Линия пересечения плоскостей онлайн
С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Линия пересечения плоскостей − теория, примеры и решения
Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α1 и α2:
α1: A1x+B1y+C1z+D1=0, | (1) |
α2: A2x+B2y+C2z+D2=0, | (2) |
где n1={A1, B1, C1} и n2={A2, B2, C2} − нормальные векторы плоскостей α1 и α2, соответственно.
Найдем уравнение линии пересеченя плоскостей α1 и α2. Для этого рассмотрим следующие случаи:
1. Нормальные векторы n1 и n2 плоскостей α1 и α2 коллинеарны (Рис.1).
Поскольку векторы n1 и n2 коллинеарны, то существует такое число λ≠0, что выполнено равенство n1=λn2, т.е. A1=λA2, B1=λB2, C1=λC2.
Умножив уравнение (2) на λ, получим:
α2: A1x+B1y+C1z+λD2=0, | (3) |
Если выполненио равенство D1=λD2, то плоскости α1 и α2 совпадают, если же D1≠λD2то плоскости α1 и α2 параллельны, то есть не пересекаются.
2. Нормальные векторы n1 и n2 плоскостей α1 и α2 не коллинеарны (Рис.2).
Если векторы n1 и n2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:
Как решить уравнение (4) посмотрите на странице Метод Гаусса онлайн или Метод Жоржана-Гаусса онлайн.
Так как в системе линейных уравнений (4) векторы n1={A1, B1, C1} и n2={A2, B2, C2} не коллинеарны, то решение этой системы линейных уравнений имеет следующий вид:
где x0, y0, z0, m, p, l действительные числа, а t − переменная.
Равенство (5) можно записать в следующем виде:
Мы получили параметрическое уравнение прямой, которое является линией пересечения плоскостей α1 и α2. Полученное уравнение прямой можно записать в каноническом виде:
Пример 1. Найти линию пересечения плоскостей α1 и α2:
Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 1}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={2, 9, −5}.
Поскольку направляющие векторы n1 и n2 неколлинеарны, то плолскости α1 и α2 пересекаются.
Для нахождения линии пересечения влоскостей α1 и α2 нужно решить систему линейных уравнений (7) и (8). Для этого составим матричное уравнение этой системы:
Решим систему линейных уравнений (9) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 2 со строкой 1, умноженной на −2:
Второй этап. Обратный ход Гаусса.
Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на −2/5:
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
Получим решение:
где t− произвольное действительное число.
Запишем (11) в следующем виде:
Получили уравнение линии пересечения плоскостей α1 и α2 в параметрическом виде. Запишем ее в каноническом виде.
Из равентсв выше получим каноническое уравнение прямой:
Ответ. Уравнение линии пересечения плоскостей α1 и α2имеет вид:
Пример 2. Найти линию пересечения плоскостей α1 и α2:
Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 7}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={2, 4, 14}.
Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/2), то плоскости α1 и α2 параллельны или совпадают.
При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/2:
Так как нормальные векторы уравнений (14) и (16) совпадают, а свободные члены разные, то плоскости α1 и α2 не совпадают. Следовательно они параллельны, т.е. не пересекаются.
Пример 3. Найти линию пересечения плоскостей α1 и α2:
Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={5, −2, 3}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={15, −6, 9}.
Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/3), то плоскости α1 и α2 параллельны или совпадают.
При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/3:
Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α1 и α2 совпадают.
Прямая как линия пересечения плоскостей
Прямая
в пространстве может быть определена
как линия пересечения двух непараллельных
плоскостей
и
,
то есть как множество точек, удовлетворяющих
системе двух линейных уравнений
(V.5)
Справедливо
и обратное утверждение: система двух
независимых линейных уравнений вида
(V.5)
определяет прямую как линию пересечения
плоскостей (если они не параллельны).
Уравнения системы (V.5)
называются общим
уравнением прямой
в пространстве
.
Пример
V.12.
Составить
каноническое уравнение прямой, заданной
общими уравнениями плоскостей
Решение.
Чтобы написать
каноническое уравнение прямой или, что
тоже самое, уравнение прямой, проходящей
через две данные точки, нужно найти
координаты каких-либо двух точек прямой.
Ими могут служить точки пересечения
прямой с какими-нибудь двумя координатными
плоскостями, например Oyz
и Oxz.
Точка
пересечения прямой с плоскостью Oyz
имеет абсциссу
.
Поэтому, полагая в данной системе
уравнений,
получим систему с двумя переменными:
Ее
решение
,
вместе с
определяет точку
искомой прямой. Полагая в данной системе
уравнений,
получим систему
решение
которой
,
вместе с
определяет точку
пересечения прямой с плоскостьюOxz.
Теперь
запишем уравнения прямой, проходящей
через точки
и
:
или
,
гдебудет направляющим векто-ром этой
прямой.
Пример
V.13.
Прямая задана
каноническим уравнением
.
Составить общее уравнение этой прямой.
Решение.
Каноническое
уравнение прямой можно записать в виде
системы двух независимых уравнений:
Получили
общее уравнение прямой, которая теперь
задана пересечением двух плоскостей,
одна из которых
параллельна осиOz
(),
а другая– осиОу
().
Данную
прямую можно представить в виде линии
пересечения двух других плоскостей,
записав ее каноническое уравнение в
виде другой пары независимых уравнений:
Замечание.
Одна и та же прямая может быть задана
различными системами двух линейных
уравнений (то есть пересечением различных
плоскостей, так как через одну прямую
можно провести бесчисленное множество
плоскостей), а также различными
каноническими уравнениями (в зависимости
от выбора точки на прямой и ее направляющего
вектора).
Ненулевой
вектор, параллельный прямой линии, будем
называть ее направляющим
вектором.
Пусть
в трехмерном пространстве
задана прямая l,
проходящая через точку
,
и ее направляющий вектор.
Любой
вектор
,
где,
лежащий на прямой, коллинеарен с вектором,
поэтому их координаты пропорциональны,
то есть
.
(V.6)
Это
уравнение называется каноническим
уравнением прямой. В частном случае,
когда ﻉ
есть
плоскость, получаем уравнение прямой
на плоскости
.
(V.7)
Пример
V.14.
Найти уравнение прямой, проходящей
через две точки
,
.
Будем
считать вектор
направляющим, тогда уравнение искомой
прямой имеет вид
,
где
,
,
.
Удобно
уравнение (V.6)
записать в параметрической форме. Так
как координаты направляющих векторов
параллельных прямых пропорциональны,
то, полагая
,
получим
где
t
– параметр,
.
Расстояние от точки до прямой
Рассмотри
двухмерное евклидовое пространство ﻉ
с
декартовой системой координат. Пусть
точка
ﻉ
и
lﻉ.
Найдем расстояние от этой точки до
прямой. Положим
,
и прямая l
задается уравнением
(рис.V.8).
Расстояние
,
вектор
,
где
– нормальный вектор прямой l,
и
– коллинеарны, поэтому их координаты
пропорциональны, то есть
,
следовательно,
,
.
Рис.
V.8
Отсюда
или умножая эти уравнения
наA
и B
соответственно и складывая их, находим
,
отсюда
или
.
Формула
(V.8)
определяет
расстояние от точки
до прямой
.
Пример
V.15.
Найти уравнение прямой, проходящей
через точку
перпендикулярно прямойl:
и найти расстояние от
до прямойl.
Из
рис. V.8
имеем
,
а нормальный вектор прямойl
.
Из условия перпендикулярности имеем
или
.
Так
как
,
то
.
(V.9)
Это
и есть уравнение прямой, проходящей
через точку
,перпендикулярно
прямой
.
Пусть
имеем уравнение прямой (V.9),
проходящей через точку
,
перпендикулярна прямойl:
.
Найдем расстояние от точкидо прямойl,
используя формулу (V.8).
Для
нахождения искомого расстояния достаточно
найти уравнение прямой, проходящей
через две точки
и точку
,
лежащую на прямой в основании
перпендикуляра. Пусть
,
тогда
.
(V.10)
Так
как
,
а вектор,
то
.
(V.11)
Поскольку
точка
лежит на прямойl,
то имеем еще одно равенство
или
Приведем систему
к виду, удобному для применения метода
Крамера
Ее решение имеет
вид
,
.
(V.12)
Подставляя
(V.12)
в (V.10),
получаем исходное расстояние.
Пример
V.16.
В двухмерном пространстве задана точка
и прямая
.
Найти расстояние от точкидо прямой; записать уравнение прямой,
проходящей через точкуперпендикулярно заданной прямой и найти
расстояние от точкидо основания перпендикуляра к исходной
прямой.
По
формуле (V.8)
имеем
.
Уравнение
прямой, содержащей перпендикуляр, найдем
как прямую, проходящую через две точки
и
,
воспользовавшись формулой (V.11).
Так как
,
то, с учетом того, что,
а,
имеем
.
Для
нахождения координат
имеем систему с учетом того, что точка
лежит на исходной прямой
Следовательно,
,
,
отсюда.
Рассмотрим
трехмерное евклидовое пространство ﻉ.
Пусть точка
ﻉ
и
плоскость ﻉ.
Найдем расстояние от этой точки
до плоскости,
заданной уравнением
(рис.V.9).
Рис.
V.9
Аналогично
двухмерному пространству имеем
и вектор
,
а,
отсюда
.
(V.13)
Уравнение
прямой, содержащей перпендикуляр к
плоскости ,
запишем как уравнение прямой, проходящей
через две точки
и
,
лежащую в плоскости:
.
(V.14)
Для
нахождения координат точки
к двум любым равенствам формулы (V.14)
добавим уравнение
.
(V.15)
Решая
систему трех уравнений (V.14),
(V.15),
найдем
,
,
– координаты точки
.
Тогда уравнение перпендикуляра запишется
в виде
.
Для
нахождения расстояния от точки
до плоскости
вместо формулой (V.13)
воспользуемся
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Задание 2. Построение линии пересечения плоскостей
По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.
2.1. Условие задания
По заданным координатам точек А, В, С, D, E, F (Таблица 2) построить горизонтальную и фронтальную проекции треугольников ∆АBC и ∆DEF, найти линию их пересечения и определить видимость элементов треугольников.
2.2. Пример выполнения задания № 2
Второе задание представляет комплекс задач по темам:
1. Ортогональное проецирование, эпюр Монжа, точка, прямая, плоскость: по известным координатам шести точек А, В, С, D, E, Fпостроить горизонтальную и фронтальную проекции 2-х плоскостей, заданных ∆АBC и ∆DEF;
2. Плоскости общего и частного положения, пересечение прямой и плоскости, пересечение плоскостей, конкурирующие точки: построить линию пересечения заданных плоскостей и определить видимость их элементов.
Построить горизонтальные и фронтальные проекции заданных плоскостей ∆АBC и ∆DEF (Рисунок 2.1).
Для построения искомой линии пересечения заданных плоскостей необходимо:
1. Выбрать одну из сторон треугольника и построить точку пересечения этой стороны с плоскостью другого треугольника: на Рисунке 2.1 построена точка М пересечения прямой EF c плоскостью ∆АBC; для этого прямую EF заключают во вспомогательную горизонтально-проецирующую плоскость δ;
2. Построить фронтальную проекцию 1222 линии пересечения плоскости δ с плоскостью ∆АBC;
3. Найти фронтальную проекцию М2 искомой точки М на пересечении фронтальную проекцию 1222 с фронтальной проекцией E2 F2прямой EF;
4. Найти горизонтальную проекцию М1 точки М с помощью линии проекционной связи;
5. Аналогично построить вторую точку N, принадлежащую искомой линии пересечения заданных плоскостей: заключить во фронтально-проецирующую плоскость β прямую ВС; найти линию пересечения 34 плоскости с плоскостью ∆DEF; на пересечении линии 34 и прямой ВС найти точку N;
6. Определить с помощью конкурирующих точек, для каждой плоскости отдельно, видимые участки треугольников.
Рисунок 2.1 – Построение линии пересечения двух плоскостей, заданных треугольниками
Рисунок 2.2 – Пример оформления задания 2
Видеопример выполнения задания №2
2.3. Варианты задания 2
Таблица 2– Значения координат точек
Вариант | Координаты (x, y, z) вершин треугольников | |||||
---|---|---|---|---|---|---|
А | В | С | D | E | F | |
1 | 20; 65; 30 | 40; 15; 65 | 80; 30; 35 | 15; 35; 70 | 70; 75; 80 | 35; 0; 0 |
2 | 75; 75; 5 | 60; 20; 60 | 20; 10; 40 | 30; 55; 50 | 90; 50; 35 | 60; 5; 10 |
3 | 0; 30; 75 | 30; 65; 15 | 80; 25; 15 | 45; 65; 75 | 95; 40; 0 | 10; 0; 10 |
4 | 90; 5; 70 | 65; 60; 15 | 15; 15; 20 | 25; 45; 70 | 95; 60; 35 | 65; 10; 0 |
5 | 30; 0; 10 | 70; 15; 15 | 15; 55; 16 | 70; 55; 60 | 5; 30; 60 | 20; 0; 0 |
6 | 20; 25; 0 | 60; 5; 80 | 90; 75; 40 | 0; 60; 60 | 75; 80; 70 | 90; 10; 0 |
7 | 0; 60; 20 | 20; 10; 60 | 85; 10; 20 | 50; 70; 65 | 75; 35; 0 | 10; 0; 5 |
8 | 10; 20; 15 | 55; 70; 5 | 80; 20; 45 | 20; 60; 55 | 100; 35; 20 | 60; 10; 5 |
9 | 0; 50; 10 | 60; 70; 70 | 80; 10; 10 | 20; 10; 70 | 90; 50; 60 | 60; 85; 0 |
10 | 85; 70; 10 | 25; 20; 25 | 90; 10; 60 | 15; 70; 65 | 105; 10; 45 | 70; 0; 0 |
11 | 25; 5; 25 | 60; 60; 5 | 95; 20; 50 | 36; 45; 55 | 105; 45; 60 | 70; 0; 0 |
12 | 95; 30; 65 | 15; 15; 10 | 70; 80; 5 | 35; 70; 70 | 115; 80; 55 | 85; 20; 0 |
13 | 20; 5; 60 | 50; 60; 5 | 90; 15; 30 | 60; 60; 60 | 100; 5; 10 | 25; 10; 0 |
14 | 10; 5; 70 | 80; 20; 25 | 40; 65; 10 | 70; 70; 70 | 0; 35; 60 | 30; 5; 0 |
15 | 20; 45; 55 | 60; 70; 10 | 90; 10; 60 | 20; 0; 10 | 95; 20; 10 | 75; 60; 75 |
16 | 5; 10; 60 | 40; 65; 10 | 70; 5; 40 | 70; 50; 75 | 0; 70; 45 | 15; 0; 5 |
17 | 10; 45; 5 | 90; 5; 10 | 50; 70; 70 | 15; 5; 50 | 95; 15; 65 | 60; 70; 0 |
18 | 65; 20; 70 | 0; 20; 15 | 50; 70; 5 | 15; 60; 55 | 90; 60; 40 | 60; 5; 5 |
19 | 20; 20; 70 | 50; 50; 10 | 70; 10; 30 | 80; 60; 70 | 5; 40; 60 | 25; 0; 10 |
20 | 85; 10; 45 | 70; 50; 0 | 20; 20; 10 | 55; 60; 60 | 0; 0; 60 | 75; 0; 0 |
21 | 0; 70; 60 | 30; 10; 80 | 70; 15; 20 | 60; 50; 70 | 0; 0; 50 | 15; 70; 5 |
22 | 0; 70; 25 | 45; 10; 70 | 90; 30; 20 | 65; 60; 70 | 90; 10; 15 | 15; 0; 15 |
23 | 10; 20; 40 | 50; 60; 10 | 75; 10; 40 | 75; 60; 75 | 5; 70; 55 | 35; 0; 0 |
24 | 10; 10; 10 | 90; 80; 20 | 65;10;60 | 15; 70; 65 | 100; 70; 40 | 80; 10; 0 |
25 | 60; 65; 10 | 0; 10; 25 | 85; 5; 60 | 20; 65; 60 | 105; 35; 35 | 55; 0; 0 |
26 | 10; 70; 20 | 50; 10; 60 | 90; 25; 10 | 70; 65; 45 | 5; 35; 55 | 25; 0; 50 |
27 | 10; 5; 70 | 40; 70; 10 | 90; 5; 40 | 100; 55; 25 | 25; 65; 80 | 50; 0; 0 |
28 | 0; 50; 5 | 25; 0; 60 | 85; 10; 15 | 50; 50; 50 | 90; 0; 55 | 20; 0; 0 |
29 | 10; 70; 10 | 40; 10; 50 | 80; 20; 20 | 80; 55; 55 | 10; 50; 70 | 20; 0; 0 |
30 | 75; 70; 20 | 10; 35; 10 | 60; 20; 60 | 20; 70; 70 | 100; 60; 50 | 75; 5; 0 |
По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.
В задаче необходимо найти линию пересечения двух плоскостей и определить натуральную величину одной из них методом плоскопараллельного перемещения.
Для решения такой классической задачи по начертательной геометрии необходимо знать следующий теоретический материал:
— нанесение проекций точек пространства на комплексный чертеж по заданным координатам;
— способы задания плоскости на комплексном чертеже, плоскости общего и частного положения;
— главные линии плоскости;
— определение точки пересечения прямой линии с плоскостью (нахождение «точки встречи»);
— метод плоскопараллельного перемещения для определения натуральной величины плоской фигуры;
— определение видимости на чертеже прямых линий и плоскостей с помощью конкурирующих точек.
Порядок решения Задачи
1. Согласно варианту Задания по координатам точек наносим на комплексный чертеж две плоскости, заданные в виде треугольников ABC (A’, B’, C’; A, B, C) и DKE (D’, K’, E’; D, K, Е) (рис.1.1).
Рис.1.1
2. Для нахождения линии пересечения воспользуемся методом проецирующей плоскости. Суть его в том, что берется одна сторона (линия) первой плоскости (треугольника) и заключается в проецирующую плоскость. Определяется точка пересечения этой линии с плоскостью второго треугольника. Повторив эту задачу еще раз, но для прямой второго треугольника и плоскости первого треугольника, определим вторую точку пересечения. Так как полученные точки одновременно принадлежат обеим плоскостям, они должны находиться на линии пересечения этих плоскостей. Соединив эти точки прямой, будем иметь искомую линию пересечения плоскостей.
3. Задача решается следующим образом:
а) заключаем в проецирующую плоскость Ф(Ф’) сторону AB(A’B’) первого треугольника во фронтальной плоскости проекций V. Отмечаем точки пересечения проецирующей плоскости со сторонами DK и DE второго треугольника, получая точки 1(1’) и 2 (2’). Переносим их по линиям связи на горизонтальную плоскость проекций H на соответствующие стороны треугольника, точка 1(1) на стороне DE и точка 2(2) на стороне DK.
Рис.1.2
б) соединив проекции точек 1 и 2, будем иметь проекцию проецирующей плоскости Ф. Тогда точка пересечения прямой АВ с плоскостью треугольника DKE определится (согласно правилу) вместе пересечения проекции проецирующей плоскости 1-2 и одноименной проекции прямой AB. Таким образом, получили горизонтальную проекцию первой точки пересечения плоскостей – M, по которой определяем (проецируем по линиям связи) её фронтальную проекцию – M’ на прямой A’B’(рис.1.2.а);
в) аналогичным путем находим вторую точку. Заключаем в проецирующую плоскость Г(Г) сторону второго треугольника DK(DK). Отмечаем точки пересечения проецирующей плоскости со сторонами первого треугольника AC и BC во горизонтальной проекции, получая проекции точек 3 и 4. Проецируем их на соответствующие стороны в фронтальной плоскости, получаем 3’ и 4’. Соединив их прямой, имеем проекцию проецирующей плоскости. Тогда вторая точка пересечения плоскостей будет в месте пересечения линии 3’-4’ со стороной треугольника D’K’, которую заключали в проецирующую плоскость. Таким образом, получили фронтальную проекцию второй точки пересечения – N’, по линии связи находим горизонтальную проекцию – N (рис.1.2.б).
г) соединив полученные точки MN(MN) и (M’N’) на горизонтальной и фронтальной плоскостях, имеем искомую линию пересечения заданных плоскостей.
4. С помощью конкурирующих точек определяем видимость плоскостей. Возьмем пару конкурирующих точек, например, 1’=5’ во фронтальной проекции. Спроецируем их на соответствующие стороны в горизонтальную плоскость, получим 1 и 5. Видим, что точка 1, лежащая на стороне DЕ имеет большую координату до оси x, чем точка 5, лежащая на стороне AВ. Следовательно, согласно правилу, большей координаты, точка 1 и сторона треугольника D’Е’ во фронтальной плоскости будут видимые. Таким образом, определяется видимость каждой стороны треугольника в горизонтальной и фронтальной плоскостях. Видимые линии на чертежах проводятся сплошной контурной линией, а не видимые — штриховой линией. Напомним, что в точках пересечения плоскостей (M—N и M’-N’) будет происходить смена видимости.
Рис.1.3
Рис.1.4.
На эпюре дополнительно показано определение видимости в горизонтальной плоскости с использованием конкурирующих точек 3 и 6 на прямых DK и АВ.
5. Методом плоскопараллельного перемещения определяем натуральную величину плоскости треугольника ABC, для чего:
а) в указанной плоскости через точку С(С) проводим фронталь C—F (С-F и C’-F’);
б) на свободном поле чертежа во горизонтальной проекции берем (отмечаем) произвольную точку С1, считая, что это одна из вершин треугольника (конкретно вершина C). Из нее восстанавливаем перпендикуляр к фронтальной плоскости (через ось х);
Рис.1.5
в) плоскопараллельным перемещением переводим горизонтальную проекцию треугольника ABC, в новое положение A1B1C1 таким образом, чтобы в фронтальной проекции он занял проецирующее положение (преобразовался в прямую линию). Для этого: на перпендикуляре от точки С1, откладываем фронтальную проекцию горизонтали C1—F1 (длина lCF) получаем точку F1. Раствором циркуля из точки F1 величиною F-A делаем дуговую засечку, а из точки C1 — засечку величиной CA, тогда в пересечении дуговых линий получаем точку A1 (вторая вершина треугольника);
— аналогично получаем точку B1 (из точки C1 делаем засечку величиной C—B (57мм), а из точки F1 величиной F—B (90мм).Заметим, что при правильном решении три точки A1 F’1 и B’1 должны лежать на одной прямой (сторона треугольника A1—B1)две другие стороны С1—A1 и C1—B1 получаются путем соединения их вершин;
г) из метода вращения следует, что при перемещении или вращении точки в какой-то плоскости проекций — на сопряженной плоскости проекция этой точки должна двигаться по прямой линии, в нашем конкретном случае по прямой параллельной оси х. Тогда проводим из точек A’B’C’ фронтальной проекции эти прямые (их называют плоскостями вращения точек), а из фронтальных проекций перемещенных точек A1 В1 C1 восстановим перпендикуляры (линии связи) (рис.1.6).
Рис.1.6
Пересечения указанных линий с соответствующими перпендикулярами дает новые положения фронтальной проекции треугольника ABC, конкретно A’1В’1C’1 который должен стать проецирующим (прямой линией), поскольку горизонталь h1 мы провели перпендикулярно фронтальной плоскости проекций (рис.1.6);
5) тогда для получения натуральной величины треугольника достаточно его фронтальную проекцию развернуть до параллельности с горизонтальной плоскостью. Разворот осуществляем с помощью циркуля через точку А’1, считая ее как центр вращения, ставим треугольник A’1В’1C’1 параллельно оси х, получаем A’2В’2C’2. Как было сказано выше, при вращении точки, на сопряженной (теперь на горизонтальной) проекции они двигаются по прямым параллельным оси х. Опуская перпендикуляры (линии связи) из фронтальных проекций точек A’2 В’2 C’2 пересечения их с соответствующими линиями находим горизонтальную проекцию треугольника ABC (A2В2C2) в натуральную величину (рис.1.7).
Рис. 1.7
У меня есть все готовые решения задач с такими координатами, купить можно >>здесь<<
Цена 55 руб, чертежи по начертательной геометрии из книжки Фролова Вы легко можете скачать сразу после оплаты или я вышлю Вам на почту. Они находятся в ZIP архиве в различных форматах:
*.jpg – обычный цветной рисунок чертежа в масштабе 1 к 1 в хорошем разрешении 300 dpi;
*.cdw – формат программы Компас 12 и выше или версии LT;
*.dwg и .dxf — формат программы AUTOCAD, nanoCAD;
Раздел: Начертательная геометрия /
- Рекомендуем
- Комментарии
- Наши товары
Построение линии пересечения плоскостей, заданных различными способами
Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.
Задача
Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.
Решение
- Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1»C» и 2»3», совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
- Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
- Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
- Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
- Через L1 и L2 проводим искомую прямую l.
Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.
Пересечение плоскостей, заданных следами
Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.
Алгоритм построения
- Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L»1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
- Находим точку L»2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L»2.
- Проводим прямые l’ и l» через соответствующие проекции точек L1 и L2, как это показано на рисунке.
Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.
Пересечение плоскостей треугольников
Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.
Алгоритм построения
- Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f0σ. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3»=A»B»∩f0σ и 5»=A»С»∩f0σ, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
- Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N» расположена на фронтальном следе f0σ на одной линии связи с N’.
-
Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f0τ. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.
- Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.
Определение видимости
Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N»K» видимость треугольников меняется.
Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6» находится выше, чем (∙)7», то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.
Дополнительные материалы:
- Способы задания плоскости на чертеже
- Точка пересечения прямой и плоскости