Как найти координаты точек пересечения прямых онлайн

Онлайн калькулятор. Точка пересечения прямых

Предлагаю вам воспользоваться онлайн калькулятором для вычисления координат точки пересечения прямых.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление координат точки пересечения двух прямых и закрепить пройденный материал.

Найти точку пересечения прямых

Точка пересечения прямых

Уравнение 1-ой прямой:

y = x +

Уравнение 2-ой прямой:

y = x +

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Как найти точку пересечения двух прямых на плоскости?

Пусть даны две прямые, заданные уравнениями a_1x + b_1y = c_1 и a_2x + b_2y = c_2. Найдём точку пересечения этих прямых.

Если наши прямые не параллельны, то они пересекаются в точке, координаты которой должны удовлетворять уравнениям обеих прямых. Поэтому чтобы найти точку пересечения прямых, надо решить систему уравнений

    [left{  begin{cases} a_1x + b_1y = c_1\ a_2x + b_2y = c_2 end{cases}]

Эта система имеет единственное решение, если a_1cdot b_2 ne a_2cdot b_1. Если же a_1cdot b_2 = a_2cdot b_1, то прямые параллельны и не пересекаются.

Пример

Найти точку пересечения прямых 2x + 3y = 1 и y = x + 2.
Решение: Решаем систему уравнений

    [left{  begin{cases} 2x + 3y = 1\ y = x + 2 end{cases}]

Подставляем в первое уравнение системы y = x + 2, получаем: 2x + 3(x+2) = 1. Отсюда x = -1. Поэтому y = x + 2 = -1 + 2 = 1.

Ответ: прямые пересекаются в точке (-1, 1).

Найти точку пересечения прямых онлайн

Калькулятор поможет быстро вычислить точку пересечения двух прямых на плоскости онлайн. Необходимо просто ввести уравнения двух прямых в произвольном виде.

Точка пересечения прямых в пространстве онлайн

С помощю этого онлайн калькулятора можно найти точку пересечения прямых в пространстве. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Точка пересечения прямых в пространстве − теория, примеры и решения

  • Содержание
  • 1. Точка пересечения прямых, заданных в каноническом виде.
  • 2. Точка пересечения прямых, заданных в параметрическом виде.
  • 3. Точка пересечения прямых, заданных в разных видах.
  • 4. Примеры нахождения точки пересечения прямых в пространстве.

1. Точка пересечения прямых в пространстве, заданных в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:

, (1)
, (2)

где M1(x1, y1, z1) и M2(x2, y2, z2) − точки, лежащие на прямых L1 и L2, соответственно, а q1={m1, p1, l1} и q2={m2, p2, l2} − направляющие векторы прямых L1 и L2, соответственно.

Найти точку пересечения прямых L1 и L2 (Рис.1).

Запишем уравнение (1) в виде системы двух линейных уравнений:

Сделаем перекрестное умножение в уравнениях (3) и (4):

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Аналогичным образом преобразуем уравнение (2):

Запишем уравнение (2) в виде системы двух линейных уравнений:

Сделаем перекрестное умножение в уравнениях (7) и (8):

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Решим систему линейных уравнений (5), (6), (9), (10) с тремя неизвестными x, y, z. Для этого представим эту систему в матричном виде:

Как решить систему линейных уравнений (11)(или (5), (6), (9), (10)) посмотрите на странице Метод Гаусса онлайн. Если система линейных уравнениий (11) несовместна, то прямые L1 и L2 не пересекаются. Если система (11) имеет множество решений, то прямые L1 и L2 совпадают. Единственное решение системы линейных уравнений (11) указывает на то, что это решение определяет координаты точки пересечения прямых L1 и L2 .

2. Точка пересечения прямых в пространстве, заданных в параметрическом виде.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:

где M1(x1, y1, z1) и M2(x2, y2, z2) − точки, лежащие на прямых L1 и L2, соответственно, а q1={m1, p1, l1} и q2={m2, p2, l2} − направляющие векторы прямых L1 и L2, соответственно.

Задачу нахождения нахождения точки пересечения прямых L1 и L2 можно решить разными методами.

Метод 1. Приведем уравнения прямых L1 и L2 к каноническому виду.

Для приведения уравнения (12) к каноническому виду, выразим параметр t через остальные переменные:

Так как левые части уравнений (14) равны, то можем записать:

Аналогичным образом приведем уравнение прямой L2 к каноническому виду:

Далее, для нахождения точки пересечения прямых, заданных в каноническом виде нужно воспользоваться параграфом 1.

Метод 2. Для нахождения точки пересечения прямых L1 и L2 решим совместно уравнения (12) и (13). Из уравнений (12) и (13) следует:

Из каждого уравнения (17),(18),(19) находим переменную t. Далее из полученных значений t выбираем те, которые удовлетворяют всем уравнениям (17)−(19). Если такое значение t не существует, то прямые не пересекаются. Если таких значений больше одного, то прямые совпадают. Если же такое значение t единственно, то подставляя это зачение t в (12) или в (13), получим координаты точки пересечения прямых (12) и (13).

3. Точка пересечения прямых в пространстве, заданных в разных видах.

Если уравнения прямых заданы в разных видах, то можно их привести к одному виду (к каноническому или к параметрическому) и найти точку пересечения прямых, описанных выше.

4. Примеры нахождения точки пересечения прямых в пространстве.

Пример 1. Найти точку пересечения прямых L1 и L2:

Представим уравнение (20) в виде двух уравнений:

Сделаем перекрестное умножение в уравнениях (22) и (23):

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Упростим:

Аналогичным образом поступим и с уравнением (2).

Представим уравнение (2) в виде двух уравнений:

Сделаем перекрестное умножение в уравнениях (7) и (8)

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Упростим:

Решим систему линейных уравнений (24), (25), (28), (29) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:

Решим систему линейных уравнений (30) отностительно x, y, z. Для решения системы, построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1:

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 4 со строкой 2, умноженной на −1/4:

Сделаем перестановку строк 3 и 4.

Второй этап. Обратный ход Гаусса.

Исключим элементы 3-го столбца матрицы выше элемента a33. Для этого сложим строку 2 со строкой 3, умноженной на −4/3:

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на 3/4:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Запишем решение:

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Пример 2. Найти точку пересечения прямых L1 и L2:

Приведем параметрическое уравнение прямой L1 к каноническому виду. Выразим параметр t через остальные переменные:

Из равентсв выше получим каноническое уравнение прямой:

Представим уравнение (33) в виде двух уравнений:

Сделаем перекрестное умножение в уравнениях (34 и (35):

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Упростим:

Аналогичным образом поступим и с уравнением (2).

Представим уравнение (2) в виде двух уравнений:

Сделаем перекрестное умножение в уравнениях (38) и (39)

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Упростим:

Решим систему линейных уравнений (36), (37), (40), (41) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:

Решим систему линейных уравнений (42) отностительно x, y, z. Для решения системы, построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1/6:

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строки 3 и 4 со строкой 2, умноженной на 8/21 и −1/7, соответственно:

Исключим элементы 3-го столбца матрицы ниже элементаa33. Для этого сложим строку 4 со строкой 3, умноженной на -1/16:

Из расширенной матрицы восстановим последнюю систему линейных уравнений:

Уравнение (43) несовместна, так как несуществуют числа x, y, z удовлетворяющие уравнению (43). Следовательно система линейных уравнений (42) не имеет решения. Тогда прямые L1 и L2 не пересекаются. То есть они или параллельны, или скрещиваются.

Прямая L1 имеет направляющий вектор q1={2,6,7}, а прямая L2 имеет направляющий вектор q2={3,1,1}. Эти векторы не коллинеарны. Следовательно прямые L1 и L2 скрещиваются .

Ответ. Прямые L1 и L2 не пересекаются.

Точка пересечения прямых (с угловыми коэффициентами): онлайн-калькулятор

Чтобы найти точку пересечения прямых, необходимо решить систему уравнений. Это возможно быстро и безошибочно осуществить с помощью калькулятора. Достаточно ввести данные и получить готовое решение с ответом.

Сервис используют школьники для подготовки к урокам, контрольным, экзаменам. Студенты во время решения комплексных задач получают быстрые ответы на промежуточные действия. Преподаватели и родители облегчают процесс проверки домашней работы.

Как найти точку пересечения двух прямых. Онлайн-калькулятор

Программа позволяет ввести данные из условия, сразу получить подробный расчет. Самостоятельно производить вычисления не требуется. Сервис протестирован, выдает верный результат.

Почему пользователи выбирают сервис:

  • Бесплатные расчеты. За использование сайта не надо платить. Теперь можно без репетитора готовиться к поступлению в ВУЗ, разбираться в новом материале.
  • Быстрый ответ. Вам не придется отвлекаться на регистрацию. Можно сразу приступить к вычислениям.
  • Доступ без ограничений. Каждой из программ можно пользоваться столько раз, сколько необходимо. Поэтому на сайте удобно повторять пройденный материал по алгебре, геометрии, готовиться к контрольным.
  • Подробное решение. Каждый расчет включает пошаговые действия. Это позволяет быстро осуществить самопроверку, найти ошибку в своих подсчетах.

Найдите координаты точки пересечения прямых с помощью программы на сайте или обратитесь к консультанту. В случае затруднений, большого объема заданий или необходимости в онлайн-помощи мы подберем по вашему запросу опытного преподавателя из нашего штата. Мы предлагаем объяснение непонятной темы, выполнение заданий по выгодной цене.

Enter the point-slope form of two non-parallel lines into the calculator. The calculator will display the intersection coordinates of those two lines.

  • Slope Calculator
  • Double Interpolation Calculator
  • Midpoint Calculator

Given two equation in the forms:

y=m1x+a

y=m2x+b

The following 2 equations are used to calculate the intersection point.

x = (a-b)/(m2-m1)

y= (a*m2-b*m1)/(m2-m1)

  • Where a and b are the constants on the point-slope forms of each line
  • m1 and m2 are the slopes of each line

Point of Intersection Definition

A point of intersection is defined as the coordinate location at which two lines intersect.

Point of Intersection Example

How to calculate the intersection of two lines

  1. First, determine the slopes of each line.

    This can be calculated using the formula rise over run, or y/x.

  2. Next, determine the constants a and b.

    These values can be calculated by using a point-slope form equation.

  3. Calculate the intersection points.

    Calculate the x and y coordinates of the intersection points using the two formulas presented.

FAQ

What is a point of intersection?

A point of intersection is the location or coordinate point at which non-parallel lines meet.

point of intersection calculator
point of intersection formula

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти наименьшее общее кратное столбиком
  • Как найти метаданные картинки
  • Фоллаут 4 как найти компаньона
  • Как найти работу в сфере рекламы
  • Как найти объем части шестиугольной призмы

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии