Как найти котангенс угла наклона

7. Взаимосвязь функции и ее производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Значение производной в точке касания как тангенс угла наклона

Если к кривой (f(x)) проведена касательная в точке с абсциссой (x_0), то

[{large{color{royalblue}{f'(x_0)=mathrm{tg}, alpha, }}},]

где (alpha) – угол наклона касательной.

Значит, верна формула: (f'(x_0)=mathrm{tg}, alpha=k).

Заметим, что координаты точки (A) тогда можно записать как ( (x_0; f(x_0)) ) или ( (x_0; y_0) ),
где ( y_0=kx_0+b).
То есть ( y_0=f(x_0)).


Задание
1

#2090

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))) (то есть угла между касательной к графику (f(x)) в точке ((x_0; f(x_0))) и положительным направлением оси (Ox)).

По рисунку видно, что касательная проходит через точки ((0,5; 0)) и ((1; 1)), тогда тангенс угла наклона касательной составляет (1 : 0,5
= 2)
, следовательно, (f'(x_0) = 2).

Ответ: 2


Задание
2

#2091

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

По рисунку видно, что касательная проходит через точки ((0,5; -0,5)) и ((1; 1)), тогда тангенс угла наклона касательной составляет (1,5 :
0,5 = 3)
, следовательно, (f'(x_0) = 3).

Ответ: 3


Задание
3

#2092

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

По рисунку видно, что касательная проходит через точки ((0,5; 1)) и ((1,5; 1,5)), тогда тангенс угла наклона касательной составляет (0,5
: 1 = 0,5)
, следовательно, (f'(x_0) = 0,5).

Ответ: 0,5


Задание
4

#2093

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

По рисунку видно, что касательная проходит через точки ((1; 1)) и ((5; 2)), тогда тангенс угла наклона касательной составляет ((2 — 1)
: (5 — 1) = 0,25)
, следовательно, (f'(x_0) = 0,25).

Ответ: 0,25


Задание
5

#3112

Уровень задания: Равен ЕГЭ

На рисунке изображен график функции (y=f(x)) и отмечены точки (-2;
0; 2; 8)
. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Проведем касательные к графику функции в этих точках. Так как тангенс угла (alpha) наклона касательной равен значению производной (f'(x)) в точке касания (x_0) ((f'(x_0)=mathrm{tg},alpha)), то нужно сравнить тангенсы углов, отмеченных на рисунке.
Вспомним, что если угол тупой, то его тангенс отрицательный, если острый – положительный. Следовательно, так как мы ищем наибольший тангенс, имеет смысл рассматривать только острые углы. Это углы, образованные касательными в точках (0) и (2). Заметим, что угол в точке (0) больше, следовательно, его тангенс также больше, чем тангенс угла в точке (2). Таким образом, ответ: (0).

Ответ: 0


Задание
6

#718

Уровень задания: Сложнее ЕГЭ

Производная (f'(x)) функции (f(x)) в точке (x_0) равна (10). Найдите котангенс угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

При всех (alpha), при которых (mathrm{tg}, alpha) и (mathrm{ctg}, alpha) имеют смысл, выполнено (mathrm{tg}, alphacdotmathrm{ctg}, alpha = 1), откуда котангенс угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))) равен (0,1).

Ответ: 0,1


Задание
7

#719

Уровень задания: Сложнее ЕГЭ

Производная (f'(x)) функции (f(x)) в точке (x_0) равна (5). Найдите сумму тангенса и котангенса угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

При всех (alpha), при которых (mathrm{tg}, alpha) и (mathrm{ctg}, alpha) имеют смысл, выполнено (mathrm{tg}, alphacdotmathrm{ctg}, alpha = 1), откуда котангенс угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))) равен (0,2), тогда сумма тангенса и котангенса угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))) равна (5,2).

Ответ: 5,2

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Котангенс — угло — наклон — прямая

Cтраница 1

Котангенс угла наклона прямой А В к оси абсцисс определяется как отношение катетов в треугольнике ACD ( ctga — CD: DA) или соответствующих катетов в другом подобном треугольнике.
 [2]

Котангенс угла наклона прямой АВ к оси абсцисс определяется как отношение катетов в треугольнике ACD ( ctgcc CD: DA) или соответствующих катетов в другом подобном треугольнике.
 [3]

Котангенс угла наклона прямой АВ к оси абсцисс определяется как отношение катетов в треугольнике ACD ( ctga CD: DA) или соответствующих катетов в другом подобном треугольнике.
 [4]

Qm — котангенс угла наклона прямой, а — — отрезок, отсекаемый ею на оси ординат; умножением — на Qm получаем тв.
 [6]

По уравнению (V.10) вычисляют вязкость т) стандартной жидкости ( в П); при этом q N находят как котангенс угла наклона прямой к оси абсцисс.
 [8]

По уравнению (V.10) вычисляют вязкость т ] стандартной жидкости ( в П); при этом q ] N находят как котангенс угла наклона прямой к оси абсцисс.
 [10]

Скорость воздушного потока v ( м / с) определяется по графику зависимости, полученной при тарировке прибора: v а Ьп, где а — отрезок, отсекаемый прямой на оси абсцисс; Ъ — котангенс угла наклона прямой.
 [12]

При постоянных / С и X уравнение ( 58) упрощается. Из прямой зависимости между Ф и т ( рис. 37) определяют т0 как котангенс угла наклона прямой.
 [14]

Страницы:  

   1

   2


Загрузить PDF


Загрузить PDF

Если вы умеете вычислять угловые коэффициенты (тангенс угла наклона) прямых, то на основании этих коэффициентов можно узнать другие параметры. Например, выяснить, параллельны ли прямые или же перпендикулярны, найти их точку пересечения и многие другие величины. Вычисление углового коэффициента — довольно простая задача. Прочитайте эту статью, чтобы узнать, как это сделать.

  1. Изображение с названием Find the Slope of a Line Step 1

    1

    Угловой коэффициент (тангенс угла наклона) определяется как отношение изменения координаты «у» к изменению координаты «х».

    Реклама

  1. Изображение с названием Find the Slope of a Line Step 2

    1

    Рассмотрите любую прямую линию. Убедитесь, что линия прямая, так как угловой коэффициент вычисляется только для прямых линий.

  2. Изображение с названием Find the Slope of a Line Step 3

    2

    Выберите любые две точки, лежащие на прямой. Запишите их координаты в виде (х,у). Не имеет значения, какие точки вы выберете (главное, чтобы они были разными и лежали на одной прямой).

  3. Изображение с названием Find the Slope of a Line Step 4

    3

    Дайте обозначение выбранным точкам. Не имеет значения, какую из них вы обозначите первой, а какую – второй (главное — на протяжении всего процесса вычисления строго придерживаться выбранного обозначения). Координаты первой точки запишем как x1 и y1, а координаты второй точки как x2 и y2.

  4. Изображение с названием Find the Slope of a Line Step 5

    4

    Подставьте координаты точек в формулу для вычисления углового коэффициента, приведенную выше.

  5. Изображение с названием Find the Slope of a Line Step 6

    5

    Вычтите две координаты «у».

  6. Изображение с названием Find the Slope of a Line Step 7

    6

    Вычтите две координаты «х».

  7. Изображение с названием Find the Slope of a Line Step 8

    7

    Разделите результат разности координат «у» на результат разности координат «х». Сократите дробь, если возможно.

  8. Изображение с названием Find the Slope of a Line Step 9

    8

    Проверьте полученный результат.

    • Прямые, идущие вверх слева направо, всегда имеют положительный угловой коэффициент (даже если это дробь).
    • Прямые, идущие вниз слева направо, всегда имеют отрицательный угловой коэффициент (даже если это дробь).

    Реклама

Пример

  1. Дана прямая с точками A и B, лежащими на ней.
  2. Координаты точек: A(-2,0) и B(0,-2)
  3. (y2-y1): -2-0=-2; Изменение координаты «у» = -2
  4. (x2-x1): 0-(-2)=2; Изменение координаты «х» = 2
  5. Угловой коэффициент данной прямой равен -1.

Советы

  • Как только вы обозначили координаты точек на прямой через (х1,у1) и (у1,у2), не меняйте эти обозначения, или вы получите неверный ответ.
  • Вы нашли «m» в линейном уравнении вида y=mx+b, где «у» — координата «у», «m» – угловой коэффициент, «х» — координата «х», «b» – смещение прямой по оси Y (или значение координаты «у» при х=0).
  • Для получения ответов на возникающие вопросы прочитайте школьный учебник или обратитесь к учителю.

Реклама

Предупреждения

  • Не путайте формулу для вычисления углового коэффициента (тангенса угла наклона) прямой с любой другой формулой, например, с формулой для вычисления расстояния или формулой для вычисления средней точки.

Реклама

Что вам понадобится

  • Миллиметровка (возможно).
  • Координатная плоскость или прямая с координатами двух точек, лежащих на ней.
  • Формула для вычисления углового коэффициента (тангенса угла наклона) прямой.
  • Карандаш, бумага, линейка, калькулятор.
  • Прямая.
  • Координаты «х».
  • Координаты «у».

Об этой статье

Эту страницу просматривали 103 532 раза.

Была ли эта статья полезной?

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

Угол наклона прямой к оси О х , расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.

Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π ) .

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Посчитать угловой коэффициент прямой при угле наклона равном 120 ° .

Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = — 3 .

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k 0 , тогда угол тупой, что дает право определить его по формуле α = π — a r c t g k .

Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .

Ответ: α = a r c t g 3 .

Найти угол наклона прямой к оси О х , если угловой коэффициент = — 1 3 .

Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х . Отсюда k = — 1 3 0 , тогда необходимо применить формулу α = π — a r c t g k При подстановке получим выражение:

α = π — a r c t g — 1 3 = π — a r c t g 1 3 = π — π 6 = 5 π 6 .

Ответ: 5 π 6 .

Уравнение с угловым коэффициентом

Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у .

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М , M 1 ( x 1 , y 1 ) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Задана прямая с угловым коэффициентом y = 1 3 x — 1 . Вычислить, принадлежат ли точки M 1 ( 3 , 0 ) и M 2 ( 2 , — 2 ) заданной прямой.

Необходимо подставить координаты точки M 1 ( 3 , 0 ) в заданное уравнение, тогда получим 0 = 1 3 · 3 — 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M 2 ( 2 , — 2 ) , тогда получим неверное равенство вида — 2 = 1 3 · 2 — 1 ⇔ — 2 = — 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.

