Как найти корни данного уравнения принадлежащие отрезку

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

источники:

http://reshimvse.com/article.php?id=100

В (12) задании ЕГЭ предлагается решить уравнение и выбрать корни, принадлежащие заданному промежутку. За это задание можно получить (2) балла.

Пример:

a) реши уравнение

(x2+4x−2)(43x+1+82x−1−11)=0.

б) Найди все корни этого уравнения, принадлежащие отрезку

[−0,5; 0,5]

.

Алгоритм выполнения задания

1. Определи вид уравнения, выбери метод решения.

2. Реши уравнение, используя соответствующие виду уравнения свойства и правила. Все найденные корни должны принадлежать области определения уравнения.

3. Выбери корни уравнения, принадлежащие указанному промежутку. Обоснуй выбор корней.

4. Запиши все шаги решения на чистовик разборчиво и кратко.

5. Запиши ответ по обоим пунктам.

Если ход решения верный и обоснованно получены верные ответы в обоих пунктах, то решение оценивается в (2) балла. Если верна последовательность всех шагов решения, но допущена описка или вычислительная ошибка, и в результате получены неверные ответы, можно получить (1) балл.

Как решить задание из примера

1.

(x2+4x−2)(43x+1+82x−1−11)=0.

Уравнение является распадающимся,

x∈ℝ

. Произведение равно нулю, когда хотя бы один из множителей равен нулю:

x2+4x−2=0,(1)43x+1+82x−1−11=0.(2)

Нам нужны формулы степеней:

amn=amn;am+n=aman.

2. Решим каждое уравнение отдельно. Уравнение ((1)) является квадратным. Найдём его корни через дискриминант:

x1=−2−6;x2=−2+6.

Уравнение ((2)) является показательным. Приведём степени к одинаковому основанию:

22(3x+1)+23(2x−1)−11=0;

26x+2+26x−3−11=0.

Преобразуем степени, чтобы показатели тоже были равными:

Итак, уравнение имеет три корня

−2−6

,

−2+6

 и

12−log236

.

3. Отберём корни уравнения, принадлежащие отрезку

[−0,5; 0,5]

.

4<6<9;2<6<3;−5<−2−6<−4.

Корень

−2−6

 не принадлежит отрезку

[−0,5; 0,5]

.

5,76<6<6,25;2,4<6<2,5;0,4<−2+6<0,5.

Корень

−2+6

 принадлежит отрезку

[−0,5; 0,5]

.

log22<log23<log24;1<log23<2;−2<−log23<−1;−13<−log236<−16;−0,5<16<12−log236<13<0,5.

Корень

12−log236

 принадлежит отрезку

[−0,5; 0,5]

.

4. Перепишем шаги решения в чистовик.

5. Запишем ответ.

Ответ: а) 

−2−6

;

−2+6

;

12−log236

; б)

−2+6

12−log236

.

Вам понадобится:

  • Лист бумаги
  • Ручка
  • Умение проводить элементарные арифметические операции

#1

Решение многих задач сводится к составлению и решению уравнений или систем уравнений. Очень часто нужно найти не все корни, а только те, которые удовлетворяют определённым условиям. Это условие может накладываться графиком функции или частью графика — отрезком. Также не все корни уравнения могут удовлетворять условию задачи или иметь физический смысл. Поэтому важно знать как найти корни принадлежащие отрезку.

#2

Следует решить систему уравнений: уравнение данное + уравнение отрезка, накладывающего ограничения на решения. Отрезок можно задать уравнением, так же как и прямую. Единственное различие состоит в том, что следует задать начало и конец отрезка. Сделать это можно как по оси абсцисс, так и по оси ординат. Доказать что корни именно те, что мы искали не сложнее чем как доказать что отрезки параллельны.

#3

Необходимо подставить корни в оба уравнения. При правильном решении должно получиться верное числовое равенство. Рассмотрим простенький пример. Корень уравнения x+y = xy принадлежит середине отрезка y=0,5x+1, область значений которого равна [1;3]. Найти этот корень и выполнить проверку. Можно начать решать в лоб эту сложную систему, но зная как найти ординату середины отрезка, упростим решение данной задачи.

#4

Если минимальное значение отрезка равно 1, а максимальное 3, то ордината его середины будет равна среднему арифметическому 1 и 3, то есть 2. Теперь подставим полученное значение в уравнение (вместо у подставим 2) : x+2 = 2x. Приведём подобные слагаемые: x=2. Ответ: (2;2) . Проверка: 2+2=2*2; 4=4, первому уравнению корень удовлетворяет. 2=0,5*2+1; 2=2. Условия отрезка также выполнены. Как видно, решение этой задачи поможет как разделить отрезок пополам, так и найти числовое решение.

#5

Рассмотрим следующий пример. Найти все решения уравнения sin(x) = 0 на отрезке y=0 в промежутке [-4 4]. Решение данной задачи будет в корне отличаться от решения предыдущей. Ведь в первом уравнении не фигурирует переменная y, а во втором не фигурирует переменная x. Найдём корни первого уравнения, самые близкие к нулю: 0, -Pi, Pi, -2Pi, 2Pi и так далее. Как известно Pi примерно = 3.5, то есть в наш промежуток входят корни 0, -Pi, Pi.

#6

Зная как построить отрезок равный данному, мы можем упрощать данные системы уравнений, значительно облегчать поиск корней. При решении тригонометрических систем, любой период можно расширить или сузить до 2Pi — периода. Например, sin(4,5*Pi) = ? . Но можно отбрасывать по 2Pi из данного отрезка, построить равный ему на этом промежутке. 4,5*Pi-734*Pi = 0,5*Pi = Pi/4. А это уже всем известное табличное значение, равное корню из 1/2.

О чем задача?

Задачи на решение тригонометрических уравнений, более сложных, чем в задании 5. В большинстве задач требуется не только решить уравнение, но и отобрать корни, принадлежащие определенному отрезку.

Как решать?

Шаг 1. Найдите область определения

Шаг 2. Приведите уравнение к виду простейших тригонометрических уравнений

Для того чтобы привести уравнение к виду простейших тригонометрических уравнений, применяйте следующие стандартные приемы:

Мы свели исходное уравнение к совокупности простейших тригонометрических уравнений [ cos x = − 1 , cos x = − 1 2 . left[egin cos x = -1 <,>cos x = -frac<1> <2><.>end
ight. [ cos x = − 1 , cos x = − 2 1 ​ . ​

Шаг 3. Решите простейшие тригонометрические уравнения

О решении простейших тригонометрических уравнений читайте в отдельной статье .

Убедитесь, что найденные вами корни принадлежат области определения уравнения.

Остается решить уравнение cos x = − 1 2 cos x =-frac<1> <2>cos x = − 2 1 ​ .

Шаг 4. Выберите корни, принадлежащие отрезку, данному в условии

Корни, принадлежащие данному в условии отрезку, можно найти либо методом перебора, либо путем решения неравенства относительно k k k .

Найдем подходящие корни методом перебора. Для этого рассмотрим две серии корней по отдельности.

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x – cosx = 0

cosx(sqrt(2)cosx – 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx – 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 – 1/2 меньше или равно n меньше или равно -2 – 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 – 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 – 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 – 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Демонстрационный вариант ЕГЭ 2019 г. – задание №13. Найдите корни этого уравнения, принадлежащие отрезку.

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку

Решение:

a) Запишем исходное уравнение в виде:

Значит, sinx = 0, откуда x = πk , k ∈ Ζ, или , откуда

б) С помощью числовой окружности отберём корни, принадлежащие отрезку

Ответ: а)

б)

Демонстрационный вариант ЕГЭ 2017, 2018 г. – задание №13. Найдите все корни этого уравнения, принадлежащие промежутку.

а) Решите уравнение cos2x=1-cos( -x)

б) Найдите все корни этого уравнения, принадлежащие промежутку

Решение:

Преобразуем обе части уравнения:
1− 2sin 2 x =1− sin x ; 2sin 2 x − sin x = 0 ; sin x( 2sin x −1) = 0 ,

откуда sin x = 0 или sin x = .

Из уравнения sin x = 0 находим: x = πn , где n∈Ζ.

Из уравнения sin x = находим: , где k∈Ζ.

б) С помощью числовой окружности отберём корни уравнения, принадлежащие промежутку

Ответ: а) , k∈Ζ.

б) .

Досрочный вариант ЕГЭ по математике 2017 профильный уровень задание №13.

а) Решите уравнение
8 x − 9⋅ 2 x +1 + 2 5−x = 0.
б) Укажите корни этого уравнения, принадлежащие отрезку [log5 2; log5 20].

Решение:

Умножим обе части на t:

Ответ: a)

Ответ: б)

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Решение:

а) Преобразуем уравнение:

Ответ: a)

б) С помощью числовой окружности отберём корни уравнения, принадлежащие промежутку

Ответ: б)

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Решение:

а) Преобразуем уравнение:

Пусть 2 x = t, тогда уравнение приметвид:

Ответ: а) 5;2+log29

5 не принадлежит

log235 Ответ: б) 2+log29

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Решение:

а) Преобразуем уравнение:

x1=-1 (не подходит по ОДЗ) ; x2=2 (подходит по ОДЗ) ; x3=-3 (подходит по ОДЗ)

Ответ: 2;-3

3) x 3 -2x 2 -5x-5>0

-3 -1 = -log34 не принадлежит

-1 Ответ: 2

а) Ре­ши­те урав­не­ние

б) Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­ще­го от­рез­ку [2; 3].

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти блютуз на ноутбуке самсунг
  • Как найти номер члена разложения бинома
  • Как найти ускорение свободного падения знаю высоту
  • Как найти потенциал точки через напряженность
  • Как найти реакцию в узле

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии