- и трех р-типа) приводит к sр3-гибридизации, при которой четыре гибридные орбитали симметрично ориентированы в пространстве к четырем вершинам тетраэдра, т. е. под углом 109°28′ (рис. 35) (атом углерода в молекуле СН4) (рис. 36).

Основные характеристики указанных типов гибридизации приведены в таблице 10.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Существуют и другие типы гибридизации атомных орбиталей. Они достаточно доступны для понимания, но их рассмотрение выходит за рамки школьного курса.

  • Гибридизация атомных орбиталей — усреднение по форме и энергии электронных облаков, соответствующих разным орбиталям.
  • В гибридизации могут участвовать орбитали с близкими значениями энергии.
  • Гибридные орбитали должны быть ориентированы в пространстве таким образом, чтобы обеспечить максимальное взаимное удаление друг от друга.
  • Гибридные орбитали участвуют в образовании только Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи.

Пространственное строение молекул

Пространственное строение молекул или молекулярных ионов зависит от типа гибридизации и взаимного расположения в пространстве гибридизованных орбиталей центральных атомов.

В реальных молекулярных структурах углы между связями часто отличаются от углов, соответствующих типу гибридизации.

В чем причина таких отклонений?

Прежде чем ответить на этот вопрос, выделим несколько положений, на которых основываются подходы к рассмотрению геометрии молекул.

Линия связи (или ось связи) — это прежде всего область перекрывания электронных облаков при образовании Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязей. Поскольку Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи располагаются в тех же областях межъядерного пространства, что и Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи, и влияют только на длину и прочность связи между двумя атомами, геометрическая конфигурация молекул определяется в основном пространственной направленностью Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязей.

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиСвязи (поделенные пары электронов) так же, как и неподеленные пары, представляют собой области повышенной электронной плотности, т. е. отрицательного заряда. Устойчивому состоянию молекулы соответствует такое пространственное расположение электронных облаков валентного слоя, при котором их взаимное отталкивание минимально. Поэтому такие электронные пары стремятся максимально оттолкнуться друг от друга, располагаясь в пространстве под возможно большим углом.

Основными причинами отклонений углов связей от углов, соответствующих типу гибридизации, являются следующие.

1. Не все гибридные орбитали участвуют в образовании связей, часть из них — несвязывающие. Электронные пары, находящиеся на этих орбиталях, также называются несвязывающими (или неподеленными). Например, у атома азота в молекуле NH3 одна пара электронов — несвязывающая, а в молекуле Н20 у атома кислорода две пары электронов являются несвязывающими:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Связывающая электронная пара локализована между двумя атомами и поэтому занимает меньше пространства, чем электронное облако несвязывающей пары. Вследствие этого отталкивающее действие несвязывающей пары проявляется в большей мере, чем связывающей. В молекулах воды и аммиака у атомов (N и О) один и тот же тип гибридизации атомных орбиталей sp3. Однако вследствие наличия одной (у азота) и двух (у кислорода) несвязывающих пар идеальный угол для этого типа гибридизации, равный 109°28′ уменьшается соответственно до 107° (угол Н — N — Н) и 104,5° (угол Н —О—Н) (рис.37, 38).

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиВ таблице 11 приведены виды геометрических конфигураций, соответствующих некоторым типам гибридизации орбиталей центрального атома А, с учетом влияния несвязывающих электронных пар.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Число атомов В (в общем случае и число групп атомов), непосредственно связанных с центральным атомом А, называется его координационным числом. В соединениях с ковалентным типом связей координационное число атома равно числу Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязей, которые связывают его с другими атомами.

2. Наличие Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи влияет только на величину валентного угла, но не сказывается на типе гибридизации атомных орбиталей и, следовательно, на геометрии молекулы. Только углы между Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями фиксируют пространственное расположение атомов относительно друг Друга.

Предполагается, что электронные пары кратной связи занимают ту же область пространства, что и электронная пара простой связи. Суммарное электронное облако кратной связи (двойной или тройной) занимает больший объем пространства, чем одинарной, и поэтому обладает большим отталкивающим действием. Например, в молекуле COF2, имеющей плоскостное строение (sp2-гибридизация атома углерода), углы связи F—С—О больше угла связи F—С—F, так как связь С = 0 является двойной и обладает большим отталкивающим действием, чем одинарная связь С—F (рис. 39).

В молекуле углекислого газа С02, графическая формула которого

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

две ковалентные связи одинарные, т. е. являются Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями, а две другие — Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями. Ковалентная связь в химии - виды, типы, формулы и определения с примерамиСвязи не влияют на геометрию молекулы, поэтому пространственная структура С02 определяется только двумя Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями — молекула имеет линейное строение, так как тип гибридизации центрального атома sp.

Многоцентровые связи

Строение многих молекул нельзя изобразить только одной графической формулой с точной локализацией кратной связи, поскольку истинные свойства молекулы оказываются промежуточными между теми, которые отражаются в каждой отдельной схеме. Например, строение молекулы HNO3 можно изобразить двумя равнозначными графическими формулами:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Поскольку в этой молекуле оба атома кислорода Ковалентная связь в химии - виды, типы, формулы и определения с примерами равноценны (и, следовательно, равноценны обе их связи с азотом), строение молекулы лучше передает графическая формула с делокализованной Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязью:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В этой формуле пунктирные линии означают, что одна из общих электронных пар в равной степени распределена между одной и другой связями N—О. Другими словами, эта электронная пара принадлежит не двум, а трем атомам и, следовательно, образованная ею связь является трехцентровой.

Примерами структур с многоцентровыми (делокализованными) Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями могут служить такие, как Ковалентная связь в химии - виды, типы, формулы и определения с примерами и др.

Валентность и степень окисления

Валентность и валентные возможности атомов

Мы установили, что атомы способны образовывать ковалентные связи различным образом. Количественно эта способность атомов оценивается с помощью характеристики, называемой валентностью.

Валентность — мера способности атомов данного элемента соединяться с другими атомами.

Такое толкование валентности является общим, или стехиометрическим. Оно обосновывает количественные соотношения атомов элементов в любых химических соединениях.

С развитием электронных представлений о строении веществ понятие валентности приобрело определенное физическое обоснование. В современной химии валентность химического элемента определяется числом ковалентных связей, которыми данный атом связан с другими атомами.

Ковалентные связи могут быть образованы как с помощью одноэлектронной орбитали атома, так и с помощью неподеленной пары электронов (если атом — донор) или свободной орбитали (если атом — акцептор). Следовательно, можно сказать, что валентность химического элемента также равна числу электронных орбиталей, которые данный атом использует для образования ковалентных связей.

Таким образом, валентность химического элемента определяется как числом ковалентных связей, которыми его атом связан с другими атомами, так и числом орбиталей, используемых этим атомом для образования связей.

Зная электронное строение атома того или иного элемента, можно определить его валентные возможности. Так, атом водорода всегда проявляет валентность, равную единице, поскольку у него всего одна орбиталь.

Анализируя строение простых и сложных веществ, образованных атомами элементов второго периода, нетрудно убедиться, что большинство этих элементов могут проявлять переменную валентность. Например, в молекулах простых веществ N2, 02, F2 атом азота имеет валентность, равную трем, кислорода — двум, а фтора — единице согласно графическим формулам этих молекул:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Простые вещества бора и углерода являются немолекулярными соединениями, однако атомы этих элементов связаны в кристаллах ковалентными связями: бор — тремя, а углерод — четырьмя. Поэтому их валентности равны соответственно III и IV.

В то же время в соединениях с атомами других элементов кислород, азот и фтор способны проявлять и другие валентности. Например, в молекулярном ионе Ковалентная связь в химии - виды, типы, формулы и определения с примерами азот связан четырьмя ковалентными связями с атомами водорода, поэтому его валентность IV. Кислород в ионе гидроксония Н30+ имеет валентность III, фтор также может проявлять валентность больше I.

В любом случае у элементов второго периода максимальная валентность не может быть больше четырех, так как на внешнем электронном слое у атомов этих элементов всего четыре орбитали, и, следовательно, атомы максимально могут образовать только четыре ковалентные связи.

У атомов элементов третьего периода в связи с появлением d-подуровня валентные возможности увеличиваются, так как в результате распаривания Зр- и 3s-электронов может образоваться от четырех до семи (у хлора) неспаренных электронов. Например, сера, помимо валентности II в основном состоянии:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

может проявлять также валентности IV и VI:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Такое распаривание электронов проявляется обычно поддействием атома более электроотрицательного элемента, например фтора, кислорода, поэтому свои высшие валентности атомы проявляют обычно в соединениях с кислородом и фтором.

Таким образом, валентность является численной характеристикой способности атомов данного элемента образовывать ковалентные связи и поэтому может относиться только к соединениям с таким типом связи.

Степень окисления

Более универсальной характеристикой состояния атома в химическом соединении является степень окисления.

Степень окисления — это условный заряд атома в химическом соединении, если предположить, что оно состоит из ионов.

При определении степени окисления атомов предполагают, что все связывающие электронные пары перешли к более электроотрицательному атому. На самом деле такого полного смещения не происходит даже при взаимодействии элементов с большой разницей в электроотрицателыюстях.

Однако условно считают такое смещение электронных нар полным независимо от реальной степени смещения.

Численное значение этой характеристики выражается в единицах заряда электрона и может иметь положительное, отрицательное и нулевое значения.

Количественно степень окисления определяется числом валентных электронов, смещенных от атома данного элемента в химическом соединении (положительная степень окисления) или к нему (отрицательная степень окисления).

В основу расчета степени окисления атомов в соединениях положен принцип, согласно которому алгебраическая сумма степеней окисления атомов в соединении равна нулю, а в сложном ионе (типа Ковалентная связь в химии - виды, типы, формулы и определения с примерами и т. п.) — заряду иона.

При расчетах надо знать несколько основных положений.

1.    Металлы во всех сложных соединениях имеют только положительные степени окисления.

2.    Неметаллы могут проявлять как положительные, так и отрицательные степени окисления.

3.    Элементы, проявляющие постоянную степень окисления:

  • а)    щелочные металлы (Li, Na, К, Rb, Cs) — +1;
  • б)    металлы второй группы (А и В) — +2;
  • в)    алюминий — +3;
  • г)    фтор — -1.

Кислород практически во всех своих соединениях проявляет степень окисления —2, исключая его фторид OF2 и пероксид Н202.

4.    Высшая положительная степень окисления, как правило, равна номеру группы периодической системы.

5.    Низшая отрицательная степень окисления обычно равна разности:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Для большинства элементов характерно проявление переменных степеней окисления в зависимости от атомов, с которыми они связаны, и типа соединения, в котором они находятся. Например, атом азота может проявлять самые разнообразные степени окисления от —3 в молекуле аммиака NH3 до +5 в молекуле азотной кислоты HN03.

Степень окисления не следует отождествлять с валентностью элемента, хотя их численные значения часто совпадают:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В пероксиде Н — О — О — Н валентность кислорода равна двум, а степень окисления —1, в ионе Н30+ его валентность III, а степень окисления —2.

Очень часто степень окисления элемента определяется как алгебраическая сумма степеней окисления по всем связям с другими элементами. Например, в молекуле гидроксиламина NH2OH общая степень окисления азота равна —1. так как по двум связям с водородом азот проявляет суммарную степень окисления —2, а по связи с атомом кислорода +1:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Степень окисления характеризует состояние атомов элемента в сложном веществе независимо от типов связей его атомов. Особенно важна эта характеристика при составлении уравнений окислительно-восстановительных реакций.

  • Валентность химического элемента определяется числом ковалентных связей, которыми его атом связан с другими атомами, или, что то же самое, числом орбиталей, используемых данным атомом для образования связей.
  • Степень окисления — это условный заряд атома в химическом соединении, вычисленный из предположения, что оно состоит из ионов.

Ионная связь и металлическая связь

Ковалентная химическая связь обычно возникает между атомами неметаллов с одинаковой или не очень сильно различающейся электроотрицательностью. Если различие в электроотрицательности атомов, между которыми образуется химическая связь, велико (Ковалентная связь в химии - виды, типы, формулы и определения с примерами превышает 1,7), то общая электронная пара практически полностью смешается к атому с большей электроотрицательностью. В результате этого образуются частицы, имеющие заряды — положительно и отрицательно заряженные ионы с устойчивой электронной конфигурацией атомов ближайшего благородного газа. Противоположно заряженные ионы прочно удерживаются силами электростатического притяжения — между ними возникает химическая связь, которая называется ионной.

Ионная связь

Ионная связь, как правило, возникает между атомами типичных металлов и типичных неметаллов. Характерным свойством атомов металлов является то, что они легко отдают свои валентные электроны, тогда как атомы неметаллов способны легко их присоединять.

Рассмотрим возникновение ионной химической связи, например, между атомами натрия и атомами хлора в хлориде натрия NaCl.

Отрыв электрона от атома натрия приводит к образованию положительно заряженного иона — катиона натрия Na+ (рис. 40).

Присоединение электрона к атому хлора приводит к образованию отрицательно заряженного иона — аниона хлора CI (рис. 41).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Между образовавшимися ионами Na+ и Cl, имеющими противоположный заряд, возникает электростатическое притяжение, в результате которого образуется соединение — хлорид натрия с ионным типом химической связи.

Химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов, называется ионной связью.

Таким образом, процесс образования ионной связи сводится к переходу электронов от атомов натрия к атомам хлора с образованием противоположно заряженных ионов, имеющих завершенные электронные конфигурации внешних слоев:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Экспериментально установлено, что в действительности электроны не отрываются полностью от атома металла, а лишь смещаются в сторону атома хлора. Это смещение тем значительней, чем больше разность электроотрицательностей атомов, между которыми образуется ионная связь. Однако даже в случае фторида цезия CsF, в котором разность электроотрицательностей превышает 3,0, заряд атома цезия не равен 1+ . Это означает, что электрон атома цезия не полностью переходит к атому фтора. В случае других соединений, для которых разность электроотрицательностей не так велика, смещение электрона еще меньше, и поэтому следует говорить об ионной химической связи с определенной долей ковалентной.

Соединения, в которых вклад ионной связи значителен, принято называть ионными. Большинство бинарных соединений, содержащих атомы металлов, являются ионными, т. е. в них химическая связь в значительной степени ионная. К числу таких соединений относятся галогениды, оксиды, сульфиды, нитриды и др.

Ионная связь возникает не только между простыми катионами и простыми анионами типа Ковалентная связь в химии - виды, типы, формулы и определения с примерами но и между простыми катионами и сложными анионами типа Ковалентная связь в химии - виды, типы, формулы и определения с примерами или гидроксид-ионами Ковалентная связь в химии - виды, типы, формулы и определения с примерами Подавляющее большинство солей и оснований являются ионными соединениями, например Ковалентная связь в химии - виды, типы, формулы и определения с примерами Ковалентная связь в химии - виды, типы, формулы и определения с примерами Существуют ионные соединения, в состав которых входят сложные катионы, не содержащие атомы металла, например ион аммония Ковалентная связь в химии - виды, типы, формулы и определения с примерами а также соединения, в которых сложными являются и катион, и анион, например сульфат аммония Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ионные кристаллы

По своим свойствам ионная связь отличается от ковалентной. Так как силы электростатического взаимодействия направлены от иона во все стороны, то каждый ион может притягивать ионы противоположного знака в любом направлении. Поэтому ионное соединение представляет собой гигантскую ассоциацию ионов противоположных знаков, расположенных в определенном порядке, в форме ионного кристалла. Кристаллы ионных соединений состоят из катионов и анионов, которые определенным образом располагаются в пространстве благодаря равновесию сил притяжения и отталкивания. На рисунке 42 представлено строение кристалла хлорида натрия NaCl, состоящего из катионов натрия Na+ и анионов хлора Сl. Каждый катион натрия окружен шестью анионами хлора, а каждый анион хлора — шестью катионами натрия.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Наименьшей структурной единицей кристалла (т. е. наименьшей частью), отражающей все особенности структуры его кристаллической решетки, является элементарная ячейка. Строение элементарной ячейки зависит от соотношения размеров катиона и аниона. На рисунке 43 приведено строение элементарных ячеек хлорида натрия NaCl и хлорида цезия CsCl. Существуют и другие типы элементарных ячеек.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Если частицы в веществе связаны ионной связью, то оно относится к веществам с немолекулярным строением. В твердом агрегатном состоянии такие вещества представляют собой ионные кристаллы. Так как ионная связь является прочной, то ионные кристаллы имеют обычно высокие температуры плавления и кипения, не имеют запаха. Сильное притяжение ионов друг к другу обусловливает хрупкость таких веществ при разрушении, а отсутствие свободных заряженных частиц объясняет тот факт, что при комнатной температуре они плохо проводят электрический ток.

Металлическая связь. Металлические кристаллы

Атомы большинства металлов достаточно легко отдают свои валентные электроны, в результате чего превращаются в положительно заряженные ионы. Это происходит не только при взаимодействии металлов с другими атомами, но и при образовании металлических кристаллов из одних и тех же атомов.

В кристалле металла непрерывно протекают два противоположных процесса — образование ионов металла из нейтральных атомов в результате отрыва от них валентных электронов:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

и присоединение валентных электронов к ионам металла с образованием нейтральных атомов:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В узлах кристаллической решетки металлов попеременно находятся как нейтральные атомы, так и положительно заряженные катионы металла (рис. 44). Образующиеся при этом электроны свободно перемещаются внутри кристалла и компенсируют взаимное отталкивание между положительно заряженными катионами металла, а также удерживают атомы в составе кристалла. Они становятся общими для всех атомов и ионов металла, связывая их между собой.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

► Химическая связь между атомами в металлическом кристалле посредством обобществления валентных электронов называется металлической связью.

Металлическая связь не имеет направленности в пространстве. Эта химическая связь является коллективной, как и ионная, в ней принимают участие все атомы кристалла металла.

Металлическая связь сходна с ковалентной связью тем, что при ее образовании так же, как и при образовании ковалентной связи, электроны обобществляются. Однако в случае металлической связи эти электроны связывают все атомы металлического кристалла, тогда как в ковалентном соединении связываются лишь находящиеся рядом атомы.

Взаимосвязь различных типов химической связи

Вы познакомились с тремя типами химической связи и соответствующими веществами, которые мы характеризовали как вещества с ковалентным (02, N2, Cl2), ионным (LiF, NaCl) и металлическим типом связи (металлы). В реальности в большинстве неорганических веществ взаимодействие между различными атомами носит более сложный характер, являясь как бы комбинацией различных типов связи. Это особенно характерно проявляется в ряду простых и сложных бинарных веществ элементов III периода, который Д. И. Менделеев назвал «типическим».

В углах представленного треугольника химических связей (рис. 45) расположены вещества, являющиеся наиболее характерными представителями каждого типа связи: NaCl — соединений ионного типа, Cl2 — ковалентного, а Na — металлического. В ряду от NaCl до Cl2 находятся бинарные вещества общей формулы ЭСl, где Э — элемент третьего периода:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Как вам уже известно, в периодах от щелочного металла до галогена электроотрицательность последовательно растет и, соответственно, уменьшается величина Ковалентная связь в химии - виды, типы, формулы и определения с примерами:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

где Ковалентная связь в химии - виды, типы, формулы и определения с примерами— значения электроотрицательностей хлора и элемента Э. Например, Ковалентная связь в химии - виды, типы, формулы и определения с примерами и т. д. Это свидетельствует об уменьшении полярности связи Ковалентная связь в химии - виды, типы, формулы и определения с примерами, т. е. об уменьшении доли ионной связи и увеличении доли ковалентной составляющей. Другими словами, мы можем заключить, что в ряду однотипных соединений между NaCl и С12 располагаются соединения со смешанным типом химической связи, при этом ковалентная составляющая постоянно увеличивается.

Подобные закономерности наблюдаются и в двух других рядах веществ. В ряду от Na до NaCl располагаются соединения условной формулы NaЭ, где Э — элемент третьего периода. Характер химической связи в этих веществах последовательно изменяется от металлического до ионного.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В ряду от Na до Cl2 располагаются простые вещества третьего периода. Свойства этих веществ последовательно изменяются от металлических к неметаллическим, что соответствует изменению характера химической связи от металлического к ковалентному.

Таким образом, мы можем заключить, что однозначное определение типа химической связи в большинстве неорганических соединений невозможно. В реальности химическая связь между разнородными атомами носит смешанный характер с той или иной долей ковалентной, ионной или металлической составляющей.

  • Ионная связь осуществляется за счет электростатического притяжения между противоположно заряженными ионами.
  • Химическая связь между атомами в металлическом кристалле посредством обобществления электронов называется металлической связью.

Межмолекулярное взаимодействие

Молекулы, несмотря на свою электронейтральность, способны взаимодействовать между собой. Такое взаимодействие называется межмолекулярным. Силы, за счет которых возникает это взаимодействие, часто называют ван-дер-ваальсовыми в честь голландского ученого И. Д. Ван-дер-Ваальса. Эти силы обусловливают притяжение молекул данного вещества (или разных веществ) друг к другу в жидком и твердом агрегатном состоянии.

Природа межмолекулярного взаимодействия

Межмолекулярное взаимодействие, как и химическая связь между атомами, имеет электростатическую природу. Несимметричность распределения электронов и ядер атомов в молекуле приводит к появлению у нее электрических полюсов — положительного с той стороны, где электронная плотность понижена, и отрицательного, где она повышена. Образовавшиеся полярные молекулы притягиваются друг к другу разноименными полюсами (рис. 46, а).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Взаимодействие может осуществляться также между полярной и неполярной молекулами. При этом в неполярной молекуле под действием электрического поля полярной молекулы возникает (индуцируется) диполь. Постоянный диполь и индуцированный диполь притягиваются друг к другу (рис. 46, б).

В неполярных молекулах вследствие непрерывного движения частиц с различными электрическими зарядами (ядер и электронов) также непрерывно возникают, перемещаются и исчезают электрические полюсы. Поэтому в разные моменты времени возникают мгновенные диполи, между которыми также действуют силы притяжения (рис. 46, в).

В этом и состоит объяснение существования притяжения между любыми молекулами, как полярными, так и неполярными.

Прочность межмолекулярного взаимодействия и агрегатное состояние вещества

Межмолекулярное взаимодействие обусловливает переход вещества из газообразного в жидкое, а затем и в твердое состояние. Но по сравнению с ковалентной связью межмолекулярные взаимодействия слабые, связи между молекулами относительно непрочные и легко разрываются. Именно поэтому молекулярные вещества плавятся и кипят при относительно низких температурах. Межмолекулярное взаимодействие определяет также механические свойства подобных веществ, их теплопроводность, электрическую проводимость и др.

Энергия межмолекулярного взаимодействия зависит в основном от двух характеристик молекулы — ее полярности и размера. Чем сильнее межмолекулярное взаимодействие в веществе, тем выше у него будут температуры плавления и кипения. Например, кислород из-за более прочного межмолекулярного взаимодействия кипит при более высокой температуре, чем азот, что и используется при получении этих газов из воздуха. Углеводороды с большой молекулярной массой кипят при более высокой температуре, чем низкомолекулярные углеводороды. Это свойство углеводородов лежит в основе процесса перегонки нефти.

Молекулярные кристаллы

В узлах молекулярной кристаллической решетки расположены молекулы, связанные между собой слабыми межмолекулярными связями (рис. 47). Молекулярные кристаллические решетки образуют водород, азот, кислород, сера, йод, вода, углекислый газ, многие органические вещества. Кристаллы благородных газов также молекулярные, они построены из одноатомных молекул.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Для веществ, образующих молекулярные кристаллы, характерны низкие температуры плавления и кипения, значительная сжимаемость, небольшая твердость. Нагревание некоторых молекулярных кристаллов, например иода, углекислого газа, приводит к переходу вещества из твердого состояния сразу в газообразное, минуя жидкую фазу. Этот процесс называется возгонкой или сублимацией.

В то же время многие органические вещества с большими молекулами, содержащими десятки тысяч и более атомов, вообще не плавятся, так как прочность связей между молекулами в сумме оказывается выше прочности связей внутри молекулы. Попробуйте расплавить, например, крахмал, целлюлозу, вату. Вы убедитесь в том, что вещество начнет разрушаться раньше, чем плавиться.

Однако надо иметь в виду, что реакционная способность молекулярных веществ зависит от прочности не межмолекулярных, а внутримолекулярных связей. Ведь при химическом взаимодействии разрываются именно внутримолекулярные связи. Например, парафин — механически непрочное вещество, связи между молекулами в нем слабые. Но это вещество химически достаточно устойчиво.

Водородная связь

Одной из разновидностей межмолекулярного взаимодействия является водородная связь. Она осуществляется между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом другой молекулы:    

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

где X — атом одного из наиболее электроотрицательных элементов — F, О, N, реже CI и S.
Возникновение водородной связи  (на схеме она показывается тремя точками) обусловлено прежде всего тем, что у атома водорода имеется только один электрон, который при образовании полярной ковалентной связи с атомом сильно электроотрицательного элемента смещается в сторону атома этого элемента. На атоме водорода возникает высокий эффективный положительный заряд, что в сочетании с отсутствием внутренних электронных слоев позволяет другому атому сближаться до расстояний, близких к длинам атомных связей.

В первом приближении образование водородной связи можно объяснить электростатическим взаимодействием между молекулами. Определенный вклад в образование водородной связи вносит донорно-акцепторное взаимодействие «свободной» 1s-орбитали атома водорода и орбитали с неподеленной парой электронов электроотрицательного атома. Поэтому водородная связь обладает свойством направленности, во многом определяя структуру вещества в конденсированном состоянии.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Благодаря водородным связям молекулы объединяются в ассоциаты, например молекулы уксусной кислоты образуют димеры (рис. 48). Водородные связи определяют кристаллическую структуру льда, где каждый атом кислорода в молекулах Н20 связан с четырьмя атомами водорода — двумя ковалентными и двумя водородными связями (рис. 49).
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Водородная связь в несколько раз сильнее, чем обычное межмолекулярное взаимодействие, но слабее ковалентной связи. С повышением температуры прочность водородной связи уменьшается. Поэтому водородная связь более характерна для веществ в твердом и жидком состояниях.

Наличие водородной связи существенно влияет на физические свойства веществ. Так, аномально высокие температуры кипения H2O, HF, HN3 по сравнению с аналогичными веществами, образованными элементами этих же групп других периодов (рис.50), объясняются образованием ассоциатов за счет водородных связей.

Во дородная связь О…Н наиболее распространена в природе. Именно ее наличием обусловлены аномальные свойства воды, в том числе высокие температуры кипения и плавления, необычайно высокие теплоемкость и диэлектрическая проницаемость. Благодаря своей ажурной структуре (см.рис.49) лед имеет меньшую плотность, чем жидкая вода. Поэтому зимой лед находится на поверхности воды, и глубокие водоемы не промерзают до дна.

Светло-голубой цвет чистой воды  и толстого слоя льда обусловлен водородными связями. Когда одна молекула воды колеблется, то она заставляет колебаться и другие, связанные с ней молекулы. В результате этого молекулы H2O частично поглощают красный цвет, а вода приобретает голубоватый оттенок.

Водородная связь может возникать и между атомами одной молекулы. Чаще всего внутримолекулярная водородная связь возникает в молекулах органических веществ, содержащих в своем составе такие группы атомов как —Ковалентная связь в химии - виды, типы, формулы и определения с примерами и др.

Особенно велика роль водородных связей в биохимических процессах с участием высокомолекулярных соединений (белки, ДНК и др.), пространственная структура которых определяется наличием водородных связей.

Межмолекулярное взаимодействие возникает между любыми молекулами, как полярными, так и неполярными, и имеет электростатическую природу.

Межмолекулярное взаимодействие обусловливает переход вещества из газообразного в жидкое, а затем и в твердое состояние.

Водородная связь осуществляется между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом фтора, кислорода, азота (реже хлора и серы), принадлежащим другой молекуле.

  • Валентность и степень окисления
  • Ионная связь
  • Химические реакции
  • Теория электролитической диссоциации
  • Физические и химические явления
  • Растворы в химии
  • Периодический закон Д. И. Менделеева
  • Химические связи

Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Химические связи

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными.

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов, в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ. Именно она определяет тип химической связи между атомами и свойства этой связи.

Электроотрицательность χ – это способность атома притягивать (удерживать) внешние (валентные) электроны. Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4.

Электроотрицательность

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль разность электроотрицательностей атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи  А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В), то общая электронная пара не смещается ни к одному из атомов: А : В. Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4<ΔЭО<2), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная.

Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2), то один из электронов практически полностью  переходит к другому атому, с образованием ионов. Такая связь называется ионная.

Основные типы химических связей — ковалентная, ионная и металлическая связи. Рассмотрим их подробнее.

Ковалентная химическая связь

the_four_chemical_bonds_by_katyjsst-d6j8c5a — копия

Ковалентная связь это химическая связь, образованная за счет образования общей электронной пары А:В. При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами) или атомов одного элемента.

Основные свойства ковалентных связей

  • направленность,
  • насыщаемость,
  • полярность,
  • поляризуемость.

Эти свойства связи влияют на химические и физические свойства веществ.

Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45о, поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 109о28′.

Насыщаемость — это способность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется валентностью.

Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.

Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.

Ковалентная неполярная химическая связь

Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ.

ПримерРассмотрим строение молекулы водорода H2. Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Льюиса неплохо помогают при работе с элементами второго периода.

H..H = H:H 

Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной.

images

Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

image015 — копия (2)

Дипольный момент неполярных связей равен 0.

Примеры: H2 (H-H), O2 (O=O), S8.

Ковалентная полярная химическая связь

Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).

Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).

image015 — копия

Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент. Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.

Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.

Примеры: HCl, CO2, NH3.

Механизмы образования ковалентной связи

Ковалентная химическая связь может возникать по 2 механизмам:

1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

А. + .В= А:В

2. Донорно-акцепторный механизм образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

А: +  B= А:В

Донорно-акцепторный механизм

При этом один из атомов предоставляет неподеленную электронную пару (донор), а другой атом предоставляет вакантную орбиталь для этой пары (акцептор). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.

Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей статье.

Ковалентная связь по донорно-акцепторному механизму образуется:

– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;

– в ионе аммония NH4+, в ионах органических аминов, например, в ионе метиламмония CH3-NH3+;

– в комплексных соединениях, химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na[Al(OH)4] связь между алюминием и гидроксид-ионами;

– в азотной кислоте и ее солях — нитратах: HNO3, NaNO3, в некоторых других соединениях азота;

– в молекуле озона O3.

Основные характеристики ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.

Кратность химической связи

Кратность химической связи — это число общих электронных пар между двумя атомами в соединении. Кратность связи достаточно легко можно определить из значения валентности атомов, образующих молекулу.

Например, в молекуле водорода H2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.

В молекуле кислорода O2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

 В молекуле азота N2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.

Длина ковалентной связи

Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А2 и В2:
Длина связи

Длину химической связи можно примерно оценить по радиусам атомов, образующих связь, или по кратности связи, если радиусы атомов не сильно отличаются.

При увеличении радиусов атомов, образующих связь, длина связи увеличится.

Например.  В ряду: C–C, C=C, C≡C  длина связи уменьшается.

Связь

Длина связи, нм

H-F 0,092
H-Cl 0,128
H-Br 0,142
H-I 0,162

При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.

Например.  В ряду: C–C, C=C, C≡C  длина связи уменьшается.

Связь

Длина связи, нм

С–С 0,154
С=С 0,133
С≡С 0,120

Энергия связи

Мерой прочности химической  связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.

Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.

Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее  прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.

Например, в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается, т.к. увеличивается длина связи.

Ионная химическая связь

the_four_chemical_bonds_by_katyjsst-d6j8c5a

Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов.

Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

image015

Пример. Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na+, с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

+11Na )2)8)1 — 1e = +11Na+ )2)8

Пример. Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

+17Cl )2 )8 )7 + 1e = +17Cl )2 )8 )8

Обратите внимание:

  • Свойства ионов отличаются от свойств атомов!
  • Устойчивые ионы могут образовывать не только атомы, но и группы атомов. Например: ион аммония NH4+, сульфат-ион SO42- и др. Химические связи, образованные такими ионами, также считаются ионными;
  • Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);

Образовавшиеся ионы притягиваются за счет электрического притяжения: Na+Cl, Na2SO42-.

Наглядно обобщим различие между ковалентными и ионным типами связи:

gradation of polar bond

Металлическая химическая связь

the_four_chemical_bonds_by_katyjsst-d6j8c5a (1)

Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов, образующих кристаллическую решетку.

У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов. Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями.

Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы. Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь, т.к. общие электроны удерживают катионы металлов, расположенные слоями,  вместе, создавая таким образом достаточно прочную  металлическую  кристаллическую решетку. При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.

Металлическая химическая связь

 Межмолекулярные взаимодействия

Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия. Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами. Силы Ван-дер-Ваальса делятся на ориентационные, индукционные и дисперсионные. Энергия межмолекулярных взаимодействий намного меньше энергии химической связи.

Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.

Особый вид межмолекулярного взаимодействия — водородные связи. Водородные связи — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N. Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения.

Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость.

Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь. Она характерна прежде всего для соединений фтора с водородом, а также кислорода с водородом, в меньшей степени азота с водородом.

Водородные связи

Водородные связи возникают между следующими веществами:

фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H2O (пар, лед, жидкая вода):

раствор аммиака и органических аминов — между молекулами аммиака и воды;

органические соединения, в которых связи O-H или N-H: спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.

Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение температуры кипения.

Например, как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H2O-H2S-H2Se-H2Te мы не наблюдаем линейное изменение температур кипения.

А именно, у воды температура кипения аномально высокая — не меньше -61оС, как показывает нам прямая линия, а намного больше, +100 оС. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20оС) вода является жидкостью по фазовому состоянию.

Тренировочный тест по теме «Химические связи» — 10 вопросов, при каждом прохождении новые.

521

Создан на
07 января, 2022 От Admin

Тренировочный тест «Химические связи»

1 / 10

Из предложенного перечня выберите два вещества, в которых есть связи, образованные по донорно-акцепторному механизму.
1) нитрат аммония
2) аммиак
3) тетрагидроксоцинкат калия
4) кислород
5) фтороводород

2 / 10

Из предложенного перечня веществ выберите два соединения, в которых одна из ковалентных связей образована по донорно-акцепторному механизму.

1) K3PO4

2) NH4HSO4

3) H2SO4

4) KOH

5) NH4CI

3 / 10

Из предложенного перечня веществ выберите два вещества, которые имеют молекулярную кристаллическую решётку.

1) хлороводород

2) цинк

3) хлорид цинка

4) хлорид аммония

5) хлор

4 / 10

Из предложенного перечня выберите два свойства, которые характеризуют вещества с ионной кристаллической решёткой.

1) высокая электропроводность в кристаллическом состоянии

2) высокая температура плавления

3) пластичность,

4) высокая электропроводность в расплаве

5) летучесть

Запишите в поле ответа номера выбранных свойств.

5 / 10

Из предложенного перечня выберите два вещества, в которых присутствует ковалентная полярная химическая связь.

1) хлорид лития

2) гидроксид натрия

3) карбонат магния

4) бромид кальция

5) оксид калия

Запишите в поле ответа номера выбранных веществ.

6 / 10

Из предложенного перечня веществ выберите два вещества, для каждого из которых характерно наличие водородной связи между молекулами.

1) формальдегид

2) глицерин

3) бензол

4) уксусная кислота

5) толуол

7 / 10

Из предложенного перечня выберите два вещества, между молекулами которых образуется водородная связь.

1) метан

2) водород

3) аммиак

4) йодоводород

5) фтороводород

8 / 10

Из предложенного перечня выберите два вещества, в которых присутствует ковалентная полярная и ковалентная неполярная химическая связь.
1) этан
2) гидроксид кальция
3) пероксид водорода
4) сульфат натрия
5) оксид натрия

9 / 10

Из предложенного перечня веществ выберите два вещества, в которых присутствует ковалентная неполярная химическая связь.

1) пероксид водорода

2) метанол

3) этан

4) гидроксид натрия

5) вода

10 / 10

Из предложенного перечня веществ выберите два соединения, в которых присутствует ковалентная неполярная связь. 

1) аммиак

2) йод

3) кислород

4) вода

5) метан

Ваша оценка

The average score is 43%

Содержание

  1. Ковалентная связь: полярная, неполярная, механизмы ее появления
  2. Ковалентная связь – определение, характеристика. Что такое ковалентная связь?
  3. Типы ковалентной связи
  4. Ковалентная неполярная связь
  5. Ковалентная полярная связь
  6. Как определить ковалентную связь
  7. Ковалентная связь, видео
  8. Химическая связь. Ковалентная и ионная связи
  9. Ионная связь
  10. Ковалентная связь
  11. Строение веществ. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая – HIMI4KA
  12. Тренировочные задания
  13. Ответы
  14. Ковалентная полярная и неполярная связи, что это такое и как различать связь
  15. Появления термина
  16. Виды ковалентной связи
  17. Ковалентная полярная — образование
  18. Ковалентная неполярная, разница между полярной и неполярной
  19. Свойства связи
  20. Ковалентная химическая связь
  21. Расчет возможного числа ковалентных связей
  22. Кратные ковалентные связи
  23. 1.3.1. Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь
  24. Ковалентная связь
  25. Ионная связь
  26. Металлическая связь
  27. Водородная связь

Ковалентная связь: полярная, неполярная, механизмы ее появления

Ковалентная связь

  • Ковалентная связь – определение, характеристика. Что такое ковалентная связь?
  • Типы ковалентной связи
  • Ковалентная неполярная связь
  • Ковалентная полярная связь
  • Как определить ковалентную связь
  • Ковалентная связь, видео
  • Ковалентная связь – определение, характеристика. Что такое ковалентная связь?

    Сам термин «ковалентная связь» происходит от двух латинских слов: «со» — совместно и «vales» — имеющий силу, так как это связь происходящая за счет пары электронов, принадлежащей одновременно обоим атомам (или говоря более простым языком, связь между атомами за счет пары электронов, являющихся общими для них). Образование ковалентной связи происходит исключительно среди атомов неметаллов, причем появляться она может как в атомах молекул, так и кристаллов.

    Впервые ковалентная химическая связь была обнаружена в далеком 1916 году американских химиком Дж. Льюисом и некоторое время существовала в виде гипотезы, идеи, лишь затем была подтверждена экспериментально.

    Что же выяснили химики по ее поводу? А то, что электроотрицательность неметаллов бывает довольно большой и при химическом взаимодействии двух атомов перенос электронов от одного к другому может быть невозможным, именно в этот момент и происходит объединение электронов обоих атомов, между ними возникает самая настоящая ковалентная связь атомов.

    Типы ковалентной связи

    В целом есть два типа ковалентной связи:

    • обменный,
    • донорно-акцептный.

    При обменном типе ковалентной связи между атомами каждый из соединяющихся атомов представляет на образование электронной связи по одному неспареному электрону. При этом электроны эти должны иметь противоположные заряды (спины).

    Примером подобной ковалентной связи могут быть связи происходящие молекуле водорода. Когда атомы водорода сближаются, в их электронные облака проникают друг в друга, в науке это называется перекрыванием электронных облаков.

    Как следствие, электронная плотность между ядрами увеличивается, сами они притягиваются друг к другу, а энергия системы уменьшается.

    [attention type=yellow]

    Тем не менее, при слишком близком приближении ядра начинают отталкиваться, и таким образом возникает некое оптимально расстояние между ними.

    [/attention]

    Более наглядно это показано на картинке.

    Что же касается донорно-акцепторного типа ковалентной связи, то он происходит когда одна частица, в данном случае донор, представляет для связи свою электронную пару, а вторая, акцептор — свободную орбиталь.

    Также говоря о типах ковалентной связи можно выделить неполярную и полярную ковалентные связи, более подробно о них мы напишем ниже.

    Ковалентная неполярная связь

    Определение ковалентной неполярной связи просто, это связь, которая образуется между двумя одинаковыми атомами. Пример образование неполярной ковалентной связи смотрите ниже на схеме.

    Схема ковалентной неполярной связи.

    В молекулах при ковалентной неполярной связи общие электронные пары располагаются на равных расстояниях от ядер атомов. Например, в молекуле кислорода (на схеме выше), атомы приобретают восьми электронную конфигурацию, при этом они имеют четыре общие пары электронов.

    Веществами с ковалентной неполярной связью обычно являются газы, жидкости или сравнительно низкоплавные тверды вещества.

    Ковалентная полярная связь

    Теперь же ответим на вопрос какая связь ковалентная полярная. Итак, ковалентная полярная связь образуется, когда ковалентно связанные атомы имеют разную электроотрицательность, и общественные электроны не принадлежат в равной степени двум атомам.

    Большую часть времени общественные электроны находятся ближе к одному атому, чем к другому. Примером ковалентной полярной связи могут служить связи, возникающие в молекуле хлороводорода, там общественные электроны, ответственные за образование ковалентной связи располагаются ближе к атому хлора, нежели водорода.

    А все дело в том, что электроотрицательность у хлора больше чем у водорода.

    Так выглядит схема ковалентной полярной связи.

    Ярким примером вещества с полярной ковалентной связью является вода.

    Как определить ковалентную связь

    Что же, теперь вы знаете ответ на вопрос как определить ковалентную полярную связь, и как неполярную, для этого достаточно знать свойства и химическую формулу молекул, если эта молекула состоит из атомов разных элементов, то связь будет полярной, если из одного элемента, то неполярной. Также важно помнить, что ковалентные связи в целом могут возникать только среди неметаллов, это обусловлено самим механизмом ковалентных связей, описанным выше.

    Ковалентная связь, видео

    И в завершение видео лекция о теме нашей статьи, ковалентной связи.

    Эта статья доступна на английском языке — Covalent Bond.

    Химическая связь. Ковалентная и ионная связи

    Ковалентная связь

    Когда изучают строение молекулы, возникает вопрос о природе сил, обеспечивающих связь между нейтральными атомами, входящими в состав молекулы. Такие связи между атомами в молекуле называют химической связью. Выделяют два типа химических связей:

    • ионная связь,
    • ковалентная связь.

    Это деление в известной мере условно. В большинстве случаев связь имеет характерные черты обоих типов связей. Только детальные теоретические и эмпирические исследования дают возможность установить в каждом случае соотношение между степенью «ионности» и «ковалентности» связи.

    Эмпирически доказано, что для разъединения молекул на составные части (атомы) следует выполнить работу. Значит, процесс образования молекулы должен быть сопровожден выделением энергии.

    Так, 2 атома водорода, пребывающие в свободном состоянии имеют большую энергию, чем те же атомы в двухатомной молекуле $H_2.

    $ Энергия, выделяемая при образовании молекулы, служит мерой работы сил взаимодействия, которые связывают атомы в молекулу.

    Ничего непонятно?

    Попробуй обратиться за помощью к преподавателям

    Опыты показали, что силы взаимодействия между атомами появляются благодаря внешним валентным электронам атомов. Об этом говорит резкое изменение оптического спектра атомов вступающих в химические реакции при сохранении без изменения рентгеновского характеристического спектра атомов не зависимо от рода химического соединения.

    Мы помним, что линейчатые оптические спектры определены состоянием валентных электронов, тогда как характеристическое рентгеновское излучение определяют внутренние электроны (их состояния). Понятно, что в химических взаимодействиях должны участвовать электроны, для изменения которых требуется относительно небольшая энергия. Такими электронами являются внешние электроны атомов.

    Их потенциал ионизации существенно меньше, чем у электронов внутренних оболочек.

    Ионная связь

    Самым простым предположением о природе химической связи атомов в молекуле является гипотеза о том, что между вешними электронами появляются силы взаимодействия электрической природы.

    При этом обязательным условием устойчивости молекулы в таком случае будет существование у двух атомов, которые взаимодействуют, электрических зарядов противоположного знака. Данный тип химической связи реализуется только в части молекул. При этом атомы, вступающие во взаимодействие, превращаются в ионы.

    Один из атомов присоединяет к себе один или несколько электронов и становится отрицательным ионом, при этом другой атом, отдавший электроны становится положительным ионом.

    [attention type=red]

    Ионная связь аналогична силам притяжения между зарядами противоположных знаков. Так, например, положительно заряженный ион натрия (${Na}+$) притягивается к отрицательно заряженному иону хлора (${Cl}-$), при этом образуется молекула NaCl.

    [/attention]

    Ионную связь называют еще гетерополярной (гетеро — разный). Молекулы, в которых реализуется ионный тип связи, называют ионными или гетерополярными молекулами.

    При помощи одной ионной связи не удается объяснить структуры всех молекул. Так, невозможно понять, почему образуют молекулу два нейтральных атома водорода.

    Из-за одинаковости атомов водорода нельзя считать, что один ион водорода несет положительный заряд, а другой отрицательный.

    Связь, подобная связи в молекуле водорода (между нейтральными атомами) объяснима только в рамках квантовой механики. Она называется ковалентной связью.

    Ковалентная связь

    Химическую связь, которая осуществляется между электрически нейтральными атомами в молекуле, называют ковалентной или гомеополярной связью (гомео — одинаковый). Молекулы, которые образованы на основе такой связи, называют гомеополярными или атомными молекулами.

    В классической физике известен один тип взаимодействия, которое реализуется между нейтральными телами — это гравитация. Но гравитационные силы слишком слабые для того, чтобы с их помощью можно было объяснить взаимодействие в гомеополярной молекуле.

    Физическая сущность ковалентной связи заключается в следующем. Электрон в поле ядра пребывает в определенном квантовом состоянии с определенной энергией. При изменении расстояния между ядрами корректируется и состояние движения электрона, и его энергия.

    Если расстояние между атомами уменьшается, то энергия взаимодействия, между ядрами увеличивается, так как между ними действуют силы отталкивания. Но, если энергия электрона с уменьшением расстояния уменьшается быстрее, чем растет энергия взаимодействия ядер, то совокупная энергия системы при этом становится меньше.

    Значит, в системе, которая составлена из двух отталкивающихся ядер и электрона действуют силы, которые стремятся уменьшить расстояние между ядрами (действуют силы притяжения). Эти силы и порождают ковалентную связь в молекуле.

    Они появляются из-за наличия общего электрона, то есть благодаря электронному обмену между атомами, и, значит, являются обменными квантовыми силами.

    Ковалентная связь имеет свойство насыщения. Это свойство проявляется через определенную валентность атомов. Так, атом водорода может связываться с одним атомом водорода, атом углерода может быть связан с не более чем четырьмя атомами водорода.

    [attention type=green]

    Данная связь дает возможность объяснить валентность атомов, которая не получила в рамках классической физики исчерпывающего объяснения. Так, свойство насыщения непонятно с точки зрения природы взаимодействия в классической теории.

    [/attention]

    Ковалентная связь может наблюдаться не только в двухатомных молекулах. Она характерна для большого количества молекул неорганических соединений (окись азота, аммиак, метан и др.).

    Количественная теория ковалентной связи была создана для молекулы водорода в 1927 г. В. Гайтлером и Ф Лондоном на основании понятий квантовой механики. Было показано, что причиной, которая вызывает создание молекулы с ковалентной связью, является кванотовомеханический эффект, который связан с неразличимостью электронов.

    Основная энергия связи определена обменным интегралом. Молекула водорода имеет суммарный спин равный нулю, она не имеет орбитального момента и в связи с этим должна быть диамагнитна. При столкновении двух атомов водорода молекула возникает только при условии, что спины обоих электронов антипараллельны.

    При параллельных спинах атомы водорода молекулы не образуют, так как отталкиваются.

    Если ковалентная связь соединяет два одинаковых атома, то расположение электронного облака в молекуле является симметричным. Если ковалентная связь соединяет два разных атома, то расположение электронного облака в молекуле является асимметричным.

    Молекула, обладающая асимметричным распределением электронного облака, имеет постоянный дипольный момент и, значит, является полярной.

    В предельном случае, когда вероятность локализации электрона около одного из атомов превалирует над вероятностью нахождения этого электрона около другого атома, ковалентная связь переходит в ионную связь. Непреодолимой границы между ионной и ковалентной связью нет.

    Пример 1

    Задание: Опишите, что может произойти при сближении двух атомов.

    Решение:

    Если уменьшать расстояние между атомами, то возможна реализация трех ситуаций:

    1. Одна пара электронов (или более) становятся общими для рассматриваемых атомов. Эти электроны перемещаются между атомами и проводят там времени больше, чем в других местах. Это создает силы притяжения.
    2. Возникает ионная связь. При этом один (или более) электронов одного атома могут перейти к другому. Таким образом, появляются положительный и отрицательный ионы, который притягивают друг друга.
    3. Не возникает связи. Электронные структуры двух атомов перекрываются и составляют единую систему. В соответствии с принципом Паули два электрона в такой системе не могут находиться в одном квантовом состоянии. Если некоторые из электронов вынуждены были перейти на более высокие энергоуровни, чем те, которые они занимали в отдельных атомах, то система будет иметь большую энергию и будет нестабильной. Даже, если удовлетворить принцип Паули, без увеличения энергии системы, то появляется электрическая сила отталкивания между разными электронами, но данный фактор оказывает гораздо меньшее влияние на создание связи, чем принцип Паули.

    Пример 2

    Задание: Энергией ионизации (потенциалом ионизации) элемента называют энергию, которая необходима для удаления электрона из одного его атома. Она служит мерой того насколько тесно связаны внешний электрон или электроны. Объясните, почему энергия ионизации лития больше, чем натрия, натрия больше, чем калия, калия больше, чем рубидия.

    Решение:

    Перечисленные элементы являются щелочными металлами и относятся к первой группе. Атом любого из этих элементов имеет единственный внешний электрон в s — состоянии.

    Электроны внутренних оболочек частично экранируют внешний электрон от ядерного заряда $(+Zq_e$), как следствие эффективный заряд, который удерживает внешний электрон, оказывается равен ${+q}_e$.

    [attention type=yellow]

    Для удаления из такого атома внешнего электрона необходимо совершить относительно небольшую работу, при этом атомы щелочных металлов превращаются в положительные ионы. Чем больше атом, тем больше расстояние валентного электрона от ядра, тем меньше сила, с которой ядро его притягивает.

    [/attention]

    Поэтому энергия ионизации убывает в данной группе элементов сверху вниз (имеется в виду периодическая система элементов). Рост энергии ионизации в каждом периоде слева направо связано с увеличением заряда ядра, при постоянстве количества внутренних экранирующих электронов.

    Строение веществ. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая – HIMI4KA

    Ковалентная связь
    ОГЭ 2018 по химии › Подготовка к ОГЭ 2018

    Химическая связь — электростатическое взаимодействие между электронами и ядрами, приводящее к образованию молекул.

    Химическую связь образуют валентные электроны. У s- и p-элементов валентными являются электроны внешнего слоя, у d-элементов — s-электроны внешнего слоя и d-электроны предвнешнего слоя. При образовании химической связи атомы достраивают свою внешнюю электронную оболочку до оболочки соответствующего благородного газа.

    Длина связи — среднее расстояние между ядрами двух химически связанных между собой атомов.

    Энергия химической связи — количество энергии, необходимое для того, чтобы разорвать связь и отбросить фрагменты молекулы на бесконечно большое расстояние.

    Валентный угол — угол между линиями, соединяющими химически связанные атомы.

    Известны следующие основные типы химической связи: ковалентная (полярная и неполярная), ионная, металлическая и водородная.

    Ковалентной называют химическую связь, образованную за счёт образования общей электронной пары.

    Если связь образует пара общих электронов, в равной мере принадлежащая обоим соединяющимся атомам, то её называют ковалентной неполярной связью. Эта связь существует, например, в молекулах H2, N2, O2, F2, Cl2, Br2, I2. Ковалентная неполярная связь возникает между одинаковыми атомами, а связующее их электронное облако равномерно распределено между ними.

    В молекулах между двумя атомами может формироваться различное число ковалентных связей (например, одна в молекулах галогенов F2, Cl2, Br2, I2, три — в молекуле азота N2).

    Ковалентная полярная связь возникает между атомами с разной электроотрицательностью. Образующая её электронная пара смещается в сторону более электроотрицательного атома, но остаётся связанной с обоими ядрами. Примеры соединений с ковалентной полярной связью: HBr, HI, H2S, N2O и т. д.