Ответ: М 1 принадлежит прямой, а М 2 нет.

Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 ( 0 , b ) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х , где k = t g α .

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x — 1 . Получим, что прямая пройдет через точку с координатой 0 , — 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х . Отсюда видно, что коэффициент равен 3 .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 ( x 1 , y 1 ) .

Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 ( x 1 , y 1 ) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y — y 1 = k · ( x — x 1 ) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 ( x 1 , y 1 ) .

Составьте уравнение прямой, проходящей через точку М 1 с координатами ( 4 , — 1 ) , с угловым коэффициентом равным — 2 .

Решение

По условию имеем, что x 1 = 4 , y 1 = — 1 , k = — 2 . Отсюда уравнение прямой запишется таким образом y — y 1 = k · ( x — x 1 ) ⇔ y — ( — 1 ) = — 2 · ( x — 4 ) ⇔ y = — 2 x + 7 .

Ответ: y = — 2 x + 7 .

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами ( 3 , 5 ) , параллельную прямой y = 2 x — 2 .

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x — 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:

y — y 1 = k · ( x — x 1 ) ⇔ y — 5 = 2 · ( x — 3 ) ⇔ y = 2 x — 1

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x — x 1 a x = y — y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y — b = k · x ⇔ k · x k = y — b k ⇔ x 1 = y — b k .

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Привести уравнение прямой с угловым коэффициентом y = — 3 x + 12 к каноническому виду.

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y = — 3 x + 12 ⇔ — 3 x = y — 12 ⇔ — 3 x — 3 = y — 12 — 3 ⇔ x 1 = y — 12 — 3

Ответ: x 1 = y — 12 — 3 .

Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x — y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.

Дано уравнение прямой вида y = 1 7 x — 2 . Выяснить, является ли вектор с координатами a → = ( — 1 , 7 ) нормальным вектором прямой?

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y = 1 7 x — 2 ⇔ 1 7 x — y — 2 = 0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , — 1 , отсюда 1 7 x — y — 2 = 0 . Понятно, что вектор a → = ( — 1 , 7 ) коллинеарен вектору n → = 1 7 , — 1 , так как имеем справедливое соотношение a → = — 7 · n → . Отсюда следует, что исходный вектор a → = — 1 , 7 — нормальный вектор прямой 1 7 x — y — 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x — 2 .

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ — A B · x — C B .

Результат и является уравннием с угловым коэффициентом, который равняется — A B .

Задано уравнение прямой вида 2 3 x — 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

2 3 x — 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .

Ответ: y = 1 6 x + 1 4 .

Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x — x 1 a x = y — y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

x a + y b = 1 ⇔ y b = 1 — x a ⇔ y = — b a · x + b .

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x · ( y — y 1 ) ⇔ ⇔ a x · y = a y · x — a y · x 1 + a x · y 1 ⇔ y = a y a x · x — a y a x · x 1 + y 1

Имеется прямая, заданная уравнением x 2 + y — 3 = 1 . Привести к виду уравнения с угловым коэффициентом.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на — 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y — 3 = 1 — x 2 ⇔ — 3 · y — 3 = — 3 · 1 — x 2 ⇔ y = 3 2 x — 3 .

Ответ: y = 3 2 x — 3 .

Уравнение прямой вида x — 2 2 = y + 1 5 привести к виду с угловым коэффициентом.

Необходимо выражение x — 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · ( x — 2 ) = 2 · ( y + 1 ) . Теперь необходимо полностью его разрешить, для этого:

5 · ( x — 2 ) = 2 · ( y + 1 ) ⇔ 5 x — 10 = 2 y + 2 ⇔ 2 y = 5 x — 12 ⇔ y = 5 2 x

Ответ: y = 5 2 x — 6 .

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = — 1 + 2 · λ .

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x = λ y = — 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .

Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x 1 = y + 1 2 ⇔ 2 · x = 1 · ( y + 1 ) ⇔ y = 2 x — 1

Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .

Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:

— определение углового коэффициента прямой, когда известны две точки через которые она проходит;
— определение абсциссы или ординаты точки пересечения двух прямых на плоскости.

Что такое абсцисса и ордината точки было описано в прошлой статье данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.

Уравнение прямой на координатной плоскости имеет вид:

где k – это и есть угловой коэффициент прямой.

Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.

Он лежит в пределах от 0 до 180 градусов.

То есть, если мы приведём уравнение прямой к виду y = kx + b, то далее всегда сможем определить коэффициент k (угловой коэффициент).

Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.

Следующий теоретический момент! Уравнение прямой походящей через две данные точки. Формула имеет вид:

Подробнее об этой формуле рассказано в этой статье !

Рассмотрим задачи (аналогичные задачам из открытого банка заданий):

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–6;0) и (0;6).

В данной задаче самый рациональный путь решения это найти тангенс угла между осью ох и данной прямой. Известно, что он равен угловому коэффициенту. Рассмотрим прямоугольный треугольник образованный прямой и осями ох и оу:

Тангенсом угла в прямоугольном треугольнике является отношение противолежащего катета к прилежащему:

*Оба катета равны шести (это их длины).

Конечно, данную задачу можно решить используя формулу нахождения уравнения прямой проходящей через две данные точки. Но это будет более длительный путь решения.

Найдите угловой коэффициент прямой, проходящей через точки с координатами (5;0) и (0;5).

Формула уравнения прямой походящей через две данные точки имеет вид:

Наши точки имеют координаты (5;0) и (0;5). Значит,

Получили, что угловой коэффициент k = – 1.

Прямая a проходит через точки с координатами (0;6) и (8;0). Прямая b проходит через точку с координатами (0;10) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.

В данной задаче можно найти уравнение прямой a, определить угловой коэффициент для неё. У прямой b угловой коэффициент будет такой же, так как они параллельны. Далее можно найти уравнение прямой b. А затем, подставив в него значение y = 0, найти абсциссу. НО!

В данном случае, проще использовать свойство подобия треугольников.

Прямоугольные треугольники, образованные данными (параллельными) прямыми о осями координат подобны, а это значит, что отношения их соответствующих сторон равны.

Искомая абсцисса равна 40/3.

Прямая a проходит через точки с координатами (0;8) и (–12;0). Прямая b проходит через точку с координатами (0; –12) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.

Для данной задачи самый рациональный путь решения — это применение свойства подобия треугольников. Но мы решим её другим путём.

Нам известны точки, через которые проходит прямая а. Можем составить уравнение прямой. Формула уравнения прямой походящей через две данные точки имеет вид:

По условию точки имеют координаты (0;8) и (–12;0). Значит,

Получили, что угловой k = 2/3.

*Угловой коэффициент можно было найти через тангенс угла в прямоугольном треугольнике с катетами 8 и 12.

Известно, у параллельных прямых угловые коэффициенты равны. Значит уравнение прямой проходящей через точку (0;-12) имеет вид:

Найти величину b мы можем подставив абсциссу и ординату в уравнение:

Таким образом, прямая имеет вид:

Теперь чтобы найти искомую абсциссу точки пересечения прямой с осью ох, необходимо подставить у = 0:

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку В(10;12) и параллельной прямой, проходящей через начало координат и точку А(10;24).

Найдём уравнение прямой проходящей через точки с координатами (0;0) и (10;24).

Формула уравнения прямой походящей через две данные точки имеет вид:

Наши точки имеют координаты (0;0) и (10;24). Значит,

Угловые коэффициенты параллельных прямых равны. Значит, уравнение прямой, проходящей через точку В(10;12) имеет вид:

Значение b найдём подставив в это уравнение координаты точки В(10;12):

Получили уравнение прямой:

Чтобы найти ординату точки пересечения этой прямой с осью оу нужно подставить в найденное уравнение х = 0:

*Самый простой способ решения. При помощи параллельного переноса сдвигаем данную прямую вниз вдоль оси оу до точки (10;12). Сдвиг происходит на 12 единиц, то есть точка А(10;24) «перешла» в точку В(10;12), а точка О(0;0) «перешла» в точку (0;–12). Значит, полученная прямая будет пересекать ось оу в точке (0;–12).

Искомая ордината равна –12.

Найдите ординату точки пересечения прямой, заданной уравнением

3х + 2у = 6 , с осью Oy .

Координата точки пересечения заданной прямой с осью оу имеет вид (0;у). Подставим в уравнение абсциссу х = 0, и найдём ординату:

Ордината точки пересечения прямой с осью оу равна 3.

Найдите ординату точки пересечения прямых, заданных уравнениями

3х + 2у = 6 и у = – х .

Когда заданны две прямые, и стоит вопрос о нахождении координат точки пересечения этих прямых, решается система из данных уравнений:

В первом уравнении подставляем – х вместо у:

Ордината равна минус шести.

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–2;0) и (0;2).

Найдите угловой коэффициент прямой, проходящей через точки с координатами (2;0) и (0;2).

Прямая a проходит через точки с координатами (0;4) и (6;0). Прямая b проходит через точку с координатами (0;8) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

Прямая a проходит через точки с координатами (0;4) и (–6;0). Прямая b проходит через точку с координатами (0; –6) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку B (6;4) и параллельной прямой, проходящей через начало координат и точку A (6;8).

Найдите абсциссу точки пересечения прямой, заданной уравнением 2х + 2у = 6, с осью ох.

Найдите абсциссу точки пересечения прямых, заданных уравнениями 3х + 2у = 6 и у = х.

Конечно, некоторые задачи, которые мы рассмотрели можно было решить более рациональными способами. Но ставилась цель показать разные подходы к решению. Надеюсь, это удалось.

1. Необходимо чётко усвоить, что угловой коэффициент прямой равен тангенсу угла наклона прямой. Это поможет вам при решении многих задач данного типа.

2. Формулу нахождения прямой проходящей через две данные точки нужно понимать обязательно. С её помощью всегда найдёте уравнение прямой, если даны координаты двух её точек.

3. Помните о том, что угловые коэффициенты параллельных прямых равны.

4. Как вы поняли, в некоторых задачах удобно использовать признак подобия треугольников. Задачи решаются практически устно.

5. Задачи в которых даны две прямые и требуется найти абсциссу или ординату точки их пересечения можно решить графическим способом. То есть, построить их на координатной плоскости (на листе в клетку) и определить точку пересечения визуально. *Но этот способ применим не всегда.

6. И последнее. Если дана прямая и координаты точек её пересечения с осями координат, то в таких задачах удобно находить угловой коэффициент через нахождение тангенса угла в образованном прямоугольном треугольнике. Как «увидеть» этот треугольник при различных расположениях прямых на плоскости схематично показано ниже:

>> Угол наклона прямой от 0 до 90 градусов

>> Угол наклона прямой от 90 до 180 градусов

В данных двух случаях, по свойству тангенса :

То есть, чтобы найти уголвой коэффициент прямой, необходимо вычислить тангенс бетта в полученном прямоугольном треугольнике и записать результат с отрицательным знаком.

В данной рубрике продолжим рассматривать задачи, не пропустите!

Функция НАКЛОН в Excel предназначена для определения угла наклона прямой, используемой для аппроксимации данных методом линейной регрессии, и возвращает значение коэффициента a из уравнения y=ax+b. Для определения наклона используются две любые точки на прямой. При этом вычисляется частное от деления длины отрезка, полученного при проецировании этих двух точек на ось Ординат (OY), на длину отрезка, образованного проекциями этих же двух точек на ось Абсцисс (OX).

Фактически, функция НАКЛОН вычисляет значение, которое характеризует скорость изменения данных вдоль линии регрессии. Зная наклон (коэффициент a) и значение коэффициента b можно рассчитать приближенные будущие значения какого-либо свойства y, которое меняется при изменении характеристики x.

Примеры использования функции НАКЛОН в Excel

Для расчета наклона линии регрессии используется уравнение:

  • x_ср – среднее значение для диапазона известных значений независимой переменной;
  • y_ср – среднее значение для диапазона известных значений зависимой переменной.

Функция НАКЛОН не может быть использована для анализа коллинеарных данных и будет возвращать код ошибки #ДЕЛ/0! в отличие от функции ЛИНЕЙН, которая использует иной алгоритм расчета и возвращает как минимум одно полученное значение.

Пример 1. Определить наклон аппроксимирующей прямой для показателей средней пенсии на протяжении нескольких лет.

Вид исходной таблицы данных:

Для нахождения наклона используем следующую формулу:

  • B3:B13 – ссылка на диапазон ячеек, содержащих данные о средней пенсии, характеризующие зависимую переменную y;
  • A3:A13 – диапазон ячеек с данными об отчетных периодах (годах), характеризующие независимую переменную x.

В результате вычислений получим:

Полученное значение свидетельствует о том, что на протяжении обозначенного периода размер пенсионных выплат в среднем увеличивался примерно на 560 рублей.

Прогноз объема продаж по линейно регрессии в Excel

Пример 2. В таблице Excel содержатся данные о прибыли за продажи некоторого продукта компании на протяжении последних нескольких дней. Рассчитать коэффициенты a и b уравнения прямой y=ax+b, аппроксимирующей данные. На основе полученного уравнения спрогнозировать данные о продажах для трех последующих дней.

Вид таблицы с данными:

Для нахождения коэффициента a используем следующую формулу:

Коэффициент b рассчитывается с помощью следующей функции:

Искомое уравнение имеет вид:

Для определения последующих значений y достаточно лишь подставить требуемое значение x. Выполним расчет предполагаемой прибыли для 13-го дня:

  • D3 – полученное значение коэффициента a;
  • A15 – новое значение x;
  • E3 – значение коэффициента b.

Используем функцию автозаполнения чтобы получить значения для остальных дней:

Анализ корреляции спроса и объема производства в Excel

Пример 3. В таблице содержатся данные о количестве произведенной продукции за месяц, а также о числе приобретенных товаров данной марки покупателями. Отобразить взаимосвязь между данными графически, определить, целесообразно ли использовать уравнение линейно регрессии для описания корреляции между спросом и числом произведенных товаров.

Вид таблицы данных:

Для определения зависимости между двумя рядами числовых данных рассчитаем коэффициент корреляции по формуле:

Полученное значение (0,983) свидетельствует о том, что между двумя числовыми диапазонами существует сильная прямая взаимосвязь. Поэтому целесообразно использовать аппроксимирующую прямую, для нахождения коэффициентов уравнения которой используем формулы:

Для нахождения спроса на товары за июль при условии, что будет произведено, например, 2000 единиц продукции, используем полученное уравнение:

Альтернативным использованию функции НАКЛОН вариантом нахождения наклона в Excel является графический метод. Построим график на основе имеющихся данных, при этом для значений X выберем диапазон ячеек со значениями числа произведенных товаров, а для Y – с числом купленных товаров:

Отобразим на графике линию тренда:

В меню «Формат линии тренда» установим флажок напротив пункта «показывать уравнение на диаграмме»:

График примет следующий вид:

Как видно, найденные коэффициенты a и b соответствуют отображаемым на графике.

Особенности использования функции НАКЛОН в Excel

Функция имеет следующий синтаксис:

Описание аргументов (все являются обязательными для заполнения):

  • известные_значения_y – аргумент, принимающий массив числовых значений или ссылку на диапазон ячеек, которые содержат числа, характеризующие значения зависимой переменной y, которые определены для известных значений x;
  • известные_значения_x – аргумент, который может быть указан в виде массива чисел или ссылки на диапазон ячеек, содержащих числовые значения, которые характеризуют известные значения независимой переменной x.
  1. В качестве аргументов должны быть переданы массивы чисел либо ссылки на диапазоны ячеек с числовыми значениями или текстовыми строками, которые могут быть преобразованы к числам. Строки, не являющиеся текстовыми представлениями числовых данных, а также логические ИСТИНА и ЛОЖЬ в расчете не учитываются.
  2. Если в качестве аргументов были переданы массивы, содержащие разное количество элементов, или ссылки на диапазоны с разным количеством ячеек, функция НАКЛОН вернет код ошибки #Н/Д. Аналогичный код ошибки будет возвращен в случае, если оба аргумента принимают пустые массивы или ссылки на диапазоны пустых ячеек.
  3. Если оба аргумента ссылаются на нечисловые данные, функция НАКЛОН вернет код ошибки #ДЕЛ/0!.
  4. Если в диапазоне, переданном в качестве любого из аргументов, содержатся пустые ячейки, они игнорируются в расчете. Однако ячейки, содержащие значение 0 (нуль) будут учтены.

Котангенс угла. Таблица котангенсов.

Котангенс угла через градусы, минуты и секунды

Котангенс угла через десятичную запись угла

Определение котангенса

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

tg(α) = cos(α)/sin(α)

сtg(α) = 1/tg(α)

Таблица котангенсов в радианах

ctg(0°) = ∞ctg(π/12) = ctg(15°) = 3.732050808ctg(π/6) = ctg(30°) = 1.732050808ctg(π/4) = ctg(45°) = 1ctg(π/3) = ctg(60°) = 0.577350269ctg(5π/12) = ctg(75°) = 0.2679491924ctg(π/2) = ctg(90°) = 0ctg(7π/12) = ctg(105°) = -0.2679491924ctg(2π/3) = ctg(120°) = -0.577350269ctg(3π/4) = ctg(135°) = -1ctg(5π/6) = ctg(150°) = -1.732050808ctg(11π/12) = ctg(165°) = -3.732050808ctg(π) = ctg(180°) = ∞ctg(13π/12) = ctg(195°) = 3.732050808ctg(7π/6) = ctg(210°) = 1.732050808ctg(5π/4) = ctg(225°) = 1ctg(4π/3) = ctg(240°) = 0.577350269ctg(17π/12) = ctg(255°) = 0.2679491924ctg(3π/2) = ctg(270°) = 0ctg(19π/12) = ctg(285°) = -0.2679491924ctg(5π/3) = ctg(300°) = -0.577350269ctg(7π/4) = ctg(315°) = -1ctg(11π/6) = ctg(330°) = -1.732050808ctg(23π/12) = ctg(345°) = -3.732050808

Таблица Брадиса котангенсы

ctg(0) = ∞ ctg(120) = -0.577350269 ctg(240) = 0.577350269
ctg(1) = 57.28996162 ctg(121) = -0.6008606192 ctg(241) = 0.5543090515
ctg(2) = 28.63625328 ctg(122) = -0.6248693519 ctg(242) = 0.5317094318
ctg(3) = 19.08113669 ctg(123) = -0.6494075931 ctg(243) = 0.5095254494
ctg(4) = 14.30066626 ctg(124) = -0.6745085166 ctg(244) = 0.4877325885
ctg(5) = 11.4300523 ctg(125) = -0.7002075381 ctg(245) = 0.466307658
ctg(6) = 9.514364451 ctg(126) = -0.7265425283 ctg(246) = 0.4452286853
ctg(7) = 8.144346428 ctg(127) = -0.7535540499 ctg(247) = 0.4244748162
ctg(8) = 7.115369723 ctg(128) = -0.7812856266 ctg(248) = 0.4040262259
ctg(9) = 6.313751516 ctg(129) = -0.8097840329 ctg(249) = 0.383864035
ctg(10) = 5.67128182 ctg(130) = -0.8390996309 ctg(250) = 0.3639702343
ctg(11) = 5.144554017 ctg(131) = -0.869286738 ctg(251) = 0.3443276133
ctg(12) = 4.704630109 ctg(132) = -0.9004040442 ctg(252) = 0.3249196963
ctg(13) = 4.331475875 ctg(133) = -0.9325150862 ctg(253) = 0.3057306815
ctg(14) = 4.010780934 ctg(134) = -0.9656887746 ctg(254) = 0.2867453857
ctg(15) = 3.732050808 ctg(135) = -1 ctg(255) = 0.2679491924
ctg(16) = 3.487414443 ctg(136) = -1.035530314 ctg(256) = 0.2493280028
ctg(17) = 3.270852618 ctg(137) = -1.07236871 ctg(257) = 0.2308681911
ctg(18) = 3.077683537 ctg(138) = -1.110612515 ctg(258) = 0.2125565617
ctg(19) = 2.904210878 ctg(139) = -1.150368407 ctg(259) = 0.1943803091
ctg(20) = 2.747477419 ctg(140) = -1.191753593 ctg(260) = 0.1763269807
ctg(21) = 2.605089065 ctg(141) = -1.234897157 ctg(261) = 0.1583844403
ctg(22) = 2.475086854 ctg(142) = -1.279941632 ctg(262) = 0.1405408347
ctg(23) = 2.355852366 ctg(143) = -1.327044822 ctg(263) = 0.1227845609
ctg(24) = 2.246036774 ctg(144) = -1.37638192 ctg(264) = 0.1051042353
ctg(25) = 2.14450692 ctg(145) = -1.428148007 ctg(265) = 0.08748866355
ctg(26) = 2.050303841 ctg(146) = -1.482560969 ctg(266) = 0.06992681193
ctg(27) = 1.962610505 ctg(147) = -1.539864964 ctg(267) = 0.05240777928
ctg(28) = 1.880726465 ctg(148) = -1.600334529 ctg(268) = 0.0349207695
ctg(29) = 1.804047755 ctg(149) = -1.664279482 ctg(269) = 0.01745506493
ctg(30) = 1.732050808 ctg(150) = -1.732050808 ctg(270) = 0
ctg(31) = 1.664279482 ctg(151) = -1.804047755 ctg(271) = -0.01745506493
ctg(32) = 1.600334529 ctg(152) = -1.880726465 ctg(272) = -0.0349207695
ctg(33) = 1.539864964 ctg(153) = -1.962610505 ctg(273) = -0.05240777928
ctg(34) = 1.482560969 ctg(154) = -2.050303841 ctg(274) = -0.06992681193
ctg(35) = 1.428148007 ctg(155) = -2.14450692 ctg(275) = -0.08748866355
ctg(36) = 1.37638192 ctg(156) = -2.246036774 ctg(276) = -0.1051042353
ctg(37) = 1.327044822 ctg(157) = -2.355852366 ctg(277) = -0.1227845609
ctg(38) = 1.279941632 ctg(158) = -2.475086854 ctg(278) = -0.1405408347
ctg(39) = 1.234897157 ctg(159) = -2.605089065 ctg(279) = -0.1583844403
ctg(40) = 1.191753593 ctg(160) = -2.747477419 ctg(280) = -0.1763269807
ctg(41) = 1.150368407 ctg(161) = -2.904210878 ctg(281) = -0.1943803091
ctg(42) = 1.110612515 ctg(162) = -3.077683537 ctg(282) = -0.2125565617
ctg(43) = 1.07236871 ctg(163) = -3.270852618 ctg(283) = -0.2308681911
ctg(44) = 1.035530314 ctg(164) = -3.487414443 ctg(284) = -0.2493280028
ctg(45) = 1 ctg(165) = -3.732050808 ctg(285) = -0.2679491924
ctg(46) = 0.9656887746 ctg(166) = -4.010780934 ctg(286) = -0.2867453857
ctg(47) = 0.9325150862 ctg(167) = -4.331475875 ctg(287) = -0.3057306815
ctg(48) = 0.9004040442 ctg(168) = -4.704630109 ctg(288) = -0.3249196963
ctg(49) = 0.869286738 ctg(169) = -5.144554017 ctg(289) = -0.3443276133
ctg(50) = 0.8390996309 ctg(170) = -5.67128182 ctg(290) = -0.3639702343
ctg(51) = 0.8097840329 ctg(171) = -6.313751516 ctg(291) = -0.383864035
ctg(52) = 0.7812856266 ctg(172) = -7.115369723 ctg(292) = -0.4040262259
ctg(53) = 0.7535540499 ctg(173) = -8.144346428 ctg(293) = -0.4244748162
ctg(54) = 0.7265425283 ctg(174) = -9.514364451 ctg(294) = -0.4452286853
ctg(55) = 0.7002075381 ctg(175) = -11.4300523 ctg(295) = -0.466307658
ctg(56) = 0.6745085166 ctg(176) = -14.30066626 ctg(296) = -0.4877325885
ctg(57) = 0.6494075931 ctg(177) = -19.08113669 ctg(297) = -0.5095254494
ctg(58) = 0.6248693519 ctg(178) = -28.63625328 ctg(298) = -0.5317094318
ctg(59) = 0.6008606192 ctg(179) = -57.28996162 ctg(299) = -0.5543090515
ctg(60) = 0.577350269 ctg(180) = ∞ ctg(300) = -0.577350269
ctg(61) = 0.5543090515 ctg(181) = 57.28996162 ctg(301) = -0.6008606192
ctg(62) = 0.5317094318 ctg(182) = 28.63625328 ctg(302) = -0.6248693519
ctg(63) = 0.5095254494 ctg(183) = 19.08113669 ctg(303) = -0.6494075931
ctg(64) = 0.4877325885 ctg(184) = 14.30066626 ctg(304) = -0.6745085166
ctg(65) = 0.466307658 ctg(185) = 11.4300523 ctg(305) = -0.7002075381
ctg(66) = 0.4452286853 ctg(186) = 9.514364451 ctg(306) = -0.7265425283
ctg(67) = 0.4244748162 ctg(187) = 8.144346428 ctg(307) = -0.7535540499
ctg(68) = 0.4040262259 ctg(188) = 7.115369723 ctg(308) = -0.7812856266
ctg(69) = 0.383864035 ctg(189) = 6.313751516 ctg(309) = -0.8097840329
ctg(70) = 0.3639702343 ctg(190) = 5.67128182 ctg(310) = -0.8390996309
ctg(71) = 0.3443276133 ctg(191) = 5.144554017 ctg(311) = -0.869286738
ctg(72) = 0.3249196963 ctg(192) = 4.704630109 ctg(312) = -0.9004040442
ctg(73) = 0.3057306815 ctg(193) = 4.331475875 ctg(313) = -0.9325150862
ctg(74) = 0.2867453857 ctg(194) = 4.010780934 ctg(314) = -0.9656887746
ctg(75) = 0.2679491924 ctg(195) = 3.732050808 ctg(315) = -1
ctg(76) = 0.2493280028 ctg(196) = 3.487414443 ctg(316) = -1.035530314
ctg(77) = 0.2308681911 ctg(197) = 3.270852618 ctg(317) = -1.07236871
ctg(78) = 0.2125565617 ctg(198) = 3.077683537 ctg(318) = -1.110612515
ctg(79) = 0.1943803091 ctg(199) = 2.904210878 ctg(319) = -1.150368407
ctg(80) = 0.1763269807 ctg(200) = 2.747477419 ctg(320) = -1.191753593
ctg(81) = 0.1583844403 ctg(201) = 2.605089065 ctg(321) = -1.234897157
ctg(82) = 0.1405408347 ctg(202) = 2.475086854 ctg(322) = -1.279941632
ctg(83) = 0.1227845609 ctg(203) = 2.355852366 ctg(323) = -1.327044822
ctg(84) = 0.1051042353 ctg(204) = 2.246036774 ctg(324) = -1.37638192
ctg(85) = 0.08748866355 ctg(205) = 2.14450692 ctg(325) = -1.428148007
ctg(86) = 0.06992681193 ctg(206) = 2.050303841 ctg(326) = -1.482560969
ctg(87) = 0.05240777928 ctg(207) = 1.962610505 ctg(327) = -1.539864964
ctg(88) = 0.0349207695 ctg(208) = 1.880726465 ctg(328) = -1.600334529
ctg(89) = 0.01745506493 ctg(209) = 1.804047755 ctg(329) = -1.664279482
ctg(90) = 0 ctg(210) = 1.732050808 ctg(330) = -1.732050808
ctg(91) = -0.01745506493 ctg(211) = 1.664279482 ctg(331) = -1.804047755
ctg(92) = -0.0349207695 ctg(212) = 1.600334529 ctg(332) = -1.880726465
ctg(93) = -0.05240777928 ctg(213) = 1.539864964 ctg(333) = -1.962610505
ctg(94) = -0.06992681193 ctg(214) = 1.482560969 ctg(334) = -2.050303841
ctg(95) = -0.08748866355 ctg(215) = 1.428148007 ctg(335) = -2.14450692
ctg(96) = -0.1051042353 ctg(216) = 1.37638192 ctg(336) = -2.246036774
ctg(97) = -0.1227845609 ctg(217) = 1.327044822 ctg(337) = -2.355852366
ctg(98) = -0.1405408347 ctg(218) = 1.279941632 ctg(338) = -2.475086854
ctg(99) = -0.1583844403 ctg(219) = 1.234897157 ctg(339) = -2.605089065
ctg(100) = -0.1763269807 ctg(220) = 1.191753593 ctg(340) = -2.747477419
ctg(101) = -0.1943803091 ctg(221) = 1.150368407 ctg(341) = -2.904210878
ctg(102) = -0.2125565617 ctg(222) = 1.110612515 ctg(342) = -3.077683537
ctg(103) = -0.2308681911 ctg(223) = 1.07236871 ctg(343) = -3.270852618
ctg(104) = -0.2493280028 ctg(224) = 1.035530314 ctg(344) = -3.487414443
ctg(105) = -0.2679491924 ctg(225) = 1 ctg(345) = -3.732050808
ctg(106) = -0.2867453857 ctg(226) = 0.9656887746 ctg(346) = -4.010780934
ctg(107) = -0.3057306815 ctg(227) = 0.9325150862 ctg(347) = -4.331475875
ctg(108) = -0.3249196963 ctg(228) = 0.9004040442 ctg(348) = -4.704630109
ctg(109) = -0.3443276133 ctg(229) = 0.869286738 ctg(349) = -5.144554017
ctg(110) = -0.3639702343 ctg(230) = 0.8390996309 ctg(350) = -5.67128182
ctg(111) = -0.383864035 ctg(231) = 0.8097840329 ctg(351) = -6.313751516
ctg(112) = -0.4040262259 ctg(232) = 0.7812856266 ctg(352) = -7.115369723
ctg(113) = -0.4244748162 ctg(233) = 0.7535540499 ctg(353) = -8.144346428
ctg(114) = -0.4452286853 ctg(234) = 0.7265425283 ctg(354) = -9.514364451
ctg(115) = -0.466307658 ctg(235) = 0.7002075381 ctg(355) = -11.4300523
ctg(116) = -0.4877325885 ctg(236) = 0.6745085166 ctg(356) = -14.30066626
ctg(117) = -0.5095254494 ctg(237) = 0.6494075931 ctg(357) = -19.08113669
ctg(118) = -0.5317094318 ctg(238) = 0.6248693519 ctg(358) = -28.63625328
ctg(119) = -0.5543090515 ctg(239) = 0.6008606192 ctg(359) = -57.28996162

Похожие калькуляторы

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти штрафы гибдд за год
  • Видео как нашли летчика
  • Как найти в настройках компьютера камеру
  • Как найти ру номер в системе меркурий
  • Как найти аномальное место

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии