Чтобы найти косинус угла по клеточкам, следует вспомнить, что это собственно за величина — косинус.
По определению, косинус — это отношение прилежащего катета к гипотенузе.
Зная это определение мы очень легко можем найти косинус любого прямоугольного треугольника, нарисованного на клеточках. То есть если задан просто угол, мы достраиваем его до прямоугольного треугольника:
Разберем несколько случаев.
Катеты расположены вертикально и горизонтально. Тогда их длину определяем по клеточкам, а длину гипотенузы по теореме Пифагора.
Катеты расположены произвольно. Заключаем треугольник в прямоугольник и находим катеты и гипотенузу по теореме Пифагора для всех трех сторон. Дальше находим косинус как отношение по определению.
Например здесь катет АО находится как корень из 20 (16+4). Гипотенуза ОВ находится как корень из 37 (36+1). Их отношение — косинус угла АОВ.
Если треугольник АОВ не получается прямоугольным, то имеет смысл использовать теорему косинусов:
Содержание:
При изучении геометрии вы рассматривали отношения сторон в прямоугольном треугольнике и познакомились с понятиями синуса, косинуса, тангенса и котангенса острого угла (рис. 28).
Построение синуса и косинуса произвольного угла
Построим точку
Рассмотрим прямоугольный треугольник в котором гипотенуза
равна 1 (радиусу единичной окружности). По определению синуса и косинуса острого угла получим:
Таким образом, синус угла равен ординате точки
а косинус угла
равен абсциссе точки
Поскольку в тригонометрии рассматриваются углы то определим синус и косинус для любого угла
Определение синуса произвольного угла
Определение:
Синусом угла называется ордината точки
полученной поворотом точки
единичной окружности вокруг начала координат на угол
Определение косинуса произвольного угла
Определение:
Косинусом угла называется абсцисса точки
полученной поворотом точки
единичной окружности вокруг начала координат на угол
Для того чтобы найти синус и косинус произвольного угла нужно:
- Построить точку
единичной окружности.
- Найти ординату точки
- Найти абсциссу точки
Найдите синус и косинус угла
Значения синуса и косинуса произвольного угла с помощью единичной окружности в основном можно указать только приближенно.
Однако для некоторых углов значения синуса и косинуса можно указать точно. Определим значения синуса и косинуса для углов, которые соответствуют точкам пересечения окружности с осями координат Найдем
Углу
соответствует точка
имеющая координаты
По определению синус угла
равен ординате точки
значит,
Косинус угла
равен абсциссе точки
т.е.
(рис. 31).
Пользуясь определением синуса и косинуса угла получим, что:
Так как ординаты и абсциссы точек единичной окружности изменяются от -1 до 1, то значения синуса и косинуса произвольного угла принадлежат промежутку
Например, выясним, может ли принимать значения, равные:
Значения синуса произвольного угла принадлежат отрезку значит,
может принимать значения, равные
и
так как
и
Поскольку
то
не может принимать значения, равные
По определению синуса и косинуса угла синус угла
равен ординате точки
а косинус угла
равен абсциссе этой точки. Значит, знаки
и
совпадают со знаками ординаты и абсциссы точки
соответственно.
Пример №1
Определите знак выражения:
Решение:
а) Так как — угол второй четверти (рис. 32), а ординаты точек единичной окружности, находящихся во второй четверти, положительны, то
б) Так как — угол третьей четверти (см. рис. 32), а абсциссы точек единичной окружности, находящихся в третьей четверти, отрицательны, то
в) Так как — угол третьей четверти (см. рис. 32), а ординаты точек единичной окружности, находящихся в третьей четверти, отрицательны, то
г) Так как — угол первой четверти (см. рис. 32), а абсциссы точек единичной окружности, находящихся в первой четверти, положительны, то
Из геометрии нам известны значения синусов и косинусов острых углов (см. табл.).
С помощью этих значений можно находить значения синусов и косинусов некоторых других углов
Пример №2
Вычислите:
Решение:
а) Отметим на единичной окружности точку Поскольку известно, что
а
то ордината точки
равна
а абсцисса этой точки равна
Точки единичной окружности симметричны относительно оси абсцисс (рис. 33), значит, их ординаты (синусы углов
противоположны, а абсциссы (косинусы углов
и
равны. Таким образом,
а
б) Так как то точки
единичной окружности симметричны относительно оси ординат (рис. 34). Тогда их ординаты (синусы углов
равны, а абсциссы (косинусы углов
и
противоположны. Значит,
в) Точки единичной окружности симметричны относительно начала координат (рис. 35), поскольку
Тогда и их ординаты противоположны, и их абсциссы противоположны, т. е.
г) Поскольку то точки
и
единичной окружности совпадают (рис. 36), а значит, их координаты равны. Тогда
Пример №3
Вычислите:
Решение:
а) Так как то точка
единичной окружности совпадает с точкой
(рис. 37).
Поскольку
б) Точки единичной окружности симметричны относительно начала координат (см. рис. 37), а значит, их абсциссы (косинусы углов
и
отличаются только знаком. Так как
Пример №4
Постройте один из углов, если:
Решение:
а) Так как то на оси ординат отметим
Проведем прямую, параллельную оси абсцисс, и найдем на единичной окружности точки
ордината каждой из которых равна
Отметим один из углов, соответствующих точкам
или
(рис. 38, а).
б) Так как то на оси абсцисс отметим 0,8. Проведем прямую, параллельную оси ординат, и найдем на единичной окружности точки
и
абсцисса каждой из которых равна 0,8. Отметим один из углов,соответствующих точкам
или
(рис. 38, б).
- Заказать решение задач по высшей математике
Примеры заданий и их решения:
Пример №5
Точка единичной окружности имеет координаты
Используя определение синуса и косинуса произвольного угла, найдите
Решение:
Синусом угла называется ордината точки
полученной поворотом точки
единичной окружности вокруг начала координат на угол
По условию ордината точки
равна
значит,
Косинусом угла называется абсцисса точки
полученной поворотом точки
единичной окружности вокруг начала координат на угол
По условию абсцисса точки
равна
значит,
Пример №6
Если то угол
может быть равен:
Выберите правильный ответ.
Решение:
Так как синусом угла называется ордината точки
полученной поворотом точки
единичной окружности вокруг начала координат на угол
то нужно найти точку единичной окружности, ордината которой равна -1. Эта точка лежит на оси ординат, и из данных углов ей соответствует угол
(рис. 39). Правильный ответ в).
Пример №7
Если то угол
может быть равен:
Выберите правильный ответ.
Решение:
Так как косинусом угла называется абсцисса точки
полученной поворотом точки
единичной окружности вокруг начала координат на угол
то нужно найти точку единичной окружности, абсцисса которой равна 0. Эта точка лежит на оси ординат, и из данных углов ей соответствует угол
(рис. 40). Правильный ответ в).
Пример №8
Найдите значение выражения:
Решение:
а) Абсцисса точки соответствующей углу
равна -1 (рис. 41), значит,
Ордината точки
соответствующей углу
равна 1 (см. рис. 41), т. е.
Значит,
б) ( рис. 42) тогда
Может ли быть равным:
Решение:
Поскольку
а) не может быть равным 1,2, так как
б) может быть равным 0,89, так как
в) не может быть равным так как
г) может быть равным так как
Пример №9
Определите знак выражения:
Решение:
а) так как
— угол четвертой четверти, а косинус в четвертой четверти положителен;
б) так как
— угол первой четверти, а косинус в первой четверти положителен;
в) так как
угол второй четверти, а синус во второй четверти положителен;
г) так как 6 радиан — угол четвертой четверти, а синус в четвертой четверти отрицателен.
Пример №10
Сравните:
Решение:
а) Отметим на единичной окружности точки, соответствующие углам и сравним ординаты этих точек. Ордината точки
больше ординаты точки
(рис. 43), значит,
б) Сравним абсциссы точек единичной окружности Так как абсцисса точки
больше абсциссы точки
(рис. 44), то
Пример №11
С помощью единичной окружности найдите значение:
Решение:
а) Ордината точки равна ординате точки
(рис. 45), поэтому
б) Абсцисса точки противоположна абсциссе точки
(см. рис. 45), поэтому
- Определение тангенса и котангенса произвольного угла
- Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
- Функция y=sin x и её свойства и график
- Функция y=cos x и её свойства и график
- Дробно-рациональные уравнения
- Дробно-рациональные неравенства
- Прогрессии в математике — арифметическая, геометрическая
- Единичная окружность — в тригонометрии
Содержание:
- Косинус угла в треугольнике
- Косинус произвольного угла
Косинус угла в треугольнике
Определение
Косинус острого угла прямоугольного треугольника — это отношение прилежащего к
этому углу катета к гипотенузе (рис. 1):
$cos alpha=frac{b}{c}$
Пример
Задание. Найти косинус острого угла прямоугольного треугольника, если его гипотенуза равна 5 см,
а прилежащий катет — 4 см.
Решение. Согласно определению
$cos alpha=frac{4}{5}$
Ответ. $cos alpha=frac{4}{5}$
Косинус произвольного угла
Определение
Косинусом произвольного угла
$alpha$, образованного осью абсцисс и произвольным радиус-вектором
$overline{O A}=left(a_{x} ; a_{y}right)$ (рисунок 2), называется отношение
проекции этого вектора на ось
$Ox$ к его длине
$a=|overline{OA}|$:
$cos alpha=frac{a_{x}}{a}$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Вычислить косинус угла, который образован вектором
$bar{a}=(-3 ; 4)$ и осью абсцисс.
Решение. Проекция на ось абсцисс равна
$a_x=-3$, длина вектора
$|bar{a}|=sqrt{(-3)^{2}+4^{2}}=5$, а тогда
$$cos alpha=frac{-3}{5}=-frac{3}{5}$$
Ответ. $cos alpha=-frac{3}{5}$
Читать дальше: что такое тангенс угла.
Единичная окружность
О чем эта статья:
10 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Единичная окружность в тригонометрии
Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.
Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.
Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.
Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.
Поясним, как единичная окружность связана с тригонометрией.
В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.
Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.
Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.
Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:
- Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
- Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
- В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
- В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.
Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:
Радиан — одна из мер для определения величины угла.
Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.
Число радиан для полной окружности — 360 градусов.
Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.
Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.
Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:
- 2π радиан = 360°
- 1 радиан = (360/2π) градусов
- 1 радиан = (180/π) градусов
- 360° = 2π радиан
- 1° = (2π/360) радиан
- 1° = (π/180) радиан
Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.
Уравнение единичной окружности
При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Тригонометрический круг: вся тригонометрия на одном рисунке
Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.
Вот что мы видим на этом рисунке:
А теперь подробно о тригонометрическом круге:
Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.
Мы отсчитываем углы от положительного направления оси против часовой стрелки.
Полный круг — градусов.
Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.
Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .
Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .
Всё это легко увидеть на нашем рисунке.
Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :
Простым следствием теоремы Пифагора является основное тригонометрическое тождество:
Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).
Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.
Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.
Легко заметить, что
Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:
где — целое число. То же самое можно записать в радианах:
Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,
Алгебра
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Синус и косинус угла на единичной окружности
Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:
С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что
ВС = АВ•sinα = 5•0,8 = 4
Если известно, что cosα = 0,6, то мы сможем найти и второй катет:
АС = АВ•cosα = 5•0,6 = 3
Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:
tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)
Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:
Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:
Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле
Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда
АВ = sinα•ОА = sinα•1 = sinα
С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или
Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:
Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:
хА = ОВ = cosα•ОА = cosα•1 = cosα
то есть координата хА равна cos α:
Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.
Таким образом, нам удалось дать новое определение синусу и косинусу угла:
Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть
http://ege-study.ru/ru/ege/materialy/matematika/trigonometricheskij-krug/
http://100urokov.ru/predmety/urok-2-funkcii-trigonometricheskie