    Ионной называют предельный случай полярной связи, при которой электронная пара полностью переходит от одного атома к другому и связанные частицы превращаются в ионы.

    Строго говоря, к соединениям с ионной связью можно отнести лишь соединения, для которых разность в электроотрицательности больше 3, но таких соединений известно очень мало. К ним относят фториды щелочных и щёлочноземельных металлов.

    Условно считают, что ионная связь возникает между атомами элементов, разность электроотрицательности которых составляет величину больше 1,7 по шкале Полинга. Примеры соединений с ионной связью: NaCl, KBr, Na2O.

    Подробнее о шкале Полинга будет рассказано в следующем уроке.

    Металлической называют химическую связь между положительными ионами в кристаллах металлов, которая осуществляется в результате притяжения электронов, свободно перемещающихся по кристаллу металла.

    Атомы металлов превращаются в катионы, формируя металлическую кристаллическую решётку. В этой решётке их удерживают общие для всего металла электроны (электронный газ).

    Тренировочные задания

    1. Ковалентной неполярной связью образовано каждое из веществ, формулы которых

    1) O2, H2, N2
    2) Al, O3, H2SO4
    3) Na, H2, NaBr
    4) H2O, O3, Li2SO4

    2. Ковалентной полярной связью образовано каждое из веществ, формулы которых

    1) O2, H2SO4, N2
    2) H2SO4, H2O, HNO3
    3) NaBr, H3PO4, HCl
    4) H2O, O3, Li2SO4

    3. Только ионной связью образовано каждое из веществ, формулы которых

    1) CaO, H2SO4, N2
    2) BaSO4, BaCl2, BaNO3
    3) NaBr, K3PO4, HCl
    4) RbCl, Na2S, LiF

    4. Металлическая связь характерна для элементов списка

    1) Ba, Rb, Se 2) Cr, Ba, Si 3) Na, P, Mg

    4) Rb, Na, Cs

    5. Соединениями только с ионной и только с ковалентной полярной связью являются соответственно

    1) HCl и Na2S
    2) Cr и Al(OH)3
    3) NaBr и P2O5
    4) P2O5 и CO2

    6. Ионная связь образуется между элементами

    1) хлором и бромом 2) бромом и серой 3) цезием и бромом

    4) фосфором и кислородом

    7. Ковалентная полярная связь образуется между элементами

    1) кислородом и калием 2) серой и фтором 3) бромом и кальцием

    4) рубидием и хлором

    8. В летучих водородных соединениях элементов VA группы 3-го периода химическая связь

    1) ковалентная полярная 2) ковалентная неполярная 3) ионная

    4) металлическая

    9. В высших оксидах элементов 3-го периода вид химической связи с увеличением порядкового номера элемента изменяется

    1) от ионной связи к ковалентной полярной связи 2) от металлической к ковалентной неполярной 3) от ковалентной полярной связи до ионной связи

    4) от ковалентной полярной связи до металлической связи

    10. Длина химической связи Э–Н увеличивается в ряду веществ

    [attention type=red]

    1) HI – PH3 – HCl
    2) PH3 – HCl – H2S
    3) HI – HCl – H2S
    4) HCl – H2S – PH3

    [/attention]

    11. Длина химической связи Э–Н уменьшается в ряду веществ

    1) NH3 – H2O – HF
    2) PH3 – HCl – H2S
    3) HF – H2O – HCl
    4) HCl – H2S – HBr

    12. Число электронов, которые участвуют в образовании химических связей в молекуле хлороводорода, —

    1) 4 2) 2 3) 6

    4) 8

    13. Число электронов, которые участвуют в образовании химических связей в молекуле P2O5, —

    1) 4 2) 20 3) 6

    4) 12

    14. В хлориде фосфора (V) химическая связь

    1) ионная 2) ковалентная полярная 3) ковалентная неполярная

    4) металлическая

    15. Наиболее полярная химическая связь в молекуле

    1) фтороводорода 2) хлороводорода 3) воды

    4) сероводорода

    16. Наименее полярная химическая связь в молекуле

    1) хлороводорода 2) бромоводорода 3) воды

    4) сероводорода

    17. За счёт общей электронной пары образована связь в веществе

    1) Mg
    2) H2 3) NaCl

    4) CaCl2

    18. Ковалентная связь образуется между элементами, порядковые номера которых

    1) 3 и 9 2) 11 и 35 3) 16 и 17

    4) 20 и 9

    19. Ионная связь образуется между элементами, порядковые номера которых

    1) 13 и 9 2) 18 и 8 3) 6 и 8

    4) 7 и 17

    20. В перечне веществ, формулы которых соединения только с ионной связью, это

    1) NaF, CaF2
    2) NaNO3, N2
    3) O2, SO3
    4) Ca(NO3)2, AlCl3

    Ответы

    Ковалентная полярная и неполярная связи, что это такое и как различать связь

    Ковалентная связь

    > Химия > Ковалентная связь, полярная и неполярная, особенности, формулы и схемы

    Ни для кого не секрет, что химия — наука довольно сложная и к тому же разнообразная.

    Множество различных реакций, реагентов, химикатов и прочих сложных и непонятных терминов — все они взаимодействуют друг с другом.

    Но главное, что с химией мы имеем дело каждый день, неважно, слушаем ли мы учителя на уроке и усваиваем новый материал или же завариваем чай, который в целом тоже представляет собой химический процесс.

    • Появления термина
    • Виды ковалентной связи
    • Ковалентная полярная — образование
    • Ковалентная неполярная, разница между полярной и неполярной
    • Свойства связи

    Можно сделать вывод, что химию знать просто необходимо, разбираться в ней и знать, как устроен наш мир или какие-то отдельные его части — интересно, и, более того, полезно.

    Сейчас нам предстоит разобраться с таким термином, как ковалентная связь, которая, кстати говоря, может быть как полярной, так и неполярной. Кстати говоря, само слово «ковалентная», образуется от латинского «co» — совместно и «vales» — имеющий силу.

    : механизм образования металлической химической связи, примеры.

    Появления термина

    Начнём с того, что сам термин «ковалентная» впервые ввёл в 1919 году Ирвинг Ленгмюр — лауреат Нобелевской премии.

    Понятие «ковалентной» предполагает химическую связь, при которой оба атома обладают электронами, что называется совместным обладанием.

    Таким образом, она, к примеру, отличается от металлической, в которой электроны свободны, или же от ионной, где и вовсе один отдаёт электроны другому. Нужно заметить, что образуется она между неметаллами.

    Исходя из вышесказанного, можно сделать небольшой вывод о том, что из себя представляет этот процесс. Она возникает между атомами за счёт образования общих электронных пар, причём пары эти возникают на внешних и предвнешних подуровнях электронов.

    Примеры, вещества с полярной:

    : водородная связь образуется между молекулами, химический механизм.

    Виды ковалентной связи

    Также различаются два вида — это полярная, и, соответственно, неполярная связи. Особенности каждой из них мы разберём отдельно.

    Ковалентная полярная — образование

    Что из себя представляет термин «полярная»?

    Обычно происходит так, что два атома имеют разную электроотрицательность, следовательно, общие электроны не принадлежат им в равной степени, а находятся они всегда ближе к одному, чем к другому.

    К примеру, молекула хлороводорода, в ней электроны ковалентной связи располагаются ближе к атому хлора, так как его электроотрицательность выше чем у водорода.

    Однако, на самом деле, разница в притяжении электронов невелика настолько, чтобы произошёл полный перенос электрона от водорода к хлору.

    [attention type=green]

    В итоге при полярной электронная плотность смещается к более электроотрицательному, на нём же возникает частичный отрицательный заряд. В свою очередь, у того ядра, чья электроотрицательность ниже, возникает, соответственно, частичный положительный заряд.

    [/attention]

    Делаем вывод: полярная возникает между различными неметаллами, которые отличаются по значению электроотрицательности, а электроны располагаются ближе к ядру с большей электроотрицательностью.

    Электроотрицательность – способность одних атомов притягивать к себе электроны других, тем самым образуя химическую реакцию.

    Примеры ковалентной полярной, вещества с ковалентной полярной связью:

    Формула вещества с ковалентной полярной связью

    Ковалентная неполярная, разница между полярной и неполярной

    И наконец, неполярная, скоро мы узнаем что же она из себя представляет.

    Основное отличие неполярной от полярной — это симметрия. Если в случае с полярной электроны располагались ближе к одному атому, то при неполярной связи, электроны располагаются симметрично, то есть в равной степени по отношению к обоим.

    Примечательно, что неполярная возникает между атомами неметалла одного химического элемента.

    К примеру, вещества с неполярной ковалентной связью:

    Также совокупность электронов зачастую называют просто электронным облаком, исходя из этого делаем вывод, что электронное облако связи, которое образует общая пара электронов, распределяется в пространстве симметрично, или же равномерно по отношению к ядрам обоих.

    Примеры ковалентной неполярной связи и схема образования ковалентной неполярной связи

    Свойства связи

    1. Длина — расстояние между ядрами атомов, которые её образуют.
    2. Энергия — количество энергии, необходимой для её разрыва.
    3. Насыщаемость — способность атомов н-ное определённое количество связей.

    Но Также полезно знать, как же различать ковалентную полярную и неполярную.

    Ковалентная неполярная — это всегда атомы одного и того же вещества. H2. CL2.

    В остальных случаях можно считать полярной.

    На этом статья подошла к концу, теперь мы знаем, что из себя представляет этот химический процесс, умеем определять его и его разновидности, знаем формулы образования веществ, и в целом чуточку больше о нашем сложном мире, успехов в химии и образовании новых формул.

    Ковалентная химическая связь

    Ковалентная связь

    Home  / Учебник ОБЩАЯ ХИМИЯ / Глава 3. Молекула / Ковалентная химическая связь

    Данные по энергии ионизации (ЭИ), ПЭИ и составу стабильных молекул — их настоящие значения и сравнения — как свободных атомов, так и атомов, связанных в молекулы, позволяют нам понять как атомы образуют молекулы посредством механизма ковалентной связи.

    КОВАЛЕНТНАЯ СВЯЗЬ — (от латинского  «со» совместно и «vales» имеющий силу) (гомеополярная связь), химическая связь между двумя атомами, возникающая при обобществлении электронов, принадлежавших этим атомам. Ковалентной связью соединены атомы в молекулах простых газов. Связь, при которой имеется одна общая пара электронов, называется одинарной; существуют также двойные и тройные связи.

    Рассмотрим несколько примеров, чтобы увидеть, как мы можем использовать наши правила для определения количества ковалентных химических связей, которые может образовать атом, если мы знаем количество электронов на внешней оболочке данного атома и заряд его ядра. Заряд ядра и количество электронов на внешней оболочке определяются экспериментальным путем и включены в таблицу элементов. 

    Расчет возможного числа ковалентных связей

    Для примера, подсчитаем количество ковалентных связей, которые могут образовать натрий (Na), алюминий (Al), фосфор (P), и хлор (Cl).

    Натрий  (Na) и алюминий (Al) имеют, соответственно 1 и 3 электрона на внешней оболочке, и, по первому правилу (для механизма  образования ковалентной связи используется один электрон на внешней оболочке), они могут образовать:натрий (Na) — 1 и алюминий (Al) — 3 ковалентных связи.

    После образования связей количество электронов на внешних оболочках натрия (Na) и  алюминия (Al) равно, соответственно, 2 и 6; т.е., менее максимального количества (8) для этих атомов.

      Фосфор (P) и хлор (Cl) имеют, соответственно, 5 и 7 электронов на внешней оболочке и, согласно второй из вышеназванных закономерностей, они могли бы образовать 5 и 7 ковалентных связей.

     В соответствии с четвертой закономерностью образование ковалентной связи, число электронов на внешней оболочке этих атомов увеличивается на 1. Согласно шестой закономерности, когда образуется ковалентная связь, число электронов на внешней оболочке связываемых атомов не может быть более 8. То есть, фосфор (P) может образовать только 3 связи (8-5 = 3), в то время как хлор (Cl) может образовать только одну (8-7 = 1).

    Описанный механизм образования ковалентных связей позволяет нам предсказать  молекулярное строение вещества на основании элементарного анализа.

    Пример: на основании анализа мы обнаружили, что некое вещество состоит из атомов натрия (Na) и хлора (Cl). Зная закономерности механизма образования ковалентных связей, мы можем сказать, что натрий (Na) может образовать только 1 ковалентную связь.

    Таким образом, мы можем предположить, что  каждый атом натрия (Na) связан с атомом хлора (Cl) посредством ковалентной связи в этом веществе, и что это вещество состоит из молекул атома NaCl. Формула строения для этой молекулы: Na — Cl. Здесь тире (-) означает ковалентную связь.

    Электронную формулу этой молекулы можно показать следующим образом:                                                  . .                                          Na : Cl :                                                 . .

    [attention type=yellow]

    [/attention]В соответствии с электронной формулой, на внешней оболочке атома натрия (Na) в NaCl имеется 2 электрона, а на внешней оболочке атома хлора (Cl) находится 8 электронов. В данной формуле электроны (точки) между атомами натрия (Na) и хлора (Cl) являются связующими электронами.

    Поскольку ПЭИ у хлора (Cl) равен 13 эВ, а у натрия (Na) он равен 5,14 эВ, связующая пара электронов находится гораздо ближе к атому Cl, чем к атому Na.  Если энергии ионизации атомов, образующих молекулу сильно различаются, то образовавшаяся связь будет полярной ковалентной связью.

    Рассмотрим другой случай. На основании анализа мы обнаружили, что некое вещество состоит из атомов алюминия (Al) и атомов хлора (Cl).

    У алюминия (Al) имеется 3 электрона на внешней оболочке; таким образом, он может образовать 3 ковалентные химические связи, в то время хлор (Cl), как и в предыдущем случае, может образовать только 1 связь.

    Это вещество представлено как AlCl3, а его электронную формулу можно проиллюстрировать следующим образом:

    Рисунок 3.1. Электронная формула AlCl3  

    чья формула строения:                                                                                                      Cl — Al — Cl                                                                                                              |                                                                                                          Cl  

    Эта электронная формула показывает, что у AlCl3 на внешней оболочке атомов хлора (Cl) имеется 8 электронов, в то время, как на внешней оболочке атома алюминия (Al) их 6.  По механизму образования ковалентной связи, оба связующих электрона (по одному от каждого атома) поступают на внешние оболочки связываемых атомов.

    Кратные ковалентные связи

    Атомы, имеющие более одного электрона на внешней оболочке, могут образовывать не одну, а несколько ковалентных связей между собой. Такие связи называются многократными (чаще  кратными) связями. Примерами таких связей служат связи молекул азота (N=N) и кислорода (O = O).

    Связь, образующаяся при объединении одинарных атомов называется гомоатомной ковалентной связью,если атомы разные,  то  связь называется гетероатомнной ковалентной связью [греческие префексы «гомо» и «гетеро» соответственно означают одинаковые и разные].

    Представим, как в действительности выглядит молекула со спаренными атомами. Самая простая молекула со спаренными атомами — это молекула водорода.

    Строение молекулы.Химическая связь >>

    Ковалентная связь

    Модель молекулы водорода >>

    Энергия молекулы водорода >>

    Выводы >>

    1.3.1. Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

    Ковалентная связь

    Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон.

    Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов.

    Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь.

    Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

    Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

    Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

    E(XY) < E(X) + E(Y)

    [attention type=red]

    По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

    [/attention]

    Упрощенно можно считать, что в основе химических связей лежат электростатические силы, обусловленные взаимодействиями положительно заряженных ядер и отрицательно заряженных электронов.

    В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными. Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s-орбитали и 1 на 2p-орбитали:

    При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

    Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

    В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

    Ковалентная связь

    Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной.

    Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд.

    В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от  атома водорода к атому хлора:

    Примеры веществ с ковалентной полярной связью:

    СCl4, H2S, CO2, NH3, SiO2 и т.д.

    [attention type=green]

    Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

    [/attention]

    Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

    Также существует и донорно-акцепторный механизм.

    При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома.

    Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором.

    В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

    Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH4+:

    Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

    Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

    [attention type=yellow]

    HI < HBr < HCl < HF

    [/attention]

    Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

    Ионная связь

    Ионную связь можно рассматривать как предельный случай ковалентной полярной связи.

    Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов.

    Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом, а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом.

    Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

    Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

    Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

    Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

    При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

    Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

    [attention type=red]

    Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

    [/attention]

    Ионная связь возникает также между простыми катионами и простыми анионами (F−, Cl−, S2-), а также между простыми катионами и сложными анионами (NO3−, SO42-, PO43-, OH−). Поэтому к ионным соединениям относят соли и основания (Na2SO4, Cu(NO3)2, (NH4)2SO4), Ca(OH)2, NaOH)

    Металлическая связь

    Данный тип связи образуется в металлах.

    У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

    Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

    М0 — ne− = Mn+ ,

    где М0 – нейтральный атом металла, а Mn+ катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

    То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом.

    Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”.

    Подобный тип взаимодействия между атомами металлов назвали металлической связью.

    Водородная связь

    Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором),   для такого вещества характерно такое явление, как водородная связь.

    Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный.

    В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой.

    Например водородная связь наблюдается для молекул воды:

    [attention type=green]

    Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.

    [/attention]

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как найти девочку призрака в скайриме
  • Как найти отпечатки пальцев видео
  • Как найти нужную мне папку
  • Как найти кинетическую энергию зная потенциал
  • Как найти затерянную реку в сабнатике

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии