Как найти индукцию внутри рамки

Рассчитаем
напряженность магнитного поля в центре
контура прямоугольной формы (рис.
16.4.1). Стороны прямоугольника равны a
и b,
сила тока в проводнике
I.
Разделим контур на четыре прямолинейных
отрезка конечной длины. Применяя правило
буравчика, убеждаемся, что напряженности
магнитных полей, созданных каждым
отрезком проводника в центре контура,
направлены одинаково (от нас).

В

соответствии с принципом суперпозиции
для них можно записать


.

Симметрия рамки
приводит к тому, что противоположные
стороны прямоугольного контура создают
одинаковые поля, поэтому в скалярной
форме получаем


.
(16.4.1)

Пусть отрезок
проводника MN
создает в т.О магнитное поле напряженностью
Н
1,
для которого применим формулу напряженности
проводника конечной длины


.

Из чертежа для
прямоугольного треугольника MOF
получаем


,

где
гипотенуза треугольника МОF
с
= МО,


.

Разность косинусов
равна



=

.

Для напряженности
магнитного поля можно записать


.

Гипотенузу МО
треугольника MOF
определим, применив теорему Пифагора


=
.

Напряженность
магнитного поля, созданного отрезком
проводника MN,
равна


.
(16.4.2)

Аналогично
напряженность магнитного поля, созданного
отрезком проводника NL,
имеет следующий вид:


.
(16.4.3)

Подставляя формулы
(16.4.2) и (16.4.3) в формулу (16.4.1), получаем


.

После сокращения
напряженность магнитного поля в центре
прямоугольной рамки с током можно
записать в следующем виде:


.
(16.4.4)

Магнитная индукция
в центре рамки равна


.
(16.4.5)

Для контура
квадратной формы со стороной

в формулы (16.4.4.) и (16.4.5) необходимо
подставить условие равенства сторон

.
Напряженность магнитного поля в центре
контура квадратной формы определяется
выражением


,
(16.4.6)

а
магнитная индукция равна


.
(16.4.7)

Векторы индукции
и напряженности магнитного поля,
созданного в центре рамки с током,
имеющей прямоугольную (квадратную)
форму (рис. 16.4.1), направлены
перпендикулярно плоскости чертежа от
нас в соответствии с правилом правого
винта.

1 М 6.5. Закон полного тока

Циркуляцией
напряженности магнитного поля по
замкнутому контуру
L
называется
интеграл


.
(16.5.1)

Р
ассмотрим
проводник бесконечной длины с током I,
расположенный перпендикулярно плоскости
чертежа (рис. 16.5.1). Пусть ток направлен
от нас. Замкнутый контур длиной L
выберем в виде окружности, проходящей
через точку М, находящуюся на расстоянии

r
от проводника. Проведем через эту точку
М линию напряженности, которая образует
окружность вокруг проводника с током
и совпадает с замкнутым контуром.
Вычислим циркуляцию вектора напряженности
по выбранному
замкнутому контуру L.
Для этого от точки М отложим элементарную
длину контура

.
Угол между вектором напряженности и
элементарной длиной равен нулю, тогда

.

Напряженность
магнитного поля бесконечно длинного
проводника одинакова во всех точках на
линии напряженности и определяется
выражением

(16.5.2)

Подставим
выражение (16.5.2) в формулу (16.5.1) и вынесем
напряженность из-под интеграла


.
(16.5.3)

Проинтегрируем
по длине контура


.

После сокращения
окончательно получаем


.
(16.5.4)

Данное
уравнение показывает, что циркуляция
вектора напряженности по замкнутому
контуру равна силе тока, охватываемого
этим контуром.

Если
замкнутый контур охватывает несколько
проводников с токами, то в правой части
формулы (16.5.4) получим алгебраическую
сумму токов.


.
(16.5.5)

Выражение
(16.5.5) является законом
полного тока или теоремой о циркуляции
напряженности магнитного поля: циркуляция
вектора напряженности магнитного поля
по замкнутому произвольному контуру
равна алгебраической сумме токов,
охватываемых этим контуром
.
Если направление обхода контура совпадает
с направлением линии напряженности
магнитного поля, создаваемого проводником
с током, то силу тока в алгебраической
сумме берем со знаком плюс; если
направления противоположны, то сила
тока берется со знаком минус. Закон
полного тока позволяет определить
напряженность (индукцию) магнитного
поля, созданного проводниками с током
без применения закона Био-Савара-Лапласа,
в частности для расчета магнитного поля
соленоида.

Соседние файлы в предмете Физика

  • #
  • #
  • #

Решение.
Для решения задачи необходимы: μ0 = 4∙π⋅10-7 Гн/м − магнитная постоянная. 
Рассмотрим четыре участка, АВ, ВС, СД, ДА.
Направление вектора магнитной индукции на каждом участке определим по правилу буравчика. В точке О результирующий вектор магнитной индукции направлен от нас. Применим принцип суперпозиции.

[ begin{align}
  & vec{B}={{{vec{B}}}_{AB}}+{{{vec{B}}}_{BC}}+{{{vec{B}}}_{CD}}+{{{vec{B}}}_{DA}},  \
 & Ox: B={{B}_{AB}}+{{B}_{BC}}+{{B}_{CD}}+{{B}_{DA}} (1). \
end{align}
 ]

Определим модуль вектора магнитной индукции на участке АВ.
Индукция магнитного поля в произвольной точке О, созданного отрезком проводника с током конечной длины, определим используя закон Био —  Савара —  Лапласа.

[ begin{align}
  & dB=frac{{{mu }_{0}}cdot I}{4cdot pi cdot R}cdot sin alpha dalpha , B=frac{{{mu }_{0}}cdot I}{4cdot pi cdot R}cdot intlimits_{{{alpha }_{1}}}^{{{alpha }_{2}}}{sin alpha dalpha ,} \
 & B=frac{{{mu }_{0}}cdot I}{4cdot pi cdot R}cdot (cos {{alpha }_{1}}-cos {{alpha }_{2}}) (3). \
end{align} ]

Где: R — расстояние от т. О до проводника; – α1 и α2 углы, образованные радиус-вектором, проведенном в т. О соответственно из начала и конца проводника, с направлением тока.
Определим модуль вектора магнитной индукции на каждом участке.
α2 = 3∙π/4, α1 =  π/ 4.

[ begin{align}
  & B=frac{{{mu }_{0}}cdot I}{4cdot pi cdot R}cdot (cos frac{pi }{4}-cos frac{3cdot pi }{4}) , B=frac{{{mu }_{0}}cdot I}{4cdot pi cdot R}cdot (frac{sqrt{2}}{2}+frac{sqrt{2}}{2}) , \
 & {{B}_{BC}}={{B}_{DA}}={{B}_{CD}}={{B}_{AB}}=frac{sqrt{2}cdot {{mu }_{0}}cdot I}{4cdot pi cdot R} (5),R=frac{d}{2} (6), \
 & B=4cdot frac{sqrt{2}cdot {{mu }_{0}}cdot I}{2cdot pi cdot d}, B=2cdot frac{sqrt{2}cdot {{mu }_{0}}cdot I}{pi cdot d} (7). \
 & B=frac{2cdot sqrt{2}cdot 4cdot pi cdot {{10}^{-7}}cdot 5}{pi cdot 0,15}=37,6cdot {{10}^{-6}}. \
end{align}
 ]

Ответ 9,43 мкТ получается если бы квадрат был изготовлен из проволоки длиной 15 см.
Ответ: В = 37,6∙10-6 Тл.

Содержание:

Магнитное поле окружает движущиеся элементарные частицы, обладающие электрическим зарядом, и связано с ними. В проводнике с током и пространстве вокруг него магнитное поле создается этим током, а внутри и вне намагниченного тела (постоянного магнита) — внутриатомным и внутримолекулярным движением элементарных заряженных частиц (например, вращением электронов вокруг собственной оси и ядра атома).

Магнитное поле характеризуется воздействием на движущуюся электрически заряженную частицу с силой, пропорциональной заряду частицы и ее скорости.

Закон ампера и магнитная индукция

Магнитное поле обнаруживается благодаря магнитным явлениям: притяжению и отталкиванию проводов с токами или намагниченных тел, действию проводника с током на магнитную стрелку, электромагнитной индукции.
В основе этих явлений лежит характерное свойство магнитного поля — силовое действие на движущиеся заряженные частицы. Силы взаимодействия магнитного поля с движущимися заряженными частицами (токами) называются электромагнитными.

Изучение магнитных явлений и расчеты, связанные с их использованием, невозможны без количественной оценки магнитного поля.
Выбирая необходимую для этого величину, можно исходить из силового взаимодействия двух проводов с токами.

Закон Ампера

Опыт показывает, что на каждый из двух проводов действуют силы, притягивающие друг к другу провода с одинаковым направлением токов и отталкивающие провода с противоположными направлениями токов (рис. 8.1).
Магнитные поля, обусловленные каждым из токов, распределены в одной и той же области пространства. Поэтому в соответствии с принципом наложения можно полагать, что оба провода окружены общим магнитным полем, которое получается в результате наложения двух полей. Каждое поле связано со своим током, когда соответствующий провод уединен.

Электрическое поле и его расчёт

Рис. 8.1. К закону Ампера

В таком случае притяжение или отталкивание проводов нужно рассматривать как результат силового действия общего магнитного ноля на заряженные частицы, образующие ток в каждом из проводов. Количественные соотношения для этого случая определены законом Ампера, согласно которому силовое действие магнитного поля на движущиеся заряженные частицы рассматривается как взаимодействие двух элементов линейного тока.
 

Величина силы взаимодействия между двумя элементами линейных токов в вакууме пропорциональна произведению элементов линейных токов и обратно пропорциональна квадрату расстояния между ними.

Элементом линейного тока называется произведение Idl, где dl — длина участка провода с током I, весьма малая (так же как и диаметр провода) по сравнению с расстоянием от него до точек, в которых рассматривается магнитное поле тока I.

Если элементы линейных токов расположены параллельно, то сила взаимодействия между ними
Электрическое поле и его расчёт

В Международной системе единиц (СИ) магнитная постоянная
Электрическое поле и его расчёт
Электрическое поле и его расчёт — единица индуктивности.

Заметим, что формула (8.1) и последующие формулы, относящиеся к магнитному полю в вакууме, справедливы и для магнитного поля в воздухе.

Магнитная индукция

Предположим, что элемент линейного тока I2dl2 столь мал, что его поле практически не изменяет поле тока I1. Тогда этот элемент линейного тока можно рассматривать как пробный, служащий лишь для регистрации электромагнитной силы, которая в этом случае является результатом действия магнитного поля первого тока на пробный элемент линейного тока.
Величина тока I1 определяет интенсивность магнитного поля: чем больше ток, тем «сильнее» его магнитное поле.

Для оценки интенсивности магнитного поля введено понятие магнитной индукции В.

Магнитная индукция — векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля.

В численном выражении магнитная индукция равна отношению силы, действующей на заряженную частицу, к произведению заряда Q и скорости частицы υ, направленной так, что эта сила максимальна:
Электрическое поле и его расчёт
Направление вектора магнитной индукции перпендикулярно векторам силы и скорости и совпадает с поступательным перемещением правого винта (или буравчика), если вращать его в направлении от вектора силы к вектору скорости частицы с положительным зарядом. 
За некоторое время dt, согласно (2.2), заряд Электрическое поле и его расчёт а скорость
Электрическое поле и его расчёт, поэтому Электрическое поле и его расчёт — элемент линейного тока.
Из формулы (8.1) следует
Электрическое поле и его расчёт
Магнитное поле в окружающем проводник пространстве создается не только выбранным элементом линейного тока, но и другими элементами, на которые может быть разделен реальный проводник (рис. 8.2).

Электрическое поле и его расчёт

Рис. 8.2. К закону Био — Савара

Магнитная индукция В в данной точке является векторной суммой элементарных векторов dВ.

Формула (8.3), по которой определяется элементарная магнитная индукция, является математическим выражением закона Био — Савара.
Из нее следует единица измерения магнитной индукции:
Электрическое поле и его расчёт
В расчетах применяется также единица магнитной индукции — гаусс (Гс) (1 Гс = 10-4 Тл).

Линии магнитной индукции

Графически магнитное поле можно изобразить с помощью линий магнитной индукции.

Линию магнитной индукции проводят так, чтобы в каждой точке этой линии касательная к ней совпадала с вектором магнитной индукции.
Пользуясь этим правилом, можно изобразить магнитное поле для различных случаев.

Магнитное поле тока прямолинейного провода имеет линии магнитной индукции в виде окружностей, лежащих в плоскостях, перпендикулярных направлению тока, с центром на оси провода (рис. 8.3).

Направление магнитной индукции в этом случае определяется с помощью правила буравчика: если направление поступательного движения буравчика совместить с направлением тока в проводе, то вращение рукоятки покажет направление линий магнитной индукции.

Большой практический интерес представляет картина магнитного поля тока катушек, так как во многих электротехнических устройствах (трансформаторы, электрические машины, электромагнитные реле и т. д.) магнитное поле создается токами в катушках различной формы.

Магнитное поле тока цилиндрической катушки изображено на рис. 8.4. Если длина катушки значительно больше ее диаметра, то линии магнитной индукции имеют внутри катушки одинаковое направление (вдоль оси катушки) и величина магнитной индукции во всех точках одинакова, за исключением точек, расположенных у краев.

Электрическое поле и его расчёт
Рис. 8.3. Магнитное поле прямого тока

Электрическое поле и его расчёт

Рис. 8.4. Магнитное поле тока в цилиндрической катушке

Магнитное поле, имеющее во всех точках одинаковую по величине и направлению магнитную индукцию, называется однородным (равномерным).
По форме магнитного поля цилиндрическая катушка подобна постоянному магниту кругового сечения (рис. 8.5). На конце катушки, где линии магнитной индукции выходят из нее, образуется северный полюс, а на противоположном конце — южный.

Кольцевая катушка с обмоткой на тороидальном сердечнике (рис. 8.6) создает магнитное поле только внутри витков. Направление линий индукции магнитного поля тока катушки или контура тоже определяется правилом буравчика, но в другой формулировке: если рукоятку буравчика вращать по направлению тока в витках, то поступательное перемещение буравчика совпадает с направлением линий магнитной индукции внутри катушки.

Электрическое поле и его расчёт
Рис. 8.5. Магнитное поле прямого постоянного магнита

Электрическое поле и его расчёт

Рис. 8.6. Кольцевая катушка

С помощью линий магнитной индукции можно выразить не только направление магнитного поля, но и величину магнитной индукции, подобно тому, как это делается при исследовании электрического поля.
Неравномерное магнитное поле изображается замкнутыми линиями, проведенными с неодинаковой плотностью в различных областях.
В отличие от линий напряженности электростатического ноля, которые начинаются на положительных, а оканчиваются на отрицательных заряженных телах или уходят в бесконечность, линии индукции магнитного поля всегда замкнуты на себя, т. е. не имеют ни начала, ни конца.

Проводник с током в магнитном поле

Большой практический интерес представляет выражение силы, действующей на проводник с током в равномерном магнитном поле. На рис. 8.7 показан прямолинейный провод в пространстве между полюсами постоянного магнита или электромагнита (катушки, со стальным сердечником), расположенный так, что между направлениями вектора магнитной индукции В и тока в проводе I угол α = 90°.

В равномерном магнитном поле на элемент длины провода в любом месте действует одинаковая электромагнитная сила, поэтому на основании формул (8.2) и (8.3) можно записать выражение силы, действующей на часть провода, расположенную в пределах магнитного поля:
Электрическое поле и его расчёт
где В — магнитная индукция, Тл; I —ток в проводе, А; l — длина части провода, расположенной в магнитном поле, м; Fм — величина электромагнитной силы, Н.

Электрическое поле и его расчёт

Рис. 8.7. Прямой провод с током в магнитном поле

Если провод располагается так, что между направлениями вектора магнитной индукции поля и тока в проводе угол а ≠ 90°, то электромагнитная сила определяется той же формулой (8.4), но вместо полной длины провода берется ее проекция на направление, перпендикулярное направлению поля:
Электрическое поле и его расчёт
На провод с током, расположенный вдоль линий магнитной индукции, магнитное поле не действует.

Сила Fм направлена всегда перпендикулярно плоскости, в которой лежит провод и находятся линии магнитной индукции. Направление электромагнитной силы наиболее удобно определять по правилу левой руки: если расположить левую руку так, чтобы вытянутые четыре пальца (кроме большого) показывали направление тока в проводе, а линии магнитной индукции «входили» в ладонь, то большой палец, отогнутый перпендикулярно остальным четырем, покажет направление электромагнитной силы.

Задача 8.3.

В равномерное магнитное поле с индукцией В = 1,2 Тл помешен прямолинейный проводник длиной l = 80 см с током I = 20 А. Определить силу, действующую на проводник, если он расположен перпендикулярно направлению линий магнитной индукции.
Решение. Подставим в формулу (8.5) заданные величины, от которых зависит сила:

Электрическое поле и его расчёт

Примеры расчета магнитных полей с помощью закона Био — Савара

Определим с помощью закона Био — Савара магнитную индукцию и напряженность магнитного поля в ряде конкретных случаев.

Поле кругового тока

На рис. 8. 10 изображен кольцевой провод (виток) с током I. Требуется определить индукцию магнитного поля в центре этого витка (точка О).

Электрическое поле и его расчёт

Рис. 8.10. К определению магнитной индукции поля кругового тока

Согласно закону Био — Савара [см. формулу (8.3)], каждый элемент тока создает в точке О магнитную индукцию

Электрическое поле и его расчёт

При этом имеется в виду, что угол α = 90° и составляющие результирующей магнитной индукции В в центре витка от каждого элемента имеют одно и то же направление, перпендикулярное плоскости витка.
Поэтому
Электрическое поле и его расчёт
Постоянные величины вынесем, за знак интеграла:
Электрическое поле и его расчёт
где Электрическое поле и его расчёт — длина витка.

Следовательно,
Электрическое поле и его расчёт
или

Электрическое поле и его расчёт
Электрическое поле и его расчёт
Рис. 8.11. К определению магнитной индукции поля прямого тока

Поле прямого тока

Определим индукцию магнитного поля в точке А (рис. 8.11), если оно создается током I прямолинейного провода конечной длины.

Элемент длины провода dl создает в точке А элементарный вектор магнитной индукции dВ [см. формулу (8.3)]. Для того чтобы найти полную величину магнитной индукции, следует сложить элементарные векторы dВ от всех элементов dl, из которых складывается длина провода.

Учитывая, что провод и отрезки r, проведенные от любого элемента провода в точку А, лежат в одной плоскости, можно заключить, что все векторы dВ в точке А направлены по одной прямой перпендикулярно этой плоскости, в данном случае за чертеж.

Поэтому полную величину магнитной индукции можно найти интегрированием:
Электрическое поле и его расчёт
Из рис. 8.11 видно, что Электрическое поле и его расчёт Электрическое поле и его расчёт
Отсюда Электрическое поле и его расчёт
Кроме того,

Электрическое поле и его расчёт Электрическое поле и его расчёт

Электрическое поле и его расчёт
Полная величина магнитной индукции в точке А
Электрическое поле и его расчёт
Электрическое поле и его расчёт

Задача 8.4.

В витке, имеющем форму прямоугольника со сторонами b = 10 см и c = 20 см, ток I = 10 А. Определить магнитную индукцию в точке пересечения диагоналей прямоугольника (точка А на рис. 8.12, а).
Решение. Магнитную индукцию поля прямолинейного провода конечной длины определяют по формуле (8.7).
Подставив в эту формулу обозначения величин по рис. 8.12, а, получим выражения для составляющих магнитной индукции. От участков провода, расположенных по сторонам b,
Электрическое поле и его расчёт
В данном случае α1 = α2 = α, поэтому
Электрическое поле и его расчёт
Аналогично, от участков провода, расположенных по сторонам с, при γ1 = γ2 = γ
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Рис. 8.12. К задачам: а —8.4; б —8.5; в — 8.6

Магнитная индукция в точке А(ВА) складывается из составляющих В1 (от двух сторон b) и В2 (от двух сторон c): Электрическое поле и его расчёт При этом учитывается, что по отношению к каждому из двух участков провода b или c точка А расположена одинаково и все составляющие магнитной индукции направлены в одну сторону (по правилу буравчика — за плоскость чертежа):
Электрическое поле и его расчёт
Из чертежа следует, что
Электрическое поле и его расчёт
Учитывая эти выражения, после преобразования получим:
Электрическое поле и его расчёт
Электрическое поле и его расчёт

Расчет симметричных магнитных полей

Связь тока с его магнитным полем ранее выражена формулой закона Био — Савара, который можно применять для определения основных характеристик магнитного поля в любом случае. Подобные задачи решаются более просто на основе понятий о циркуляции вектора магнитной индукции и полном токе.

Циркуляция вектора магнитной индукции и полный ток

Для выяснения смысла этих понятий в магнитном поле системы токов выберем произвольный замкнутый контур (рис. 8.13).

В каждой точке этого контура вектор магнитной индукции В может иметь любое направление. Обозначим через Вl проекцию этого вектора на направление элемента длины dl около выбранной точки контура.

Выражение Электрическое поле и его расчёт взятое по всему замкнутому контуру, называют циркуляцией вектора магнитной индукции по данному контуру.
Алгебраическую сумму токов Электрическое поле и его расчёт пронизывающих поверхность, ограниченную контуром, называют полным током.

На основе закона Био — Савара можно доказать, что циркуляция вектора магнитной индукции по произвольному замкнутому контуру пропорциональна полному току, пронизывающему поверхность, ограниченную этим контуром (рис. 8.13):
Электрическое поле и его расчёт

Для магнитного поля в вакууме коэффициентом пропорциональности между циркуляцией вектора магнитной индукции и полным током является магнитная постоянная μ0.

При составлении уравнения (8.8) для конкретного случая знак произведения Вldl берется положительным, если в данной точке направление Вl совпадает с направлением обхода контура; знак тока принимается положительным, если направление линий индукции магнитного поля данного тока, определенное по правилу буравчика, совпадает с направлением обхода.

Выражение Электрическое поле и его расчёт можно представить алгебраической суммой произведений Вldl, составленной из бесконечно большого числа слагаемых.

Электрическое поле и его расчёт

Рис. 8.13. К вопросу о циркуляции вектора магнитной индукции

Для рис. 8.13

Электрическое поле и его расчёт
Если выбрать контур, совпадающий с линией магнитной индукции, то вместо проекции вектора магнитной индукции Вl в формулу (8.8) можно подставить полную его величину В.    .

В отдельных случаях магнитное поле обладает симметрией, при которой магнитная индукция во всех точках такого контура имеет одинаковую величину. Для этих случаев формула (8.8) имеет более простое выражение.
Электрическое поле и его расчёт вынесем за знак суммы:
Электрическое поле и его расчёт
где Электрическое поле и его расчёт — длина контура;

тогда
Электрическое поле и его расчёт

Формула (8.8) справедлива для магнитного поля, созданного замкнутыми токами. Ее нельзя применить для определения составляющей магнитной индукции поля, образуемого током на участке провода конечной длины, как это сделано при выводе формулы (8.7) на основании закона Био — Савара.

Поле прямого тока

Наметим на произвольном расстоянии а от оси провода точку А (рис. 8.14, а) и проведем через нее замкнутый контур, совпадающий с линией магнитной индукции. Как известно, эта линия — окружность с центром на оси провода. Все точки контура находятся на одинаковом расстоянии от оси провода, поэтому магнитная индукция поля в них имеет одинаковую величину.

Согласно формуле (8.8),
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Формула (8.10) совпадает с выводами, полученными из закона Био — Савара [см. формулу (8.7)] при α1 и α2, равных нулю.

Для определения магнитной индукции поля внутри провода выберем произвольный контур радиуса r и будем полагать плотность тока во всех точках сечения провода одинаковой и равной
Электрическое поле и его расчёт
где r0 — радиус провода.

Электрическое поле и его расчёт
Рис. 8.14. К определению магнитной индукции поля прямого тока
Полный ток, пронизывающий часть сечения, ограниченную выбранным контуром, имеет величину
Электрическое поле и его расчёт

Электрическое поле и его расчёт
отсюда
Электрическое поле и его расчёт
На рис. 8.14, б показан график изменения магнитной индукции внутри и вне линейного провода большой протяженности, построенный по формулам (8.10) и (8.11).

Поле тока кольцевой катушки

Выберем замкнутый контур, совпадающий с линией магнитной индукции в центре сечения сердечника (см. рис. 8.6). Предполагая намотку витков равномерной, по соображениям симметрии применим формулу (8.9). 
Поверхность, ограниченная выбранным контуром, пронизывается током I столько раз, сколько витков N имеет катушка, поэтому
Электрическое поле и его расчёт
магнитная индукция
Электрическое поле и его расчёт
Эта формула пригодна для определения магнитной индукции и в других точках, расположенных внутри катушки дальше или ближе к центру, если в них подставить соответствующий радиус.

Поле тока цилиндрической катушки

Если витки катушки навиты вплотную друг к другу, то при бесконечной ее протяженности все точки на любой линии, параллельной оси, находятся в одинаковых условиях (рис. 8.15).

Магнитная индукция поля внутри катушки во всех точках этой линии одинакова и направлена вдоль оси катушки. Вне катушки магнитного поля нет.
Выделим замкнутый контур а-6-в-г прямоугольной формы и применим к нему формулу (8.8). При обходе контура нужно учитывать, что на участке б-в поля нет (В = 0); на участках а-б и в-г вне катушки поля нет, а внутри катушки магнитная индукция направлена перпендикулярно направлению обхода, поэтому проекция вектора В на направление обхода равна нулю. На участке г-а Вl = В.
Таким образом, циркуляция вектора магнитной индукции имеет величину Электрическое поле и его расчёт
Полный ток контура а-б-в-г
Электрическое поле и его расчёт
где N — число витков, уложенных на участке длиной l.
Согласно выражению (8.9),
Электрическое поле и его расчёт

Из этой формулы следует, что магнитное поле внутри бесконечно длинной катушки равномерно.
Электрическое поле и его расчёт
Рис. 8.15. К определению магнитной индукции поля цилиндрической катушки с током

Формулу (8.13) можно применить, допуская некоторую погрешность, для определения магнитной индукции цилиндрической катушки конечной длины lк, если она значительно больше диаметра витка Электрическое поле и его расчёт
Электрическое поле и его расчёт
Применение закона Био — Савара к цилиндрической катушке конечной длины дает для определения В в любой точке М на оси катушки выражение
Электрическое поле и его расчёт
Формулы (8.12)—(8.15), определяющие магнитное поле катушек, имеют в числителе произведение тока и числа витков IN. Магнитное поле данной интенсивности можно получить при относительно малом числе витков, но большом токе, или при малом токе, но относительно большом числе витков.
Это дает основание при расчете магнитных полей пользоваться произведением IN как единой величиной, которая называется намагничивающей силой. В практике эту величину называют также ампер-витками.

Магнитный поток и потокосцепление

Понятие о магнитном потоке как характеристике магнитного поля имеет в электротехнике большое значение. Его применяют при рассмотрении принципов работы и расчетах электромагнитных устройств {электрических машин, трансформаторов, электромагнитов различного назначения).

Магнитный поток

Любой проводник с током создает магнитное поле. Рассмотрим для примера в качестве источника магнитного поля виток провода кольцевой формы с током l (рис. 8.16).

Линии магнитной индукции этого неравномерного поля сцеплены с самим витком и часть их пронизывает некоторую поверхность S.
Выделим на этой поверхности элемент площади dS, в пределах которой магнитную индукцию В можно считать одинаковой. Вектор магнитной индукции в общем случае направлен под некоторым углом β к нормали n этой поверхности. Проекция вектора В на направление нормали дает вектор Вn, направленный перпендикулярно выделенной элементарной площадке dS.
Величина Электрическое поле и его расчёт выражает элементарный поток вектора магнитной индукции.

Сложив элементарные потоки по всей поверхности, получим выражение полного потока вектора магнитной индукции или магнитного потока через заданную поверхность S:
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Рис. 8.16. К определению магнитного потока

Электрическое поле и его расчёт
Рис. 8.17. К определению магнитного потока

Аналогично можно выразить магнитный поток через любую другую поверхность, в том числе и через поверхность, ограниченную самим витком, т. е. магнитный поток, сцепленный с ним.

В практике бывают случаи, когда магнитное поле можно считать равномерным, а поверхность, через которую определяется магнитный поток, — плоскостью (рис. 8.17).

В этих величинах В и Вn остаются одинаковыми для всех точек плоскости, поэтому
Электрическое поле и его расчёт
где Sn — проекция площади S на плоскость, перпендикулярную направлению вектора магнитной индукции.

Если плоскость S расположена перпендикулярно линиям магнитной индукции, то магнитный поток
Электрическое поле и его расчёт
Согласно формулам (8.18) и (8.16), магнитная индукция В является плотностью магнитного потока в данной точке поля.
Единица измерения магнитного потока — вебер:
[Ф] = [ВS] = тесла • метр2 = вольт • секунда = вебер (Вб).

Работа при перемещении проводника с током в магнитном попе

Рассмотрим проводящий контур прямоугольной формы, одна сторона которого находится в равномерном магнитном поле. При токе I в магнитном контуре на провод действует электромагнитная сила Fм (рис. 8.18).

Незакрепленный контур перемещается в направлении действия силы; при этом на пути b сторона его описывает плоскую поверхность S, перпендикулярную линиям магнитной индукции S = bl.

Произведение магнитной индукции и площади этой поверхности выражает магнитный поток Ф равномерного поля через данную площадь S [см. (8.18)].
При движении контура с током в магнитном поле электромагнитная сила Fм на пути b совершает работу Электрическое поле и его расчёт

В этом случае работа считается положительной. При движении провода против силы (при наличии внешней механической силы) работа отрицательна.

Электрическое поле и его расчёт

Рис. 8.18. Замкнутый виток с током в магнитном поле

Учитывая формулу (8.18), работу, совершенную в результате взаимодействия магнитного поля и тока в проводнике, движущемся в магнитном поле, можно определить произведением тока в проводнике и магнитного потока сквозь поверхность, очерченную проводником при его движении: А = ФI.

Магнитный поток через поверхность, очерченную проводником, является разностью потоков, пронизывающих проводящий контур в конечном и начальном положениях, т. е. положительным приращением магнитного потока, сцепленного с контуром:
Электрическое поле и его расчёт
где
Электрическое поле и его расчёт
Работа, затраченная на перемещение контура,
Электрическое поле и его расчёт

На основании рассмотренного примера можно сделать следующие выводы, справедливые для любой электромагнитной системы (см. также задачу 8.10).

  1. Работа электромагнитных сил, затраченная на перемещение контура с током, равна произведению тока в контуре на изменение магнитного потока, сцепленного с контуром.
  2. Всякий контур с током в магнитном поле стремится занять положение, при котором магнитный поток, пронизывающий контур, оказывается положительным и наибольшим (положительным считается магнитный поток, совпадающий внутри контура с потоком, созданным током этого контура).

Приведем такой пример. Стальной .сердечник втягивается внутрь катушки с током. При этом магнитный поток катушки увеличивается, так как добавляется действие контуров тока внутри стального сердечника, которые образуются внутриатомным и внутримолекулярным движением заряженных частиц. Если перемещение сердечника ничем не ограничено, то он втягивается до тех пор, пока поток не увеличится до максимальной величины для этой системы.

Сказанное относится к любым электромагнитным устройствам с подвижным стальным якорем (реле, тяговые электромагниты и т. п.).

Магнитное потокосцепление

При определении работы, совершаемой электромагнитными силами, была взята рамка, имеющая один виток. Но на рамку можно намотать несколько витков, тогда работа электромагнитных сил при перемещении рамки увеличится.

Если предположить, что все N витков сцеплены с одним и тем же потоком, то работа электромагнитных сил увеличится в N раз: А = NΔФI.
Произведение числа витков и сцепленного с этими витками магнитного потока называют потокосцеплением:
Электрическое поле и его расчёт
Следовательно, работа электромагнитных сил выражается произведением тока в витках и приращения магнитного потокосцепления:
Электрическое поле и его расчёт
В общем случае витки катушки могут быть сцеплены с разными потоками, тогда общее потокосцепление определяется алгебраической суммой потоков, сцепленных с каждым витком:
Электрическое поле и его расчёт
При этом имеется в виду, что потокосцепление одного витка численно равно потоку через поверхность, ограниченную этим витком.
Электрическое поле и его расчёт
Рис. 8.19. Потокосцепление цилиндрической катушки

Отдельные потоки (Ф1, Ф2 и т. д.) могут быть сцеплены с несколькими витками (рис. 8.19), тогда потокосцепление будет выражено алгебраической суммой следующего вида:

Электрическое поле и его расчёт

Если в уединенном контуре любой формы имеется ток, то его магнитное поле сцеплено с самим контуром. Потокосцепление такого контура называется собственным (потокосцеплением самоиндукции). Собственное потокосцепление характеризует связь тока с собственным магнитным полем.
Потокосцепление имеет ту же размерность, что и магнитный поток.
 

Задача 8.10.

Прямоугольная рамка с током I расположена в магнитном поле, как показано на рис. 8.20. Найти выражение для работы, совершенной при повороте рамки из положения I в положение II.
Электрическое поле и его расчёт
Рис. 8.20. Прямоугольная рамка с током в магнитном поле

Решение. По правилу левой руки найдем направления сил, действующих на стороны рамки в положении I.
На стороны аб и вг рамки действуют силы F и F, на две другие стороны силы не действуют, так как ток в них направлен вдоль линий магнитной индукции. Силы F и F образуют вращающий момент, под действием которого рамка поворачивается из положения I в положение II.
В положении II вращающий момент равен нулю, так как силы F и F направлены противоположно вдоль линии, проходящей через ось вращения рамки.
Стороны рамки аб и вг переместились в направлении действия силы на d/2, где d — ширина рамки.
Работа по перемещению каждой стороны рамки составляет

Электрическое поле и его расчёт
а всей рамки —
Электрическое поле и его расчёт
где ld — площадь рамки; ВS = Фm — наибольшая величина магнитного потока, пронизывающего рамку.
Величина Фm в данном случае определяет изменение потока, сцепленного с рамкой при повороте ее из положения I (Ф1 = 0) в положение II (ФII = Фm).
Изменение потока в зависимости от угла поворота рамки происходит по закону
Электрическое поле и его расчёт
так как в любом промежуточном положении проекция площади рамки на плоскость, перпендикулярную направлению линий магнитной индукции, равна Ssinα.
 

Задача 8.11.

В обмотке тороидальной катушки, имеющей длину lк = 40 см, площадь поперечного сечения S = 6 см2, число витков N = 400, ток I = 20 А, определить магнитный поток внутри катушки.
Решение. Магнитную индукцию внутри катушки определим по формуле (8.12), учитывая, что длина катушки 2πr = lk:
Электрическое поле и его расчёт
Магнитный поток определим приближенно, полагая поле внутри катушки равномерным:
Электрическое поле и его расчёт

Индуктивность собственная и взаимная

При изменении тока в контуре или катушке изменяется потокосцепление самоиндукции или собственное потокосцепление, обусловленное током в этом контуре (катушке), а также взаимное потокосцепление с другим контуром или катушкой.

Опыт показывает, что одинаковое изменение тока в двух контурах или катушках приводит в общем случае к различному изменению их потокосцепления. Особенности данного контура или катушки в отношении образования потокосцепления характеризуются индуктивностью собственной и взаимной.

Индуктивность собственная

На зависимость между потокосцеплением и током уединенного контура влияют форма, размеры контура и среда, в которой создается его магнитное поле, т. е. факторы, обусловленные конструкцией контура или катушки.
Для выражения этого влияния введено понятие индуктивности контура или катушки. 
 

Собственная индуктивность уединенного контура (или катушки) есть величина, характеризующая связь потокосцепления самоиндукции и тока, численно равная отношению потокосцепления самоиндукции контура к току в нем:
Электрическое поле и его расчёт

В вакууме и неферромагнитных веществах это отношение для данного контура (катушки) остается неизменным независимо от величин тока и потокосцепления.

Единица индуктивности
Электрическое поле и его расчёт
В практических расчетах индуктивность часто выражается в долях генри: миллигенри (мГн) и микрогенри (мкГн); 1 Гн = 103 мГн = = 106 мкГн.

Индуктивность взаимная

Рассмотрим магнитную связь двух катушек с токами, расположенных друг от друга так, что магнитный поток, вызванный током первой катушки I1 сцеплен с витками обеих катушек.

Предположим, что потоков магнитного рассеяния нет, т. е. все магнитные линии одной катушки сцеплены с другой катушкой (рис. 8.21, а).
Собственное потокосцепление первой катушки
Электрическое поле и его расчёт
где N1 — число витков первой катушки.

Магнитный поток, созданный током первой катушки, сцеплен с витками второй катушки.

Взаимное потокосцепление, как и собственное, пропорционально току, создающему поток:

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Рис. 8.21. Магнитная связь двух катушек

Коэффициент пропорциональности М1.2 — величина постоянная (в неферромагнитных средах), зависит от конструктивных особенностей рассматриваемой системы катушек и называется взаимоиндуктивностью.

Из уравнений (8.24) и (8.25) следует, что
Электрическое поле и его расчёт
Магнитная связь может осуществляться потоком второй катушки, имеющей ток I2.
По аналогии с первой катушкой, собственное потокосцепление второй катушки
Электрическое поле и его расчёт

взаимное потокосцепление
Электрическое поле и его расчёт
Отношение индуктивности L2 к взаимоиндуктивности М2.1

Электрическое поле и его расчёт
Из отношений индуктивностей катушек к взаимоиндуктивности находим
Электрическое поле и его расчёт
Нетрудно доказать, что коэффициенты М1.2 и М2.1 одинаковы.

Для этого предположим, что вторая катушка с током I2 удаляется в бесконечность. Потокосцепление этой катушки изменяется на величину взаимного потокосцепления. Работа, совершаемая при удалении катушки, согласно формуле (8.21), определяется произведением Электрическое поле и его расчётУчитывая относительность движения, ту же работу можно определить произведением Электрическое поле и его расчётт.е.
Электрическое поле и его расчёт
Отсюда
Электрическое поле и его расчёт
или
Электрическое поле и его расчёт
Взаимоиндуктивность выражается через индуктивности катушек:
Электрическое поле и его расчёт

Коэффициент связи

Формула (8.26) справедлива при отсутствии рассеяния магнитных потоков, т. е. когда между катушками существует наибольшая магнитная связь. В действительности некоторая часть линий магнитной индукции поля данной катушки сцеплена только с собственными витками (на рис. 8.21, б это относится к первой катушке). Этими линиями определяется магнитный поток рассеяния Фs, который не образует магнитной связи катушек; поэтому в реальных устройствах, где используется магнитная связь, поток рассеяния должен быть по возможности уменьшен.

Из-за потоков рассеяния магнитная связь катушек оказывается неполной (Ф1.21). При этом взаимоиндуктивность будет меньше величины Электрическое поле и его расчётчто учитывается коэффициентом связи k:
Электрическое поле и его расчёт

Коэффициент связи Электрическое поле и его расчёт теоретически может изменяться от 0 до 1.
Потоки рассеяния уменьшить до нуля практически невозможно, поэтому коэффициент связи k всегда меньше единицы.

В системе магнитносвязанных контуров или катушек различают согласное и встречное включение.

Электрическое поле и его расчёт

Рис. 8.22. Согласное и встречное включение катушек

Если направления намагничивающих сил двух катушек, определенные по правилу буравчика, совпадают, то включение катушек называется согласным (рис. 8.22, а). При несовпадении этих направлений включение называется встречным (рис. 8.22, б).

Для изменения направления намагничивающей силы катушки можно, согласно правилу буравчика, изменить направление тока или направление хода витков (правая или левая намотка).

Изменяя направление тока или направление намотки одной из катушек, получают согласное или встречное включение.

При встречном включении катушек можно добиться такого положения, когда потоки обеих катушек, определенные порознь, равны, а результирующий поток в соответствии с принципом наложения равен нулю.

Если требуется получить катушку без индуктивности, можно применить бифилярную намотку, которая выполняется проводом, сложенным вдвое.
Магнитный поток, а следовательно, и индуктивность бифилярно намотанной катушки равны нулю, так как каждый виток ее состоит из двух проводников с противоположным направлением тока. 

Вычисление индуктивностей

Проводящие контуры, катушки — наиболее распространенные элементы электротехнических устройств, а индуктивность является конструктивной характеристикой этих элементов и применяется при расчетах. Поэтому важно не только само понятие об индуктивности, но и вычисление ее для различных случаев.

Индуктивность катушки

Определим индуктивность участка l бесконечно длинной цилиндрической катушки, имеющей на этом участке N витков диаметром D (см. рис. 8.15).
Магнитное поле такой катушки равномерное. В этом случае по формуле (8.13)
Электрическое поле и его расчёт
Если витки катушки плотно прилегают друг к другу, можно считать поток всех витков одинаковым:
Электрическое поле и его расчёт
где S = πD2/4 — площадь поперечного сечения катушки.

Согласно формуле (8.23), индуктивность
Электрическое поле и его расчёт
Выражение (8.28) можно использовать для приближенного вычисления индуктивности цилиндрической катушки конечной длины, если Электрическое поле и его расчёт 

Точность результата тем больше, чем больше отношение Электрическое поле и его расчёт Индуктивность кольцевой катушки на тороидальном сердечнике (см. рис. 8.6, где l = 2πr) приближенно определяют по этой же формуле.

В практике (например, радиотехнической) применяются катушки различной формы, для которых условие Электрическое поле и его расчёт чаще всего не выполняется. Для определения индуктивности применяются расчетные кривые или эмпирические формулы, поправочные коэффициенты к формуле (8.28), приводимые в справочниках.

Индуктивность двухпроводной линии

Для определения индуктивности участка двухпроводной линии (рис. 8.23) нужно применить формулу (8.23), для чего предварительно следует подсчитать потокосцепление.

Поток, сцепленный с контуром, образованным прямым и обратным проводами линии, нужно подсчитать по формуле (8.16), учитывая, что магнитное поле линейного тока неравномерное.

Выделим между проводами элемент площади dS = ldx, в пределах которой магнитную индукцию можно считать постоянной:
Электрическое поле и его расчёт
или
Электрическое поле и его расчёт

Электрическое поле и его расчёт

Рис. 8.23. К определению индуктивности двухпроводной линии

Поток, образованный током прямого провода, определим суммированием элементарных потоков на всем расстоянии между проводами в свету:
Электрическое поле и его расчёт
Учитывая, что Электрическое поле и его расчёт вместо a — r0 можно взять a:
Электрическое поле и его расчёт
Точно такой же поток и в том же направлении создается током обратного провода, поэтому общий поток
Электрическое поле и его расчёт
Двухпроводная линия, имея прямой и обратный провода, образует один виток; поэтому потокосцепление численно равно определенному магнитному потоку: Электрическое поле и его расчёт

Индуктивность
Электрическое поле и его расчёт

Подсчет по формуле (8.29) дает неточный результат, так как не была учтена внутренняя индуктивность, образованная магнитным потоком внутри проводов.
 

Задача 8.17.

Определить индуктивность кольцевой катушки прямоугольного поперечного сечения S = 6 см2, имеющей наружный радиус r2 = 11 см, внутренний r1 = 9 см, а число витков N = 500 (см. рис. 8.6).
Решение. Магнитная индукция по формуле (8.12)
Электрическое поле и его расчёт
При плотной намотке тонким проводом магнитный поток можно считать одинаковым для всех витков, поэтому потокосцепление
Электрическое поле и его расчёт
Индуктивность катушки
Электрическое поле и его расчёт
Электрическое поле и его расчёт

Магнитные свойства вещества

Ранее магнитное поле рассматривалось в вакууме, где из-за отсутствия вещества оно не испытывает на себя его влияния и определяется только токами в проводах. Эти токи будем называть внешними.

Если магнитное поле внешних токов создается в веществе, то поле воздействует на него, а вещество определенным образом изменяет магнитное поле. 

Намагничивание вещества

Любое вещество, находящееся в магнитном поле внешних токов, приходит в особое состояние намагниченности, характеризующееся возникновением в нем добавочного магнитного поля.

Движение заряженных частиц внутри атома можно рассматривать как элементарные внутриатомные токи, поэтому добавочное магнитное поле, возникшее в результате намагничивания, будем называть полем элементарных (внутренних) токов.

Магнитные свойства элементарного кругового тока (рис. 8.24, а) можно характеризовать магнитным моментом, величина которого определяется произведением элементарного кругового тока и площади описанного им круга, а направление — по правилу буравчика:
Электрическое поле и его расчёт

Электрическое поле и его расчёт

Рис. 8.24. Магнитный момент элементарных токов

При отсутствии магнитного поля внешних токов элементарные токи внутри вещества ориентированы беспорядочно, поэтому общий магнитный момент даже малых объемов вещества оказывается равным нулю, а магнитное поле элементарных токов не обнаруживается.

Влияние магнитного поля внешних токов на круговые элементарные токи в веществе состоит в том, что изменяется ориентация осей вращения частиц так, что их магнитные моменты оказываются направленными в одну сторону.
Интенсивность и характер намагничивания у различных веществ в одинаковом магнитном поле внешних токов значительно отличаются. Поэтому все вещества делятся на три группы.

К первой группе относятся диамагнитные вещества, в которых магнитное поле элементарных токов направлено против вызвавшего его поля внешних токов. Иначе говоря, результирующее магнитное поле в веществах этой группы слабее магнитного поля внешних токов. К диамагнитным веществам относятся вода, водород, кварц, серебро, медь и др.

Ко второй и третьей группам относятся соответственно парамагнитные (алюминий, кислород, воздух и т. д.) и ферромагнитные вещества (железо, никель, кобальт и Некоторые их сплавы). Общим для веществ этих групп является то, что при намагничивании магнитные моменты элементарных токов в них ориентируются в направлении ноля внешних токов. В результате магнитное поле усиливается.

Ферромагнитные вещества имеют особое значение в электротехнике, поэтому их магнитные свойства. Здесь отметим лишь, что магнитная индукция в ферромагнитном веществе во много (сотни и тысячи) раз больше, чем в парамагнитном, при одинаковой намагничивающей силе внешних токов. 

Намагниченность вещества

Из сказанного ранее ясно, что результирующее магнитное поле в веществе складывается из двух полей: поля внешних токов (токов в проводах) и поля элементарных внутренних токов.

В связи с этим для равномерного магнитного поля катушки (рис. 8.24, б) при наличии внутри ее какого-либо сердечника, например стального, можно записать уравнение, аналогичное уравнению (8.9) (это можно сделать и при неравномерном поле; равномерное поле взято для упрощения рассуждения):
Электрическое поле и его расчёт
где Iв — полный элементарный ток, сцепленный с контуром а-6-в-г.

Сравнивая (8.31) с (8.13), видим, что магнитная индукция в веществе (парамагнитном или ферромагнитном) больше, чем в вакууме, в связи с действием элементарных токов, т. е. благодаря намагничиванию вещества.
Степень намагничивания вещества оценивается вектором намагниченности М.

Для однородного по всем направлениям вещества величина вектора намагниченности равна геометрической сумме магнитных моментов элементарных токов в единице объема вещества:
Электрическое поле и его расчёт

Напряженность магнитного поля

Найдем величину общего магнитного момента элементарных токов, сцепленных с контуром а-б-в-г, учитывая, что при одинаковой ориентации токи с контуром сцеплены только на участке а-г длиной l (рис. 8.24, б):
Электрическое поле и его расчёт
где iв — элементарный ток, сцепленный с контуром а-б-в-г; S — площадь, ограниченная контуром элементарного тока. Подставив Электрическое поле и его расчёт в формулу (8.32), получим
Электрическое поле и его расчёт
откуда
Электрическое поле и его расчёт
Равенство (8.31) можно представить в виде

Электрическое поле и его расчёт
или
Электрическое поле и его расчёт

Из формулы (8.33) следует, что магнитное поле в веществе можно рассматривать как результат действия только токов в проводах (в витках катушки), если в качестве характеристики поля принять новую векторную величину Н, которая называется напряженностью магнитного поля:
Электрическое поле и его расчёт
С введением этого понятия формула (8.33) примет вид
Электрическое поле и его расчёт

Это уравнение подобно уравнению (8.13), полученному на основе представления о циркуляции вектора магнитной индукции в поле тока бесконечно длинной катушки.

Напряженность Н как характеристика магнитного поля не зависит от свойств среды, а определяется только величиной токов в проводах, что значительно облегчает расчеты магнитных полей.

Магнитная проницаемость вещества

Из уравнения (8.34) можно выразить величину магнитной индукции в веществе:
Электрическое поле и его расчёт
Намагниченность вещества является результатом действия внешнего магнитного поля токов. Коэффициент пропорциональности между напряженностью поля Н и намагниченностью М называется магнитной восприимчивостью Электрическое поле и его расчёт
Электрическое поле и его расчёт
Магнитная восприимчивость выражает способность вещества намагничиваться под действием внешнего магнитного ноля. Учитывая выражение (8.35), запишем
Электрическое поле и его расчёт
В этой формуле величина μ0Н характеризует только магнитное поле в вакууме, обозначается В0, а называется магнитной индукцией в вакууме:
Электрическое поле и его расчёт
Магнитную индукцию в веществе можно выразить формулой
Электрическое поле и его расчёт
Величина
Электрическое поле и его расчёт
характеризует магнитные свойства вещества, в котором существует магнитное поле, и называется абсолютной магнитной проницаемостью,
На основе формулы (8.37) абсолютную магнитную проницаемость можно определить отношением модуля магнитной индукции к модулю напряженности магнитного поля.

В практике удобно пользоваться отношением абсолютной магнитной проницаемости вещества μa к магнитной постоянной μ0:
Электрическое поле и его расчёт
Величина Электрическое поле и его расчётназывается относительной магнитной проницаемостью и показывает, во сколько раз магнитное поле в веществе получается сильнее (или слабее), чем в вакууме, при прочих равных условиях, т. е.
Электрическое поле и его расчёт
Магнитная восприимчивость ферромагнитных веществ велика, поэтому их величина Электрическое поле и его расчёт Для остальных веществ Электрическое поле и его расчёт а Электрическое поле и его расчёт
 

Задача 8.21.

На кольцевой неферромагнитный сердечник, средний радиус которого r = 48 см, намотана обмотка, имеющая N1 = 2000 витков. На эту обмотку концентрично наложена вторая обмотка с числом витков N2 = 3500. Площадь поперечного сечения сердечника S = 20 см2. Определить взаимную индуктивность обмоток, если коэффициент магнитной связи между ними k = 0,9. При последовательном соединении обмоток и токе I = 3 А определить магнитный поток в сердечнике в двух случаях: а) обмотки включены согласно; б) обмотки включены встречно.
Решение. Для определения взаимной индуктивности воспользуемся формулой (8.27). Но предварительно найдем индуктивность каждой катушки.
Индуктивность первой катушки
Электрическое поле и его расчёт
Индуктивность второй катушки
Электрическое поле и его расчёт
Взаимная индуктивность
Электрическое поле и его расчёт
Для определения магнитного потока найдем намагничивающую силу:
а)    при согласном включении
Электрическое поле и его расчёт
б)    при встречном включении
Электрическое поле и его расчёт
Напряженность магнитного поля
Электрическое поле и его расчёт
Электрическое поле и его расчёт

Магнитная индукция

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Магнитный поток

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Закон полного тока и его применение

Введение понятия о магнитной проницаемости вещества позволяет все формулы, полученные ранее для магнитного поля в вакууме, применить и для магнитного поля в веществе, заменив в них магнитную постоянную магнитной проницаемостью μa. О такой возможности свидетельствует полная аналогия формул (8.36) и (8.37).

Это обстоятельство вместе с понятием о напряженности магнитного поля является основой для формулировки закона полного тока.

Закон полного тока

В формуле (8.8)
Электрическое поле и его расчёт
вместо μ0 запишем μa, а вместо магнитной индукции подставим равную ей величину Электрическое поле и его расчёт Получим
Электрическое поле и его расчёт
Уравнение (8.40) выражает закон полного тока: 
циркуляция вектора напряженности магнитного поля по замкнутому контуру равна полному току, пронизывающему поверхность, ограниченную этим контуром.

В тех случаях, когда напряженность магнитного поля имеет одинаковую величину по всему контуру, а выбранный контур совпадает с линией магнитной индукции, уравнение (8.40) оказывается более простым: Электрическое поле и его расчёта для катушек
Электрическое поле и его расчёт

Если контур содержит несколько участков с различными величинами напряженности поля (Н1, Н2, .., Нn), но в пределах каждого участка напряженность не меняется, то уравнение (8.40) можно записать так:
Электрическое поле и его расчёт
где n — номер участка контура.
В таком выражении закон полного тока напоминает второй закон Кирхгофа и применяется при расчете магнитных цепей.

Электрическое поле и его расчёт

Рис. 8.25. Изменение характеристик магнитного поля на границе двух сред

Изменение магнитного поля на границе двух сред

Выделим на границе двух сред, имеющих относительные магнитные проницаемости μr1 и μr2, замкнутый контур а-б-в-г-д-е-а (рис. 8.25) около некоторой точки А.

Магнитная индукция и напряженность магнитного поля в этой точке характеризуются векторами B1 и Н1, в первой и В2 и Н2 во второй среде.
Разложим векторы В и Н в обеих средах на нормальные Вn, Нn и тангенциальные Вt и Ht составляющие.

При отсутствии на поверхности раздела сред токов проводимости по закону полного тока для указанного контура Электрическое поле и его расчёт
Электрическое поле и его расчёт
Учитывая равенство соответствующих отрезков контура, получим Н1t = H2t или
Электрическое поле и его расчёт
 

На границе двух сред тангенциальная составляющая напряженности магнитного поля не изменяется.

Магнитный поток сквозь поверхность раздела сред создают только нормальные составляющие магнитной индукции. Учитывая же непрерывность линий магнитной индукции, можно заключить, что магнитный поток на границе двух сред не изменяется. Таким образом,
Электрическое поле и его расчёт
где ΔS — любой элемент площади на границе раздела сред.

Сокращая на ΔS, получим B1n = B2n или
Электрическое поле и его расчёт
Разделим равенство (8.43) на (8.44):
Электрическое поле и его расчёт
Отсюда
Электрическое поле и его расчёт
Равенство (8.45) выражает закон преломления линий магнитной индукции на границе двух сред.

В частном случае, когда линии магнитной индукции перпендикулярны плоскости раздела, тангенциальные составляющие напряженности и индукции равны нулю. Магнитная индукция на границе двух сред в этом случае не изменяется [см. формулу (8.44)]: B1 = B2.

Напряженность магнитного поля изменяется скачком:
Электрическое поле и его расчёт
или Электрическое поле и его расчёт
и оказывается больше в среде с меньшей магнитной проницаемостью.
 

Задача 8.24.

Определить изменение направления линий магнитной индукции на границе стали с воздухом, если известны для стали μr1 = 1000; α1 = 89°.
Решение. По формуле (8.45),
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Случай изменения магнитного поля на границе ферромагнитной среды и воздуха часто встречается в электромагнитных устройствах, где магнитный поток замыкается по стальным участкам, чередующимся с воздушными зазорами.
Магнитная проницаемость стали во много раз больше магнитной проницаемости воздуха, поэтому при значениях α1 даже близких к 90°, α2 получается близким к нулю.
Практически можно считать, что линии магнитной индукции в воздухе у границы со сталью перпендикулярны поверхности раздела.

Свойства и применение ферромагнитных материалов

Ферромагнитные вещества широко применяются в электротехнике благодаря их способности намагничиваться и значительно усиливать внешнее магнитное поле. Для практики большое значение имеют особые свойства ферромагнитных веществ, выявляющиеся в процессе намагничивания. Эти свойства можно проследить на опыте, измеряя напряженность поля Н и магнитную индукцию В катушки со стальным сердечником (рис. 8.26).

Электрическое поле и его расчёт
Рис. 8.26. Схема для намагничивания ферромагнитного сердечника

Намагничивание ферромагнитных материалов

С ростом напряженности поля Н магнитная индукция В увеличивается по закону Электрическое поле и его расчёт

График В(Н), соответствующий первоначальному намагничиванию и показанный на рис. 8.27, называется кривой первоначального намагничивания. Там же даны зависимости от напряженности поля обоих слагаемых μ0М и μ0Н, из которых складывается магнитная индукция в ферромагнитной среде.
Получив состояние магнитного насыщения, уменьшим напряженность внешнего магнитного поля Н. Магнитная индукция уменьшается по кривой 1-2 (рис. 8.28), которая не совпадает с кривой первоначального намагничивания (кривая 0-1). При Н = 0 магнитная индукция имеет остаточное значение Вr.

Электрическое поле и его расчёт

Рис. 8.27. Зависимость магнитной индукции и намагниченности от напряженности поля

Электрическое поле и его расчёт
Рис. 8.28. График циклического перемагничивания ферромагнитного сердечника

Размагничивание сердечника как бы запаздывает по сравнению с уменьшением напряженности поля. Это явление называют магнитным гистерезисом.

Особенностью ферромагнитных веществ является наличие сильных магнитных связей молекул, вследствие чего в них образуются весьма малые (микроскопические) области, внутри которых магнитные моменты молекул ориентированы в одну сторону. Такие области имеют значительный общий магнитный момент и называются самопроизвольно намагниченными.
В отсутствие внешнего магнитного поля ферромагнитные вещества не проявляют своих магнитных свойств, так как магнитные моменты самопроизвольно намагниченных областей направлены беспорядочно. Общий магнитный момент всего объема тела оказывается равным нулю.
Усиление магнитного поля в ферромагнитной среде, а также явления магнитного насыщения и остаточного магнетизма хорошо объясняются изменением ориентации магнитных моментов областей самопроизвольной намагниченности под действием внешнего поля.

В образовании внутреннего магнитного поля участвуют не отдельные молекулы, как в диамагнитных и парамагнитных веществах, а целые области, обладающие магнитным моментом.

Магнитное насыщение означает, что все магнитные моменты ориентированы по направлению внешнего поля. Остаточный магнетизм объясняется тем, что при снятии внешнего поля определенная часть магнитных моментов сохраняет приобретенное при намагничивании направление, так что результирующий магнитный момент объема сердечника не уменьшается до нуля.

Магнитный гистерезис

Изменив направление тока в катушке и, следовательно, направление внешнего поля в сердечнике, увеличим напряженность поля (вектор Н изменил направление). Магнитная индукция уменьшается до нуля (отрезок кривой 2-3), а затем изменит направление на обратное.

Величину напряженности поля Н, необходимую для уничтожения поля в сердечнике, называют коэрцитивной (задерживающей) силой. В точке 3 внешнее поле скомпенсировало остаточное поле намагниченности сердечника (—Нс = М). В дальнейшем результирующее поле в сердечнике изменяет направление и усиливается, пока не наступает насыщение (участок 3-4). Аналогично можно получить данные и начертить нижнюю часть графика 4-5-6-1. Полученную замкнутую кривую В(Н) называют петлей магнитного гистерезиса.

Циклическое перемагничивание вещества в области значений В и Н, меньших тех, которые соответствуют полному насыщению, тоже образует петлю гистерезиса, полностью заключенную внутри предельной петли.
Ряд таких петель гистерезиса показан на рис. 8.29. Кривую 0-1- 2-3-4, проведенную через вершины всех петель гистерезиса, называют основной кривой намагничивания. Она проходит близко к кривой первоначального намагничивания, но не совпадает с ней.

Основную кривую намагничивания используют при технических расчетах магнитных систем. На рис. 8.30 изображены основные кривые намагничивания некоторых ферромагнитных материалов.

Электрическое поле и его расчёт

Рис. 8.29. Петли магнитного гистерезиса

Электрическое поле и его расчёт

Рис. 8.30. Основные кривые намагничивания некоторых ферромагнитных материалов

Свойства ферромагнитных материалов

На основе опыта намагничивания и перемагничивания ферромагнитных материалов можно сформулировать основные их свойства.

  1. Ферромагнитные вещества относительно легко и сильно намагничиваются. Относительная магнитная проницаемость μr для некоторых ферромагнитных материалов достигает значений 105 и выше.
  2. С ростом напряженности внешнего магнитного поля намагниченность и магнитная индукция увеличиваются; однако намагниченность и магнитная индукция не пропорциональны напряженности поля (см. рис. 8.27). Это значит, что магнитная восприимчивость Электрическое поле и его расчёт и магнитная проницаемость μr — не постоянные величины, а зависят от намагниченности М.
  3. Начиная с некоторой напряженности поля Н при ее увеличении происходит магнитное насыщение, т. е. такое состояние ферромагнитных веществ, при котором рост напряженности поля не влечет за собой увеличения намагниченности.
  4. При уменьшении напряженности поля Н после достижения состояния насыщения намагниченность и магнитная индукция уменьшаются. Однако величины М и В отличаются от тех, которые были зафиксированы для одинаковых Н при увеличении напряженности. 
  5. При устранении внешнего поля (Н = 0) обнаруживается остаточная намагниченность (М и В не равны нулю).
  6. При увеличении напряженности поля Н в обратном направлении происходит сначала размагничивание намагниченного образца, а затем намагничивание в обратном направлении (М и В меняют знак) до насыщения.
  7. При циклическом перемагничивании с определенной частотой ферромагнитное вещество нагревается, что свидетельствует о затрате энергии на перемагничивание.

Абсолютная магнитная проницаемость ферромагнитного вещества определяется в каждой точке основной кривой намагничивания (рис. 8.31) отношением
Электрическое поле и его расчёт
где mВ и mН — масштабы по осям координат.

Электрическое поле и его расчёт

Рис. 8.31. К определению магнитной проницаемости

Магнитная проницаемость, определяемая этим отношением, называется статической.

Как видим, с ростом напряженности поля магнитная проницаемость вначале увеличивается, а при переходе в область насыщения уменьшается.
Кроме статической магнитной проницаемости μa определяется дифференциальная магнитная проницаемость μaдиф. Последняя пропорциональна тангенсу угла наклона касательной к основной кривой намагничивания в каждой точке:
Электрическое поле и его расчёт

Что касается затрат энергии на перемагничивание, то, как будет показано дальше, величина их пропорциональна площади, ограниченной петлей магнитного гистерезиса.

Магнитно-мягкие и магнитно-твердые материалы

Для всех ферромагнитных материалов отмеченные свойства являются общими, однако проявляются они по-разному в зависимости от их химического состава.
В связи с этим различают две основные группы ферромагнитных материалов: магнитно-твердые и магнитно-мягкие.

Магнитно-твердые материалы имеют большие величины остаточной магнитной индукции и коэрцитивной силы, широкую петлю магнитного гистерезиса. Магнитно-твердыми являются хромовольфрамовые, хромомолибденовые стали (Вr = 1 Т, Нс = 60 А/см); сплав алнико (Al, Ni, CO) и др.

Для магнитно-мягких материалов характерны большая магнитная проницаемость и малая коэрцитивная сила (узкая петля магнитного гистерезиса).

К магнитно-мягким материалам относятся электротехническая сталь (малоуглеродистая с присадкой кремния от 1,7 до 4%), чистое электролитическое железо, электротехнический чугун, пермаллой (80% Ni и 20% Fe) и др.
Магнитно-мягкие материалы применяются для устройства магнитных цепей электрических машин, аппаратов, электромагнитов и т. п. Свойства материалов обеспечивают в этих устройствах создание сильных магнитных полей при относительно небольших величинах намагничивающих сил IN и относительно малые потери энергии при перемагничивании.

Задача 8.27.

Решить задачу 8.21, если сердечник выполнен из электротехнической стали, характеристика намагничивания которой приведена на рис. 8.30.
Решение. Магнитную проницаемость стали можно принять постоянной условно в предположении, что в тех пределах изменения магнитной индукции, какие имеют место при переключении обмоток, характеристика намагничивания стали близка к прямой. Если характеристику намагничивания нельзя хотя бы приближенно считать прямолинейной, то формула (8.27) в этом случае непригодна. Взаимную индуктивность обмоток можно определить по формуле (8.25), предполагая без тока сначала одну, а затем другую обмотки.
В этом случае Электрическое поле и его расчёт
Для определения индуктивности катушки нельзя воспользоваться и формулой (8.28), так как неизвестна магнитная проницаемость стали.
При разомкнутой второй обмотке найдем индуктивность L1 и взаимоиндуктивность М1.2.
Намагничивающая сила обмотки
Электрическое поле и его расчёт
Напряженность поля
Электрическое поле и его расчёт
Магнитную индукцию находят по кривой намагничивания электротехнической стали в следующем порядке (см. рис. 8.30 и 8.31). На оси абсцисс определяют точку 1, отстоящую от начала координат на расстоянии 0-1, выражающем в принятом масштабе найденную величину напряженности поля. Из этой точки проводят прямую, параллельную оси ординат, до пересечения с кривой намагничивания в точке 2. Эту точку проектируют на ось ординат, где и читают ответ — величину магнитной индукции (отрезок 0-3).
Для H1 = 20 А/см

Электрическое поле и его расчёт
Магнитный поток
Электрическое поле и его расчёт
Собственное потокосцепление первой обмотки
Электрическое поле и его расчёт
Индуктивность первой обмотки
Электрическое поле и его расчёт
Найдем взаимное потокосцепление, считая поток рассеяния Электрическое поле и его расчёт
Электрическое поле и его расчёт
Взаимная индуктивность
Электрическое поле и его расчёт

Расчет электрических полей

В рабочем состоянии электрических устройств и установок между токоведущими частями имеется разность потенциалов, т. е. существует электрическое поле.

Кроме основного (разрешенного) канала тока имеется бесчисленное множество потенциальных каналов, которые закрыты электрической изоляцией. Таким образом, электрическая изоляция находится под действием электрического поля и должна быть рассчитана на то, чтобы надежно выполнять свои функции. Для расчета необходимо определить характеристики электрического поля.
Эти и другие вопросы, относящиеся к электрическому полю, рассматриваются в данной главе.

Применение закона кулона для расчета электрического поля

Расчет электрических полей на основе закона Кулона применяется в тех случаях, когда электрические заряды тел можно рассматривать сосредоточенными в весьма малом объеме, т. е. полагать заряженные тела точечными.
 

Электрическое поле уединенного заряженного тела

Из закона Кулона следует, что напряженность элегического поля уединенного точечного заряженного тела
Электрическое поле и его расчёт

где Q — величина заряда тела; Q0 — заряд пробного тела; r — расстояние от заряженного тела до точки, в которой определяется напряженность поля.
Электрическое поле уединенного точечного заряженного тела неравномерно. Найдем потенциал поля в некоторой точке 1 (см. рис. 7.3), используя выражение (1.3), с помощью которого выразим работу в поле на пути от некоторой точки 1 до бесконечности:
Электрическое поле и его расчёт
где r1 — расстояние от заряженного тела до точки 1.
Положение точки 1 выбрано произвольно, поэтому полученное выражение можно записать для любой точки
Электрическое поле и его расчёт
Напряжение между точками 1 и 2
Электрическое поле и его расчёт
Между напряженностью электрического поля и потенциалом в некоторой точке имеется определенная связь, которую выразим в общем виде.
Из выражения (1.3) следует:
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Знак минус в этих выражениях указывает на то, что энергия убывает, если перемещение происходит в направлении напряженности поля. 
Отсюда

Электрическое поле и его расчёт
Еn — величина проекции вектора Е на направление dl.

Электрическое поле группы заряженных тел

При рассмотрении электрического поля в вакууме (а также в воздухе) установили, что напряженность поля линейно зависит от заряда тела [в выражении (7.1) Q = const]. Поэтому при определении напряженности результирующего поля от действия нескольких заряженных тел можно пользоваться принципом наложения полей.

В каждой точке пространства, окружающего заряженные тела, электрическое поле одного тела накладывается на поле другого.

Для определения общей напряженности нужно найти величину и направление вектора напряженности каждого из составляющих полей, а затем сложить векторы:
Электрическое поле и его расчёт
Принцип наложения действителен и при определении потенциала в некоторой точке результирующего поля. Но потенциалы складываются алгебраически, так как они скалярные величины:

Электрическое поле и его расчёт

Задача 7.1. Два точечных тела, заряды которых Q1 = 3,2 • 10-11 Кл и Q2 = -4,267 • 10-11 Кл, расположены в воздухе в противоположных вершинах воображаемого прямоугольника со сторонами 6 и 8 см (рис. 7.1). Определить напряженность и потенциал в двух других вершинах и в точках 5, 6, 7, 8.

Электрическое поле и его расчёт

Рис. 7.1. К задаче 7.1
Решение. Определим в заданных точках напряженность электрического поля каждого заряженного тела в отдельности по формуле (7.1), обозначая напряженность буквой Е с индексами. Первая цифра индекса указывает, с каким заряженным телом связано поле, вторая — точку, где определяется напряженность этого поля.
В точке 3
Электрическое поле и его расчёт
По формуле (7.2),

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Согласно принципу наложения, общую напряженность поля найдем геометрическим (векторным) сложением составляющих.
По условию задачи векторы Е1.3 и Е2.3 направлены под углом 90° друг к другу. Поэтому напряженность результирующего поля можно подсчитать как гипотенузу прямоугольного треугольника, катетами которого являются эти векторы:
Электрическое поле и его расчёт
Электрическое поле и его расчёт
В общем случае определение напряженности результирующего поля можно выполнить графически, по правилам векторного сложения или по теореме косинусов.
В точке 5
Электрическое поле и его расчёт

Электрическое поле и его расчёт

Электрическое поле и его расчёт
Электрическое поле и его расчёт

По условию задачи векторы Е1.5 и Е2.5 направлены по прямой 1-2 в одну сторону. Поэтому величину напряженности результирующего поля можно найти как сумму численных значений Е1.5 и Е2.5:
Е5 = Е1.5 + Е2.5 = 180 + 106,7 = 286,7 В/м;
V5 = V1.5 + V2.5 = 13,6 В.

Напряженность и потенциал результирующего поля в точках 4, 6, 7, 8 определите самостоятельно.

Теорема Гаусса и ее применение

В практике чаще встречаются случаи, когда заряд тела распределен по его поверхности с некоторой плотностью. В таких случаях задачи решаются более просто на основе теоремы Гаусса.

Поток вектора напряженности электрического поля

Рассматривая электрическое поле, изображенное на рис. 7.3, выделим элемент поверхности площадью dS. Он представляет собой маленькую часть сферы радиусом r, в центре которой помещено точечное тело с положительным зарядом Q.

Электрическое поле и его расчёт

Рис. 7.3. К определению потока вектора напряженности электрического поля

В силу геометрической симметрии поля вектор напряженности Е по величине одинаков во всех точках поверхности и направлен перпендикулярно ей. Произведение ЕdS выражает величину элементарного потока dN вектора напряженности электрического поля через элемент поверхности dS, если линии напряженности перпендикулярны пронизываемой ими поверхности:
Электрическое поле и его расчёт
Определим полный поток N вектора напряженности электрического поля, для чего сложим элементарные потоки по всей поверхности сферы:
Электрическое поле и его расчёт
Вынося постоянную величину Е за знак суммы и учитывая, что вектор Е всюду перпендикулярен поверхности сферы, получаем
Электрическое поле и его расчёт
где Электрическое поле и его расчёт — площадь сферы; следовательно,
Электрическое поле и его расчёт
Подставляя напряженность поля в формулу (7.1), получим
Электрическое поле и его расчёт
 

Теорема Гаусса

Приведенные рассуждения справедливы и при отрицательном заряде с той лишь разницей, что поток вектора напряженности в этом случае отрицательный.

Из формулы (7.8) следует, что поток N не зависит от радиуса сферической поверхности.

Потоку вектора напряженности электрического поля можно придать некоторую наглядность с помощью линий напряженности. 

Вследствие симметрии электрического поля в рассматриваемом случае линии напряженности пронизывают всю поверхность сферы и их плотность (число линий на единицу площади) одинакова. Предположим, что эта плотность выбрана численно равной напряженности поля. Тогда общее число линий, пронизывающих поверхность сферы, будет численно равно полному потоку вектора напряженности поля N.

Число линий напряженности, а следовательно, и поток вектора напряженности остаются одинаковыми для сферы любого радиуса. Это справедливо и для элементов dS и dS» сферических поверхностей, через которые проходят одни и те же линии напряженности (рис. 7.3), образующие конус с вершиной в центре сферы.

Элементарный поток вектора напряженности заключен внутри указанного конуса и пронизывающие элемент поверхности dS линии напряженности образуют элементарную трубку поля. Сложив потоки всех трубок по всему объему шара, получим полный поток вектора напряженности электрического поля точечного заряженного тела.

Можно доказать, что формула (7.8) справедлива не только для сферы, окружающей точечное заряженное тело, но и для любой замкнутой поверхности.

В общем случае направление вектора напряженности Е может быть не перпендикулярно элементу поверхности dS около выбранной точки А (рис. 7.4). Угол между направлением вектора Е и внешней нормалью n к поверхности в точке А обозначим а (внешняя нормаль — это линия, перпендикулярная поверхности в выбранной точке, направленная от этой поверхности с внешней стороны). Для определения потока через элемент поверхности нужно взять проекцию вектора Е на направление внешней нормали
Электрическое поле и его расчёт
где

Электрическое поле и его расчёт
Тогда
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Рис. 7.4. К определению потока вектора напряженности электрического поля

Электрическое поле и его расчёт

Рис. 7.5. К определению напряженности электрического поля заряженной плоскости

Суммирование элементарных потоков по всей замкнутой поверхности дает полный поток
Электрическое поле и его расчёт
Если внутри замкнутой поверхности находится любое число тел с разноименными зарядами, в формулы (7.8) и (7.9) следует ввести алгебраическую сумму всех зарядов:
Электрическое поле и его расчёт
Алгебраическая сумма зарядов берется в данном случае потому, что линии напряженности при положительных и отрицательных зарядах направлены противоположно.

Формула (7.10) является математическим выражением теоремы Гаусса, которая формулируется так: поток вектора напряженности электрического поля сквозь замкнутую поверхность в вакууме равен отношению электрического заряда, заключенного внутри этой поверхности к электрической постоянной.

Поле заряженной плоскости

Бесконечная плоскость (рис. 7.5) имеет заряд, распределенный с плотностью а. Выделим вокруг части этой плоскости замкнутую поверхность, которая образована двумя плоскими поверхностями S, параллельными заряженной плоскости, и цилиндрической боковой поверхностью, перпендикулярной ей. Вследствие симметрии все точки поверхности S имеют одинаковую напряженность поля.

Кроме того, вектор напряженности направлен перпендикулярно заряженной плоскости, т. е. перпендикулярно поверхности S и параллельно цилиндрической боковой поверхности. В этом случае поток вектора напряженности через цилиндрическую поверхность равен нулю и, следовательно, общий поток равен потоку через поверхности S.
Заряд, заключенный внутри выделенной поверхности, составляет σS.
Согласно теореме Гаусса,
Электрическое поле и его расчёт
Отсюда
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Рис. 7.6. К определению напряженности и потенциала электрического поля между двумя заряженными плоскостями

Электрическое поле двух параллельных бесконечных плоскостей, несущих разноименные заряды одинаковой плотности (рис. 7.6), определяется наложением полей положительной и отрицательной пластин. 
Как видно из формулы (7.11), напряженность поля бесконечной плоскости не связана с расстоянием от нее. Поэтому вне пластин (точка А) поля положительной и отрицательной пластин взаимно скомпенсированы, т. е. результирующая напряженность поля равна нулю (Е = 0).
Между пластинами (точка В) поля их складываются, поэтому
Электрическое поле и его расчёт

Таким образом, между двумя бесконечными плоскостями, заряженными противоположно с одинаковой плотностью заряда, напряженность поля одинакова во всех точках по величине и направлению, т. е. электрическое поле равномерно.

Поле заряженного шара

Наметим в пространстве, окружающем заряженный шар, произвольную точку 1, отстоящую от центра шара на расстоянии r (рис. 7.7) Выделим сферическую поверхность, концентричную с поверхностью заряженного шара, так, чтобы точка 1 лежала на этой поверхности. Вследствие симметрии все точки выделенной поверхности имеют одинаковую напряженность. В данном случае вектор напряженности Е направлен радиально в каждой точке, т. е. перпендикулярно выбранной сферической поверхности.
Поток вектора напряженности поля через выделенную сферическую поверхность
Электрическое поле и его расчёт
Заряд шара
Электрическое поле и его расчёт
где σ — поверхностная плотность заряда; R — радиус шара.

Согласно теореме Гаусса [см. формулу (7.8)],
Электрическое поле и его расчёт
Отсюда для напряженности поля получим выражение
Электрическое поле и его расчёт
Напряженность поля заряженного шара имеет такое же выражение, какое получено из закона Кулона для точечного заряженного тела. Следовательно, заряд шара можно считать сосредоточенным в центре и рассматривать заряженный шар как точечное заряженное тело. При r = R

Электрическое поле и его расчёт
На рис. 7.7 показаны графики зависимости напряженности и потенциала поля уединенного заряженного шара от расстояния r.

Поле заряженного прямого провода

Проведем через некоторую точку 1 пространства цилиндрическую поверхность, ось которой совпадает с осью провода круглого сечения (рис. 7.8).
Вследствие симметрии во всех точках выделенной поверхности линии напряженности перпендикулярны ей, а напряженность поля одинакова: Электрическое поле и его расчёт

Электрическое поле и его расчёт

Рис. 7.7. К определению напряженности и потенциала электрического поля заряженного шара

Электрическое поле и его расчёт
   Рис. 7.8. К определению напряженности электрического поля прямого заряженного провода

Поток вектора напряженности
Электрическое поле и его расчёт
где 2πrl — боковая поверхность цилиндра.
Поток через основания цилиндра равен нулю, так как линии напряженности не пронизывают их.

Согласно теореме Гаусса,
Электрическое поле и его расчёт

Электрическое поле и его расчёт
где Q = τl; τ — линейная плотность заряда на проводе.

Задача 7.3.

Построить графики напряженности электрического поля заряженного шара (поверхностная плотность заряда σ = 2 • 10-8 Кл/м2, радиус шара R = 5 см) и заряженного прямого провода (линейная плотность заряда τ = 4 • 10-8 Кл/м).
Решение. Для построения графиков нужно задаться несколькими значениями расстояния r от центра шара или оси провода до точек, в которых предполагается определить напряженность поля. По формуле (7.13) определяют напряженность электрического поля заряженного шара E1, по формуле (7.14) — заряженного провода E2.

При r = 10 см
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Определите напряженность электрического поля в обоих случаях в точках, положение которых определяется расстоянием r = 5, 20, 50, 100 см и ∞; постройте графики Е(r) в прямоугольной системе координат.

Электрическое поле в однородном диэлектрике

По сравнению с проводниками количество свободных заряженных частиц в единице объема диэлектрика очень мало. Поэтому при наличии электрического поля направленным движением свободных заряженных частиц можно пренебречь и считать, что в диэлектрике преобладают электростатические явления.

При этом электрическое поле воздействует на вещество диэлектрика, которое определенным образом изменяет электрическое поле.

Поляризация диэлектрика

Различают диэлектрики с полярными и неполярными молекулами. Полярные молекулы в электрическом отношении можно уподобить электрическому диполю (рис. 7.9, а). Электрическим диполем называют совокупность двух точечных заряженных тел, обладающих равными по величине и противоположными по знаку зарядами, расстояние между которыми очень мало по сравнению с расстоянием от них до точек, в которых рассматривается поле диполя.
Электрическое поле и его расчёт
Рис. 7.9. Диэлектрик в электрическом поле

Электрической характеристикой диполя является его электрический момент р, численное значение которого равно произведению величины заряда точечных тел на расстояние между ними:
Электрическое поле и его расчёт.
Вектор электрического момента направлен от отрицательного заряда к положительному.

Полярные молекулы в диэлектрике расположены так, что электрические моменты их направлены беспорядочно. Поэтому тела, в состав которых входят полярные молекулы, в целом нейтральны, хотя каждая полярная молекула создает свое электрическое поле.

Рассмотрим диэлектрик, помещенный в равномерное электрическое поле с напряженностью Е между двумя заряженными металлическими пластинами (рис. 7.9).

Во внешнем электрическом поле полярная молекула (диполь) испытывает действие пары сил, которая поворачивает ее таким образом, что электрический момент диполя оказывается направленным так же, как и напряженность поля (рис. 7.9, б).

В неполярных молекулах диэлектрика под действием внешнего электрического поля происходит смещение заряженных частиц вдоль его направления, в результате чего они приобретают свойство диполей. Это явление называется поляризацией диэлектрика.

Поляризованность диэлектрика

Степень поляризации диэлектрика оценивают вектором поляризованности P. Для однородного по всем направлениям диэлектрика величина вектора поляризованности представляет геометрическую сумму электрических моментов р молекул, заключенных в единице объема:
Электрическое поле и его расчёт
Поляризованность тем больше, чем сильнее электрическое поле. Зависит она и от свойства диэлектрика. Поэтому поляризованность можно выразить произведением
Электрическое поле и его расчёт
где Электрическое поле и его расчёт — диэлектрическая восприимчивость (относительная ) — величина, характеризующая способность диэлектрика поляризоваться под действием электрического поля.

В результате поляризации диэлектрика диполи стремятся располагаться вдоль линий напряженности электрического поля. При этом внутри диэлектрика в любом объеме, не меньшем объема молекулы, сохраняется равенство общих зарядов того и другого знака, так что диэлектрик остается нейтральным. По поверхностям диэлектрика, прилегающим к металлическим пластинам, распределены частицы, имеющие заряд одного знака: отрицательный — на границе с положительной пластиной и положительный— на границе с отрицательной пластиной (рис. 7.9, в).

На обеих поверхностях заряд распределен равномерно с одинаковой плотностью σ. Таким образом, на границе между металлической пластиной и диэлектриком распределены два вида заряженных частиц: свободные частицы металлической пластины с общим зарядом Q0 и связанные частицы диэлектрика с общим зарядом Qп противоположного знака.

Электрическое поле в диэлектрике соответствует общему заряду частиц Q = Q0 — Qп; оно физически существует в пространстве между молекулами диэлектрика. Это поле можно также представить как результат наложения двух полей — внешнего (напряженность Е0) и внутреннего (напряженность Еп).

В данном случае внешним полем называется поле свободных заряженных частиц металлических пластин при отсутствии диэлектрика, а внутренним — поле связанных заряженных частиц диэлектрика, существующее независимо от внешнего поля. Независимое существование внутреннего поля диэлектрика до некоторой степени условно, так как оно возникает только при наличии внешнего поля и в большинстве случаев исчезает при его отсутствии.
Однако имеются такие диэлектрики, которые, будучи поляризованными внешним электрическим полем, сохраняют остаточную поляризацию (сегнетоэлектрики и электреты).

Электрическое смещение

На основании теоремы Гаусса [см. формулу (7.8)] для равномерного поля свободных заряженных частиц
Электрическое поле и его расчёт
а для поля в диэлектрике
Электрическое поле и его расчёт

Найдем величину вектора поляризованности Р (рис. 7.9, в). Электрический момент элементарного поверхностного заряда имеет значение σdSl, где l — расстояние между пластинами или толщина диэлектрика; σSl — момент всего объема диэлектрика.

Таким образом числитель выражения (7.16) в данном случае имеет величину σSl, а знаменатель — Sl.
Тогда поляризованность
Электрическое поле и его расчёт
Величина поляризованности равна плотности заряда на поверхности диэлектрика.

Вместе с тем заряд связанных частиц на поверхности диэлектрика равен общему заряду частиц, которые смещаются в диэлектрике через любую плоскость, параллельную обкладкам.

Согласно выражению (7.19),
Электрическое поле и его расчёт
Общий заряд связанных частиц с учетом выражения (7.20)

Электрическое поле и его расчёт

Тогда
Электрическое поле и его расчёт
или
Электрическое поле и его расчёт

Из этого выражения следует, что электрическое поле в диэлектрике можно рассматривать только в связи с зарядом Q0 свободных заряженных частиц и не учитывать явление поляризации, если в качестве характеристики поля принять другую векторную величину D, называемую электрическим смещением:
Электрическое поле и его расчёт
С введением этого понятия формула (7.21) упрощается:
Электрическое поле и его расчёт
Электрическое смещение как характеристика электрического поля не зависит от свойств среды, а определяется только зарядом свободных частиц, что значительно облегчает расчеты электрических полей.
В выражение (7.22) подставим численное значение вектора поляризованности согласно (7.17):
Электрическое поле и его расчёт
В этой формуле величина ε0Е характеризует только электрическое поле в вакууме, обозначается D0 и называется электрическим смещением в вакууме:
Электрическое поле и его расчёт
Слагаемым Электрическое поле и его расчёт учитывается явление поляризации диэлектрика.

Диэлектрическая проницаемость

Сравнивая выражения (7.18) и (7.19), нетрудно установить, что при внесении диэлектрика в пространство между металлическими пластинами электрическое поле становится слабее того поля, которое создается при отсутствии диэлектрика и прочих одинаковых условиях, т. е. Е < Е0.
Это обстоятельство формально можно учесть, введя в выражения, определяющие напряженность поля, вместо электрической постоянной ε0 величину εa > ε0, считая заряд по-прежнему равным заряду Q0 свободных частиц.

Величина εa, называемая диэлектрической проницаемостью веществ, наряду с диэлектрической восприимчивостью Электрическое поле и его расчёт характеризует электрические свойства диэлектрика.
Из выражения (7.23) электрическое смещение можно выразить формулой
Электрическое поле и его расчёт
Величина Электрическое поле и его расчётхарактеризующая свойства диэлектрика, и есть упомянутая ранее диэлектрическая проницаемость.
Диэлектрическая проницаемость имеет такую же размерность, что и электрическая постоянная.

Электрическое поле и его расчёт

Рис. 7.10. Вольт-кулоновые характеристики конденсаторов

Обычно электрические свойства веществ оценивают отношением их диэлектрической проницаемости εa к электрической постоянной ε0:

Электрическое поле и его расчёт

Диэлектрическая восприимчивость Электрическое поле и его расчёт диэлектриков — величина положительная, поэтому εr > 1, а εa > ε0.

Величина εr называется относительной диэлектрической проницаемостью и показывает, во сколько раз электрическое поле в диэлектрике слабее, чем в пустоте, при прочих равных условиях.

Емкость конденсаторов, изготовленных с применением таких диэлектриков, не зависит от величины напряжения между его обкладками. Такие конденсаторы называются, линейными, так как зависимость их заряда от напряжения — Q(U) — прямолинейная (рис. 7. 10, а). Диэлектрическая проницаемость сегнетоэлектриков сильно зависит от напряженности электрического поля, что видно из рис. 7.10, б, на котором эта зависимость показана вместе с графиком D (Е). Конденсатор с сегнетоэлектриком имеет нелинейную вольт-кулоновую характеристику Q(U). Такие конденсаторы применяются в устройствах автоматики.

Электрическая емкость

Связь уединенного проводника, имеющего электрический заряд Q, с собственным электрическим полем характеризуется величиной заряда. В этом поле поверхность проводника является поверхностью равного потенциала V; такой же потенциал имеют все точки в объеме проводника, поэтому можно говорить о потенциале проводника.

При увеличений или уменьшении заряда совершается работа и энергетическая характеристика (потенциала) проводника соответственно увеличивается или уменьшается.

Однако при равном изменении зарядов двух проводников, каждый из которых уединен, изменения их потенциалов могут быть неравными. На зависимость между потенциалом и зарядом уединенного проводника влияют форма и размеры его поверхности, а также среда, в которую проводник помещен. Для выражения этого влияния введено понятие электрической емкости уединенного проводника С.

Общее выражение емкости

Электрическая емкость проводника есть величина, характеризующая способность проводника накапливать электрический заряд, численно равная отношению заряда проводника к его потенциалу:
Электрическое поле и его расчёт

Связь потенциала и заряда проводника в данном случае выражена в предположении, что все другие проводники бесконечно удалены, а потенциал бесконечно удаленной точки равен нулю.

В вакууме это отношение для данного проводника остается неизменным независимо от величины заряда. Во многих диэлектриках, используемых в практике, емкость проводника тоже постоянна в широких пределах изменения заряда.

Единица емкости
[С] = кулон/вольт = фарад (Ф).
Фарад — очень крупная единица емкости, поэтому в практических расчетах часто выражают емкость в долях фарада — микрофарадах (мкФ) и пикофарадах (пФ): 1Ф = 106 мкФ = 1012 пФ.

В системе заряженных проводников на заряд и потенциал каждого проводника влияют форма, расположение и величина зарядов других проводников. В этом случае применяется понятие о емкости системы проводников.

Наибольшее значение для практики имеют системы из двух проводников, получающих равные по величине, но противоположные по знаку заряды. Устройства из двух изолированных друг от друга проводников, которые получают равные по величине, но противоположные по знаку заряды, называются конденсаторами.

Проводники конденсатора, имея равные по величине, но противоположные по знаку заряды (см. рис. 1.6, а), имеют разные потенциалы V1 и V2. Следовательно, между проводниками имеется напряжение U = V1 — V2.
 

Величина, характеризующая связь заряда конденсатора с напряжением между его обкладками, численно равная отношению заряда к напряжению, называется емкостью конденсатора:
Электрическое поле и его расчёт

Емкость конденсатора зависит от формы и размеров обкладок, расстояния и свойств среды между обкладками.

Проводимость диэлектриков, используемых для заполнения пространства между обкладками конденсатора, ничтожно мала. Поэтому конденсаторы могут служить для накопления и сохранения электрического поля и его энергии.
 

Емкость плоского конденсатора

Конденсатор называется плоским, если его обкладками являются две плоскопараллельные металлические пластины (см.рис. 1.6, а).
Обычно расстояние между пластинами мало по сравнению с их линейными размерами, поэтому электрическое поле плоского конденсатора можно считать равномерным.

Для определения емкости воспользуемся формулой (7.12), в которой электрическую постоянную ε0 заменим диэлектрической проницаемостью εa диэлектрика. С учетом формулы (1.5) получим
Электрическое поле и его расчёт
Умножим обе части равенства на S — площадь одной пластины:

Электрическое поле и его расчёт

Емкость плоского конденсатора

Электрическое поле и его расчёт

Емкость цилиндрического конденсатора

Обкладками цилиндрического конденсатора служат две цилиндрические поверхности, оси которых совпадают (рис. 7.11). Электрическое поле неравномерное, но имеет радиальную симметрию.

Электрическое поле и его расчёт
Рис. 7.11. К определению емкости цилиндрического конденсатора

Полагая и в этом случае расстояние между обкладками малым по сравнению с длиной конденсатора, т. е. пренебрегая искажением поля у его краев, для определения емкости используем выводы [формулу (7.14)]. Обозначим радиусы обкладок: внутренней — r1, внешней — r2; потенциалы— V1 и V2. Потенциал внутренней обкладки V1 можно найти, если к потенциалу V2 прибавить работу по перемещению заряженных частиц между обкладками конденсатора, отнесенную к единице заряда.

Напряженность электрического поля на пути между обкладками не постоянна, поэтому работу определим как сумму работ на элементарных участках пути dr, столь малых, что в пределах таких участков напряженность поля можно считать постоянной:
Электрическое поле и его расчёт

Напряжение между обкладками

Электрическое поле и его расчёт
Емкость цилиндрического конденсатора
Электрическое поле и его расчёт
 

Емкость двухпроводной линии

Определим емкость двухпроводной линии, у которой радиус проводов r0, расстояние между осями проводов а, длина проводов l, напряжение между проводами U, а заряд этой системы проводов Q (рис. 7.12).

При а >> r0 будем полагать, что заряд каждого провода распределен равномерно по его поверхности. Это значит, что взаимное влияние проводов на распределение зарядов по поверхности не учитывается.

Для определения разности потенциалов между проводами воспользуемся формулой (7.14). В некоторой точке А, находящейся между проводами в плоскости, проведенной через их оси, напряженность поля:

первого провода
Электрическое поле и его расчёт
второго провода
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Рис. 7.12. К определению емкости двухпроводной линии

Заряды проводов имеют противоположные знаки, поэтому между проводами векторы E1 и E2 направлены в одну сторону. Общая напряженность поля в точке А
Электрическое поле и его расчёт
Напряженность поля зависит от расстояния r, поэтому напряжение между проводами
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Учитывая, что а >> r0, напряжение между проводами
Электрическое поле и его расчёт
Емкость двухпроводной линии
Электрическое поле и его расчёт
 

Задача 7.8.

Определить емкость и заряд плоского воздушного конденсатора, у которого площадь обкладки S = 100 см2, расстояние между обкладками l = 5 мм, напряжение между обкладками U = 100 В.
Решение.

Электрическое поле и его расчёт

Электрическое поле и его расчёт
 

Задача 7.9.

Определить емкость цилиндрического воздушного конденсатора, имеющего радиусы обкладок r1 = 40 мм; r2 = 50 мм и длину l = 0,5 м.
Решение.
Электрическое поле и его расчёт

Электрическая прочность диэлектрика

Диэлектрик, разделяющий проводники с разными электрическими потенциалами (электроизоляция), находится в электрическом поле и несет электрическую нагрузку, величина которой ограничена электрической прочностью диэлектрика.

В электрических устройствах электрическую изоляцию часто выполняют из нескольких диэлектриков с различной диэлектрической проницаемостью. Например, обмотки силового трансформатора, изолированные хлопчатобумажной изоляцией, погружают в трансформаторное масло, которое также является изолятором и одновременно охлаждающей средой. Между обмотками устанавливаются барьеры из электротехнического картона.
Таким образом, электрическая изоляция, имеющая различные конструктивные формы, должна быть не только сконструирована, но и рассчитана на электрическую прочность.
 

Пробивная напряженность

Напряженность электрического поля в диэлектрике зависит, как уже известно, от напряжения между проводниками (электродами), расстояния между ними, формы и размеров электродов, свойств диэлектрика.

При увеличении напряженности электрического поля, т. е. увеличении электрической нагрузки изоляции, наступает в конце концов разрушение диэлектрика (пробой).

Величина напряженности электрического поля, при которой начинается пробой диэлектрика и изоляционные свойства его нарушаются, называют пробивной напряженностью или электрической прочностью диэлектрика.
Отношение электрической прочности к действительной величине напряженности поля называют запасом прочности:
Электрическое поле и его расчёт
 

Изменение электрического поля на границе двух диэлектриков

Рассмотрим плоский конденсатор, между обкладками которого имеется два слоя диэлектриков с диэлектрическими проницаемостями εr1 и εr2 (рис. 7.13).
Величина и направление вектора напряженности электрического поля на границе раздела диэлектриков изменяются тем больше, чем больше отличаются их диэлектрические проницаемости.

Плоскость раздела диэлектриков параллельна плоскости обкладок. В этом случае линии напряженности поля перпендикулярны плоскости раздела, т. е. в обоих диэлектриках их направления совпадают.

На основании теоремы Гаусса напишем выражения для электрического смещения в диэлектриках:
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Как видно, при направлении поля, перпендикулярном плоскости раздела диэлектриков, электрическое смещение в обоих диэлектриках одинаково: численно оно равно поверхностной плотности заряда обкладок конденсатора:
Электрическое поле и его расчёт
Нетрудно убедиться в том, что напряженность поля в обоих диэлектриках не будет одинакова:
Электрическое поле и его расчёт
или
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Рис. 7.13. Конденсатор с двумя слоями разнородных диэлектриков

Напряженность поля больше в диэлектрике с меньшей диэлектрической проницаемостью.

Скачкообразное изменение напряженности поля на границе раздела двух диэлектриков, имеющих разные диэлектрические проницаемости, физически объясняется тем, что вследствие разной поляризованности диэлектриков на границе образуется избыточный связанный заряд плотностью Электрическое поле и его расчёт это приводит к усилению поля в одном диэлектрике и ослаблению в другом.
Наличие заряда на границе раздела диэлектриков дает основание считать конденсатор с двумя или несколькими слоями составленным из двух или нескольких конденсаторов.
Устройство изоляции из нескольких слоев различных диэлектриков в неравномерном электрическом поле позволяет в определенной мере выравнять напряженность электрического поля и тем создать более благоприятные условия для работы изоляции и сократить ее размеры.
 

Задача 7.12.

Между обкладками плоского воздушного конденсатора, имеющими площадь S = 1800 см2 и напряжение U0 = 1,2 кВ, расстояние l составляет 0,5 см. Определить напряженность электрического поля и заряд конденсатора. Как изменятся эти величины, если конденсатор отключить от источника напряжения, а пространство между обкладками заполнить парафином (εr = 2)?
Решение. Напряженность электрического поля плоского конденсатора определяется отношением напряжения к расстоянию между обкладками [см. формулу (1.5)]:
Электрическое поле и его расчёт
Для определения заряда найдем емкость конденсатора по формуле (7.29):
Электрическое поле и его расчёт
заряд
Электрическое поле и его расчёт
После отключения конденсатора от источника напряжения заряд Q сохраняется неизменным и в том случае, если воздух как диэлектрик между пластинами заменить парафином. При этом предполагается, что утечки заряда нет.
Емкость конденсатора с парафином будет уже другой, так как в формулу (7.29) вместо ε0 должна быть подставлена величина εa = ε0 [см. формулу (7.26)]:
Электрическое поле и его расчёт
При этом же заряде Q0 и увеличении емкости напряжение между обкладками уменьшится:
Электрическое поле и его расчёт
Напряженность поля также уменьшится:
Электрическое поле и его расчёт
Вывод. При замене диэлектрика заряд конденсатора, отключенного от источника напряжения, сохраняется неизменным; напряжение между обкладками и напряженность поля изменяются обратно пропорционально относительной диэлектрической проницаемости.
 

Задача 7.13.

Решить задачу 7.12 при условии, что конденсатор остается подключенным к источнику напряжения.
Решение. Если конденсатор после замены диэлектрика остается подключенным к источнику напряжения, то напряженность поля при любом диэлектрике остается неизменной (геометрические размеры конденсатора также не изменились):
Электрическое поле и его расчёт
Изменение емкости конденсатора (в данном случае увеличение в два раза) приведет к увеличению заряда в два раза:
Электрическое поле и его расчёт

Электрическое поле и его расчёт

Рис. 7.14. К задаче 7.16

Задача 7.16. 

Плоский воздушный конденсатор находится под напряжением 20 кВ. Расстояние между обкладками равно 2 см, площадь обкладок 200 см2. Определить емкость, запас электрической прочности конденсатора, если электрическая прочность воздуха 30 кВ/см.
Определить емкость конденсатора, распределение напряжения между слоями и запас электрической прочности, если, не отключая конденсатора от источника заряда, в воздушный промежуток между обкладками параллельно им внести лист стекла толщиной 0,5 см (рис. 7.14) с относительной диэлектрической проницаемостью εr1 = 7. Электрическая прочность стекла больше, чем воздуха.
Решение. Напряженность электрического поля воздушного конденсатора [см. формулу (1.5)]:
Электрическое поле и его расчёт
Запас прочности
Электрическое поле и его расчёт
После внесения в воздушный промежуток стекла найдем распределение напряжения между слоями, имея в виду, что общее напряжение конденсатора равно сумме напряжений слоев:
Электрическое поле и его расчёт
где l1 и l2 — толщина слоев.
Согласно формулам (7.33) и (7.25),
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Отсюда
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Электрическое поле и его расчёт

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Запас электрической прочности конденсатора определяется по менее электрически прочному диэлектрику, в данном случае воздуху:
Электрическое поле и его расчёт
Таким образом, при внесении в воздушный промежуток стекла запас электрической прочности конденсатора уменьшился, несмотря на то что электрическая прочность стекла сама по себе больше, чем воздуха.

Емкость воздушного конденсатора
Электрическое поле и его расчёт
Емкость конденсатора после внесения стекла определим из выражения, полученного раньше для напряжения на конденсаторе, умножив и разделив правую его часть на S:
Электрическое поле и его расчёт
Электрическое поле и его расчёт

Соединения конденсаторов

Система заряженных проводников может содержать не два, а больше проводников. Каждая пара проводников, полностью изолированных друг от друга, характеризуется электрической емкостью.

Практический интерес обычно представляет вопрос о распределении заряда и потенциалов в системе проводников, когда она заряжена от источника постоянного напряжения. Во многих случаях системы заряженных проводников по отношению к источнику можно рассматривать как последовательное, параллельное или смешанное соединение конденсаторов.

Последовательное соединение

На рис. 7.15 изображены три конденсатора, соединенные последовательно. К зажимам источника постоянного напряжения (точки 1, 2, 3, 4) присоединены две крайние обкладки последовательной цепочки конденсаторов, другие обкладки с источником непосредственно не соединяются и заряжаются вследствие электростатической индукции. Поэтому заряд всех конденсаторов и каждого в отдельности один и тот же:
Электрическое поле и его расчёт
Для упрощения расчетов можно группу конденсаторов заменить одним с эквивалентной емкостью.
Электрическое поле и его расчёт

Рис. 7.15. Последовательное соединение конденсаторов

Электрическое поле и его расчёт

Рис. 7.16. Параллельное соединение конденсаторов

Напряжение на эквивалентном конденсаторе равно общему напряжению группы последовательно соединенных конденсаторов:
Электрическое поле и его расчёт
Учитывая (7.28) и (7.36), получим:
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Если в последовательную цепь соединяются n конденсаторов одинаковой емкости Сn, то эквивалентная емкость
Электрическое поле и его расчёт

Параллельное соединение

При параллельном соединении все конденсаторы соединены одной обкладкой в общей точке 1, а другой обкладкой — в общей точке 2 (рис. 7.16). К этим точкам подводится напряжение источника. В таком случае группу конденсаторов тоже можно заменить одним с эквивалентной емкостью С.

Все конденсаторы имеют между обкладками одно и то же напряжение U, а заряды получаются разными:
Электрическое поле и его расчёт
Каждый конденсатор получает заряд независимо от другого, поэтому общий заряд равен сумме зарядов конденсаторов:
Электрическое поле и его расчёт
Подставляя сюда выражения зарядов (7.39) и сокращая на U, получим
Электрическое поле и его расчёт
Эквивалентная емкость равна сумме емкостей. При параллельном соединении n конденсаторов одинаковой емкости Сn эквивалентная емкость
Электрическое поле и его расчёт

Задача 7.18. Определить заряд и напряжение каждого конденсатора в схеме рис. 7.17, а, если емкости их С1 = 8 мкФ, С2 = 5 мкФ, С3 = 3 мкФ, а общее напряжение U = 100 В.
Решение. Такого типа задачу нужно решать, начав с определения эквивалентной емкости. Конденсаторы С2 и Сз соединены параллельно относительно точек 1, 2 схемы. Заменим эти два конденсатора одним с эквивалентной емкостью С2.3 (рис. 7.17, б). Согласно формуле (7.40),
Электрическое поле и его расчёт
В новой, упрощенной схеме между точками 1, 2 вместо двух конденсаторов включен один С2.3. Емкость его равна емкости двух конденсаторов С2 и С3. При такой замене распределение напряжений в схеме не изменилось, не изменился и общий заряд в системе. По отношению к точкам 1 и 3 конденсаторы С2.3 и С1 соединены последовательно.
Заменим эти два конденсатора одним с эквивалентной емкостью С, которая является общей емкостью между точками 1 и 3 в схеме рис. 7.17, а. После замены получим схему рис. 7.17, в, где к зажимам источника напряжения (точки 1, 3) подключен один конденсатор.
Электрическое поле и его расчёт
Рис. 7.17. к задаче 7.18

Согласно формуле (7.37),
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Общий заряд системы конденсаторов в схеме рис. 7.17, а

Электрическое поле и его расчёт

Общий заряд системы равен заряду конденсаторов С1 и С2.3:

Электрическое поле и его расчёт

На основании этого определяют напряжения:
Электрическое поле и его расчёт

Электрическое поле и его расчёт
Напряжение U2 является общим для конденсаторов С2 и С3. Заряды этих конденсаторов:
Электрическое поле и его расчёт
Электрическое поле и его расчёт
Проверка: Электрическое поле и его расчёт
 

Задача 7.19.

Определить емкость каждого конденсатора в цепи рис. 7.17, а, если известно, что общий заряд ее Q = 1 Кл при напряжении U = 200 В, а заряд третьего конденсатора Q3 = 0,4 Кл при напряжении U2 = 40 В.

Решение. Эквивалентная емкость всей цепи
Электрическое поле и его расчёт
Емкость третьего конденсатора
Электрическое поле и его расчёт
Заряд, напряжение и емкость второго конденсатора:

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Электрическое поле и его расчёт
Заряд, напряжение и емкость первого конденсатора:

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Электрическое поле и его расчёт
Проверка определения емкостей для схемы рис. 7.17:
Электрическое поле и его расчёт

Электрическое поле

Каждый химический элемент (вещество) состоит из совокупности мельчайших материальных частиц — атомов.

В состав атомов любого вещества входят элементарные частицы, часть которых обладает электрическим зарядом. Атом представляет собой систему, состоящую из ядра, вокруг которого вращаются электроны.

В ядре атома сосредоточены протоны, несущие в себе положительный заряд. Электроны имеют отрицательный электрический заряд. В электрически нейтральном атоме заряд электронов равен по абсолютной величине заряду протонов.

Электроны вращаются вокруг ядра по строго определенным орбитам (слоям). В каждом слое количество электронов не должно превышать определенного числа (Электрическое поле и его расчёт где Электрическое поле и его расчёт — номер слоя). Так, например, в первом, ближайшем к ядру слое могут находиться максимум два электрона, во втором — не более восьми и т.д.

Порядковый номер химического элемента в Периодической таблице Менделеева численно равен положительному заряду ядра этого элемента, следовательно, и числу вращающихся вокруг него электронов. На рис. 1.1 схематически показана структура атомов Водорода (а), кислорода (б) и алюминия (в) с порядковыми номерами 1, 8 и 13.
Электрическое поле и его расчёт

Атомы, у которых внешние электронные слои целиком заполнены, имеют устойчивую электронную оболочку. Такой атом прочно держит все электроны и не нуждается в получении добавочного их количества.

Атом кислорода, например, имеющий шесть электронов, размешенных во внешнем слое, обладает возможностью притянуть к себе два недостающих электрона для заполнения внешнего электронного слоя. Это достигается путем соединения с атомами таких элементов, у которых внешние электроны слабо связаны со своим ядром. Например, электронами внешнего (третьего) слоя атома алюминия, которые слабо удерживаются и легко могут быть вырваны из атома.

Если нарушается равенство числа электронов и протонов, то из электрически нейтрального атом становится заряженным. Заряженный атом называется ионом.

Если в силу каких-либо причин атом потеряет один или несколько электронов, то в нем нарушится равенство зарядов и такой атом становится положительным ионом, поскольку в нем преобладает положительный заряд протонов ядра. Если атом приобретает один или несколько электронов, то он становится отрицательным ионом, так как в нем преобладает отрицательный заряд.

Вещество (твердое тело, жидкость, газ) считается электрически нейтральным, если количество положительных и отрицательных зарядов в нем одинаково. Если же в нем преобладают положительные или отрицательные заряды, то оно считается соответственно положительно или отрицательно заряженным.

В Единой системе конструкторской документации (ЕСКД), которая используется в данном учебнике, электрический заряд (количество электричества) обозначается буквой Q или q, а единицей заряда (в системе СИ) является 1 кулон, то есть [Q] = Кл (кулон). Электрон и протон имеют равный по величине, но противоположный по знаку заряд Электрическое поле и его расчёт Кл.

Электрический заряд или заряженное тело создают электрическое поле.

Электрическое поле — это пространство вокруг заряженного тела или заряда, в котором обнаруживается действие сил на пробный заряд, помещенный в это пространство.

Электрическое поле, создаваемое неподвижными зарядами, называется электростатическим.

Напряженность электрического поля

Обнаружить электрическое поле можно пробным зарядом, если поместить его в это поле. Пробным называется положительный заряд, внесение которого в исследуемое поле не приводит к его изменению. То есть пробный заряд не влияет ни на силу, ни на энергию, ни на конфигурацию поля.

Электрическое поле и его расчёт

Если в точку А электрического поля (рис. 1.2), созданного зарядом Q, расположенную на расстоянии от него, внести пробный заряд q, то на него будет действовать сила Электрическое поле и его расчёт причем если заряды Q и q имеют одинаковые знаки, то они отталкиваются (как это изображено на рис. 1.2), а если разные, то притягиваются.

Величина силы Электрическое поле и его расчёт действующей на пробный заряд q, помешенный в точку А электрического поля, пропорциональна величине заряда q и интенсивности электрического поля, созданного зарядом Q в точке А

Электрическое поле и его расчёт

где Электрическое поле и его расчёт — напряженность электрического поля, характеризующая интенсивность поля в точке А.

Из (1.1) видно, что

Электрическое поле и его расчёт

То есть напряженность каждой точки электрического поля характеризуется силой, с которой поле действует на единицу заряда, помещенного в эту точку. Таким образом, напряженность является силовой характеристикой каждой точки электрического поля.

Измеряется напряженность электрического поля в вольтах на метр Электрическое поле и его расчёт

Напряженность электрического поля — величина векторная.

Направление вектора напряженности в любой точке электрического поля совпадает с направлением силы, действующей на положительный пробный заряд, помещенный в эту точку поля (см. рис. 1.2).

Поскольку в дальнейшем будут учитываться только значения силы и напряженности, будем обозначать их Fu £ соответственно.

Напряженность является параметром каждой точки электрического поля и не зависит от величины пробного заряда q. Изменение величины q приводит к пропорциональному изменению силы F(l.l), а отношение Электрическое поле и его расчёт (1.2), т.е. напряженность Электрическое поле и его расчёт остается неизменной.

Для наглядности электрическое поле изображают электрическими линиями, которые иногда называют линиями напряженности электрического поля, или силовыми линиями. Электрические линии направлены от положительного заряда к отрицательному. Линия проводится так, чтобы вектор напряженности поля в данной точке являлся касательной к ней (рис. 1.3в).

Электрическое поле и его расчёт
Электрическое поле называется однородным, если напряженность его во всех точках одинакова по величине и направлению. Однородное электрическое поле изображается параллельными линиями, расположенными на одинаковом расстоянии друг от друга.

Однородное поле, например, существует между пластинами плоского конденсатора (рис. 1.3г).
 

Напряженность поля точечных зарядов

Точечным считается заряд, размерами которого можно пренебречь по сравнению с расстоянием, на котором рассматривается его действие.

Сила взаимодействия Электрическое поле и его расчёт двух точечных зарядов Электрическое поле и его расчёт (рис. 1.2) определяется по закону Кулона:

Электрическое поле и его расчёт

где Электрическое поле и его расчёт — расстояние между зарядами; Электрическое поле и его расчёт — абсолютная диэлектрическая проницаемость среды, в которой взаимодействуют заряды.

Из (1.3) следует, что напряженность электрического поля заряда Q в точке А (рис. 1.2) равна

Электрическое поле и его расчёт

Таким образом, напряженность поля Электрическое поле и его расчёт созданная зарядом Q в точке А электрического поля, зависит от величины заряда Q, создающего поле, расстояния точки А от источника поля Электрическое поле и его расчёт и от абсолютной диэлектрической проницаемости среды Электрическое поле и его расчёт в которой создается поле. Диэлектрическая проницаемость характеризует электрические свойства среды, т. е. интенсивность поляризации.

Единицей измерения абсолютной диэлектрической проницаемости среды является фарад на метр

Электрическое поле и его расчёт

так как Электрическое поле и его расчёт

Различные среды имеют разные значения абсолютной диэлектрической проницаемости. Абсолютная диэлектрическая проницаемость вакуума
Электрическое поле и его расчёт
называется электрической постоянной.

Абсолютную диэлектрическую проницаемость любой среды Электрическое поле и его расчёт удобно выражать через электрическую постоянную Электрическое поле и его расчёт и диэлектрическую проницаемость Электрическое поле и его расчёт— табличную величину (Приложение 2).

Диэлектрическая проницаемость Электрическое поле и его расчёт, которую иногда называют относительной, показывает, во сколько раз абсолютная диэлектрическая проницаемость среды больше, чем электрическая постоянная, т. е.

Электрическое поле и его расчёт

Из (1.6) следует

Электрическое поле и его расчёт

Таким образом, напряженность электрического поля, созданного зарядом Q на расстоянии Электрическое поле и его расчёт от него, определяется выражением

Электрическое поле и его расчёт
Электрическое поле и его расчётЭлектрическое поле и его расчёт

Напряженность электрического поля, созданного несколькими зарядами в какой-либо точке А этого поля, определяется геометрической суммой напряженностей, созданных в этой точке каждым точечным зарядом: Электрическое поле и его расчёт (см. рис. 1.4).

Пример 1.1

Расстояние между точечными зарядами Электрическое поле и его расчёт равно Электрическое поле и его расчёт Вычислить величину напряженности в точке А, удаленной от заряда Электрическое поле и его расчёт на расстояние Электрическое поле и его расчёт а от заряда Электрическое поле и его расчёт на расстояние Электрическое поле и его расчёт (рис. 1.5), если: Электрическое поле и его расчёт Кл; Электрическое поле и его расчётЭлектрическое поле и его расчёт
Электрическое поле и его расчёт

Решение

Напряженность, созданная зарядом Электрическое поле и его расчёт в точке А 

Электрическое поле и его расчёт

Напряженность, созданная зарядом Электрическое поле и его расчёт в точке А

Электрическое поле и его расчёт

Направление векторов напряженности Электрическое поле и его расчёт созданных зарядами Электрическое поле и его расчёт и результирующего вектора напряженности Электрическое поле и его расчёт в точке А изображены на рис. 1.5.

Между векторами напряженности в данном примере угол равен 90° Электрическое поле и его расчёт что справедливо только для прямоугольного треугольника), следовательно, результирующий вектор напряженности в точке А определяется выражением Электрическое поле и его расчёт

Теорема Гаусса

Произведение напряженности электрического поля Е и площадки S, перпендикулярной к ней, в однородном электрическом поле называют потоком вектора напряженности поля N сквозь эту площадку (рис. 1.6а)

Электрическое поле и его расчёт

где Электрическое поле и его расчёт — нормальная (перпендикулярная площадке S) составляющая вектора напряженности Электрическое поле и его расчёт электрического поля.

Как следует из рис. 1.6а, Электрическое поле и его расчёт

Единица измерения потока вектора напряженности

Электрическое поле и его расчёт

Для неоднородного электрического поля площадку Sразбивают на элементарные бесконечно малые площадки Электрическое поле и его расчёт для каждой из которых поле можно считать однородным.

Тогда элементарный поток Электрическое поле и его расчёт

Для определения потока вектора напряженности сквозь всю площадку S элементарные потоки Электрическое поле и его расчёт суммируют (интегрируют) по всей площади S

Электрическое поле и его расчёт

Если, например, точечный заряд Q расположен в центре сферической поверхности радиусом r (рис. 1.66), то напряженность во всех точках этой поверхности, как следует из (1.8), равна 

Электрическое поле и его расчётЭлектрическое поле и его расчёт

Векторы напряженности перпендикулярны этой поверхности, т.е. Электрическое поле и его расчёт и одинаковы во всех точках этой поверхности. Тогда поток вектора напряженности поля сквозь эту поверхностьЭлектрическое поле и его расчёт

где Электрическое поле и его расчёт — площадь поверхности шара радиусом Электрическое поле и его расчёт Следовательно, поток вектора напряженности будет равен
Электрическое поле и его расчёт
То есть поток вектора напряженности N не зависит ни от формы поверхности, ни от места расположения зарядов внутри нее.

Таким образом, поток вектора напряженности электрического поля сквозь замкнутую поверхность определяется отношением суммы зарядов, расположенных внутри этой поверхности, к абсолютной диэлектрической проницаемости среды Электрическое поле и его расчёт

Формула (1.11) является математическим выражением теоремы Гаусса, которая применяется для расчета электрического поля.

Пример 1.2

Определить поток вектора напряженности электрического поля сквозь сферическую поверхность радиусом r = 3 см (рис. 1.66), заполненную маслом Электрическое поле и его расчёт если в ее центре находится точечный электрический заряд Электрическое поле и его расчёт Определить напряженность электрического поля на поверхности сферы.

Решение

Поток вектора напряженности сквозь сферическую поверхность

Электрическое поле и его расчёт

Тогда напряженность на поверхности сферы

Электрическое поле и его расчёт

где Электрическое поле и его расчёт
 

Напряженность на поверхности сферы можно определить также по формуле (1.8)

Электрическое поле и его расчёт

То есть результат получился таким же.

Потенциал и напряжение в электрическом поле

Для энергетической характеристики каждой точки электрического поля вводится понятие «потенциал». Обозначается потенциал буквой Электрическое поле и его расчёт

Потенциал в каждой точке электрического поля характеризуется энергией W, которая затрачивается (или может быть затрачена) полем на перемещение единицы положительного заряда q из данной точки за пределы поля, если поле создано положительным зарядом, или из-за пределов поля в данную точку, если поле создано отрицательным зарядом (рис. 1.7а).

Электрическое поле и его расчёт

Из приведенного выше определения следует, что потенциал в точке А равен Электрическое поле и его расчёт потенциал в точке Электрическое поле и его расчёт, а потенциал в точке С — Электрическое поле и его расчёт

Измеряется потенциал в вольтах
Электрическое поле и его расчёт
Величина потенциала в каждой точке электрического поля определяется выражением
Электрическое поле и его расчёт
Потенциал — скалярная величина. Если электрическое поле создано несколькими зарядами, то потенциал в каждой точке поля определяется алгебраической суммой потенциалов, созданных в этой точке каждым зарядом.

Так как (рис. 1.7а) Электрическое поле и его расчёт то из (1.12) следует, что Электрическое поле и его расчётЭлектрическое поле и его расчёт если поле создано положительным зарядом.

Если в точку А (рис. 1.7а) электрического поля поместить положительный пробный заряд q, то под действием сил поля он будет перемещаться из точки А в точку В, а затем в точку С, т. е. в направлении поля. Таким образом, положительный пробный заряд перемещается из точки с большим потенциалом в точку с меньшим потенциалом. Между двумя точками с равными потенциалами заряд перемещаться не будет. Следовательно, для перемещения заряда между двумя точками электрического поля должна быть разность потенциалов в этих точках. . Разность потенциалов двух точек электрического поля характеризует напряжение Электрическое поле и его расчёт между этими точками

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Напряжение между двумя точками электрического поля характеризуется энергией, затраченной на перемещение единицы положительного заряда между этими точками, т. е. Электрическое поле и его расчёт

Измеряется напряжение в вольтах (В). Между напряжением и напряженностью в однородном электрическом поле (рис. 1.8) существует зависимость

Электрическое поле и его расчёт

откуда следует
Электрическое поле и его расчёт
Из (1.13) видно, что напряженность однородного электрического поля определяется отношением напряжения между двумя точками поля к расстоянию между этими точками.

В общем случае для неоднородного электрического поля значение напряженности определяется отношением
Электрическое поле и его расчёт
где Электрическое поле и его расчёт — напряжение между двумя точками поля на одной электрической линии на расстоянии Электрическое поле и его расчёт между ними.

Единица напряженности электрического поля определяется из выражения (1.13)
Электрическое поле и его расчётЭлектрическое поле и его расчёт

Потенциалы в точках электрического поля могут иметь различные значения. Однако в электрическом поле можно выделить ряд точек с одинаковым потенциалом. Поверхность, проходящая через эти точки, называется равнопотенциальной, или эквипотенциальной.

Равнопотенциальная поверхность любой конфигурации перпендикулярна к линиям Рис 19    электрического поля. Обкладки цилиндрического конденсатора (рис. 1.76) и плоского конденсатора (рис. 1.9) имеют одинаковый потенциал по всей площади каждой обкладки и являются равнопотенциальными поверхностями.

Пример 1.3

Для условия примера 1.1 определить потенциал Электрическое поле и его расчёт в точке А, созданный зарядами Электрическое поле и его расчёт

Решение

Электрическое поле и его расчёт

Следовательно, алгебраическая сумма потенциалов равна

Электрическое поле и его расчёт

Пример 1.4

Точечный заряд Электрическое поле и его расчёт Кл помещен в центре плоского воздушного конденсатора, расстояние между пластинами которого равно 4,5 см. Напряжение между пластинами Электрическое поле и его расчёт Определить напряженность Электрическое поле и его расчёт электрического поля в точках А и В, находящихся на расстоянии 0,5 см справа и слева от заряда Q и лежащих на электрической линии, проходящей через заряд Q (рис. 1.9).

Решение

Напряженность однородного электрического поля между пластинами конденсатора

Электрическое поле и его расчёт

Напряженности, созданные зарядом Q в точках А и В,

Электрическое поле и его расчёт

Напряженности, созданные в точках А и В однородным электрическим полем конденсатора и зарядом Q, определяются геометрической суммой векторов напряженностей Электрическое поле и его расчёт

В точке В векторы напряженностей Электрическое поле и его расчёт совпадают по направлению, а в точке А векторы Электрическое поле и его расчёт направлены в противоположные стороны. Следовательно:

Электрическое поле и его расчёт
 

Электропроводность и проводники

Способность вещества проводить электрический ток называется электропроводностью.

По электропроводности все вещества делятся на проводники, диэлектрики и полупроводники.

Проводники обладают высокой электропроводностью. Различают проводники первого и второго рода.

К проводникам первого рода относятся все металлы, некоторые сплавы и уголь. В этих проводниках связь между электронами и ядром атома слаба, в результате чего электроны легко покидают пределы атома и становятся свободными. Направленное перемещение свободных электронов и обуславливает электропроводность проводников первого рода. Таким образом, проводники первого рода обладают электронной проводимостью.

К проводникам второго рода относятся электролиты, в которых происходит процесс электролитической диссоциации, разделение молекул на положительные и отрицательные ионы (ионизация). Направленное перемещение ионов обуславливает электропроводность проводников второго рода, т. е. в проводниках второго рода v имеет место ионная проводимость.

В проводниках отсутствует электростатическое поле (рис. 1.106).

Электрическое поле и его расчёт

Если проводник поместить в электростатическое поле, то пол действием сил этого поля происходит перемещение зарядов в проводнике: положительных — в направлении внешнего поля, отрицательных — в противоположном направлении (рис. 1.10а). Такое разделение зарядов в проводнике под действием внешнего поля называется электростатической индукцией.

Разделенные внутри проводника заряды создают свое электрическое поле, направленное от положительных зарядов к отрицательным, т. е. против внешнего поля (рис. 1.10а).

Очевидно, разделение зарядов в проводнике прекратится тогда, когда напряженность поля разделенных зарядов Электрическое поле и его расчёт станет равной напряженности внешнего поля в проводнике Электрическое поле и его расчёт т. е. Электрическое поле и его расчёт а результирующее поле

Электрическое поле и его расчёт

Электрическое поле и его расчёт

Таким образом, результирующее поле внутри проводника станет равным нулю (рис. 1.106). На этом принципе работает электростатический экран, защищающий часть пространства от внешних электрических полей (рис. 1.11). Для того чтобы внешние электрические поля не влияли на точность электроизмерения, измерительный прибор помещают внутрь замкнутой проводящей оболочки (экрана), в которой электрическое поле отсутствует (рис. 1.11).
 

Электропроводность и диэлектрики

Электропроводность диэлектриков практически равна нулю в силу весьма сильной связи между электронами и ядром атомов диэлектрика.

Электрическое поле и его расчёт

Если диэлектрик поместить в электростатическое поле, то в нем произойдет поляризация атомов, т. е. смещение разноименных зарядов в самом атоме, но не разделение их (рис. 1.12а). Поляризованный атом (молекула) может рассматриваться как электрический диполь (рис. 1.126), в котором «центры тяжести» положительных и отрицательных зарядов смешаются. Диполь — это система двух разноименных зарядов, расположенных на малом расстоянии друг от друга в замкнутом пространстве атома или молекулы.

Электрический диполь — это атом диэлектрика, в котором орбита электрона вытягивается в направлении, противоположном направлению внешнего поля Электрическое поле и его расчёт (рис. 1.126).

Поляризованные атомы создают свое электрическое поле, напряженность которого направлена против внешнего поля. В результате поляризации результирующее поле внутри диэлектрика ослабляется.

Интенсивность поляризации диэлектрика зависит от его диэлектрической проницаемости (Приложение 2). Чем больше диэлектрическая проницаемость, тем интенсивней поляризация в диэлектрике и тем слабее электрическое поле в нем:

Электрическое поле и его расчёт

Этим еще раз подтверждается справедливость формулы (1.8)

Электрическое поле и его расчёт

Таким образом, напряженность электрического поля обратно пропорциональна абсолютной диэлектрической проницаемости среды Электрическое поле и его расчёт в которой создается электрическое поле.

Если диэлектрик поместить в сильное электрическое поле, напряженность которого можно увеличивать, то при каком-то значении напряженности произойдет пробой диэлектрика, при этом электроны отрываются от атома, т. е. происходит ионизация диэлектрика. Таким образом, диэлектрик становится проводником.

Напряженность внешнего поля, при которой происходит пробой диэлектрика, называется пробивной напряженностью диэлектрика.

А напряжение, при котором происходит пробой диэлектрика, называют напряжением пробоя, или электрической прочностью диэлектрика.

Электрическое поле и его расчёт

где Электрическое поле и его расчёт— пробивное напряжение, т.е. напряжение, при котором происходит пробой диэлектрика; Электрическое поле и его расчёт — толщина диэлектрика.

Напряженность электрического поля, которая допускается в диэлектрике при использовании его в электрических установках, называется допустимой напряженностью. Допустимая напряженность должна быть в несколько раз меньше электрической прочности. Электрическая прочность некоторых диэлектриков приведена в Приложении 2.
 

Электропроводность и полупроводники

К полупроводникам относятся материалы, которые по своим электрическим свойствам занимают промежуточное положение между проводниками и диэлектриками.

Широкое применение в полупроводниковой технике получили такие материалы, как германий, кремний, селен, арсенид галлия и др.

Электропроводность и концентрация носителей зарядов в полупроводниках зависит от температуры, освещенности, примесей, степени сжатия и т. д.

Электрическая проводимость полупроводника зависит от рода примесей, имеющихся в основном материале полупроводника, и от технологии изготовления его составных частей.

Различают две основные разновидности электрической проводимости полупроводников — электронную и «дырочную».

Природа электрического тока в полупроводниках с электронной проводимостью та же, что и в проводниках первого рода. Однако так как свободных электронов в единице объема полупроводника во много раз меньше, чем в единице объема металлического проводника, то ток в полупроводнике будет во много раз меньше, чем в металлическом проводнике. В технике электронная проводимость называется проводимостью Электрическое поле и его расчёт-типа (от слова negative — отрицательный).

Полупроводник обладает «дырочной» проводимостью, если атомы его примеси стремятся захватить электроны атомов основного вещества полупроводника, не отдавая своих внешних электронов.

Электрическое поле и его расчёт

Если атом примеси «отберет» электрон у атома основного вещества, то в последнем образуется свободное место — «дырка» (рис. 1.13).

Атом полупроводника, потерявший электрон, называют «дыркой». Если «дырка» заполняется электроном, перешедшим из соседнего атома, то она «ликвидируется» и атом становится электронейтральным, а «дырка» смешается на место его атома, потерявшего электрон. Таким образом, если на полупроводник, обладающий «дырочной» проводимостью, действует электрическое поле, то «дырки» будут перемещаться в направлении поля.

Перемещение «дырок» в направлении электрического поля аналогично перемещению положительных электрических зарядов в поле, т. е. электрическому току в полупроводнике.

«Дырочная проводимость» в технике называется Электрическое поле и его расчёт-проводимостью (от слова positive — положительный).

Нельзя строго разграничивать полупроводники по проводимости, так как наряду с «дырочной» проводимостью полупроводник обладает и электронной проводимостью.

Рассмотрим природу полупроводниковой проводимости на примере вентиля, представляющего собой контактное соединение двух проводников, один из которых обладает электронной проводимостью Электрическое поле и его расчёт-типа, а другой — «дырочной» Электрическое поле и его расчёт-типа (рис. 1.14).

Вследствие большой концентрации электронов в полупроводнике типа п по сравнению с полупроводником Электрическое поле и его расчёт-типа, электроны из первого проводника будут проникать во второй. Аналогично происходит проникновение «дырок» в полупроводник Электрическое поле и его расчёт-типа. В результате такого проникновения зарядов в тонком пограничном слое возникают разноименные заряженные слои, между которыми создается электрическое поле, напряженность которого Электрическое поле и его расчёт (рис. 1.14а, б). Напряженность Электрическое поле и его расчёт создана контактной разностью потенциалов в пограничном слое двух полупроводников.

Эта напряженность Электрическое поле и его расчёт образует потенциальный барьер в пограничном слое, препятствующий дальнейшему проникновению зарядов в пограничный слой каждого полупроводника. Напряженность Электрическое поле и его расчёт направлена против силы, действующей на положительный заряд.
Электрическое поле и его расчёт

Если к полупроводникам, образующим Электрическое поле и его расчёт-переход, подвести напряжение от постороннего источника с напряжением U, то на границе полупроводников создается электрическое поле с напряженностью Электрическое поле и его расчёт (рис. 1.14), направление которого зависит от полярности источника.

При прямом включении источника Электрическое поле и его расчёт созданная им напряженность Электрическое поле и его расчёт направлена против напряженности Электрическое поле и его расчёт, т. е. ослабляет ее (рис. 1.14а). В результате чего уменьшается противодействие перемещению положительных зарядов в пограничном слое и увеличивается прямой ток в полупроводниках Электрическое поле и его расчёт

Если напряженность Электрическое поле и его расчёт станет равной Электрическое поле и его расчёт то противодействие заряженным частицам полупроводника определяется только сопротивлением полупроводника.

При обратном включении источника Электрическое поле и его расчёт созданная им напряженность Электрическое поле и его расчёт направлена в одном направлении с Электрическое поле и его расчёт следовательно, усиливает ее (рис. 1.146). При этом усиливается противодействие положительным зарядам в полупроводнике, в результате чего обратный ток Электрическое поле и его расчёт в ряде случаев может считаться равным нулю.

Таким образом, контактное соединение двух полупроводников с разными проводимостями Электрическое поле и его расчёт обладает явно выраженной односторонней проводимостью, т. е. является вентилем (см. гл. 19 п. 2).

Односторонняя проводимость, малые габариты и другие свойства полупроводников используются в разнообразных приборах и устройствах (выпрямители, усилители и пр.). Полупроводники являются основным «строительным» материалом современных диодов, транзисторов, фоторезисторов, микропроцессоров и другой электронной техники.

  • Расчет неразветвленной однородной магнитной цепи
  • Энергия магнитного поля
  • Синусоидальные Э.Д.С. и ток
  • Электрические цепи с взаимной индуктивностью
  • Дуальные цепи
  • Электромеханические аналогии
  • Индуктивно связанные электрические цепи
  • Фильтры и топологические методы анализа линейных электрических цепей

Рамка с током. Направление магнитного поля.

Аналогично тому, как при исследовании электростатического поля использовался точечный пробный заряд, при исследовании магнитного поля используется замкнутый плоский контур с током (рамка с током), линейные размеры которого малы по сравнению с расстоянием до токов, образующих магнитное поле.

Ориентация контура в пространстве характеризуется направлением нормали n к контуру.

В качестве положительного направле­ния нормали принимается направление, связанное с током правилом правого винта (правилом буравчика):

За положительное направление нормали принимается направление поступательного движения правого винта, головка которого вращается в направлении тока, текущего в рамке.

Магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая её определенным образом. Это свойство используется для выбора направления магнитного поля.

За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положительная нормаль к свободно подвешенной рамке с током, или направление, совпадающее с направлением силы, действующей на северный полюс (N) магнитной стрелки, помещенный в данную точку поля.

3. Вектор магнитной индукции.

Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки с током и определяется векторным произведением

где — вектор магнитного момен­та рамки с током, — вектор магнитной индукции — силовая характеристика магнитного поля. По определению векторного произведения скалярная величина момента

где α — угол между векторами и .

Для плоского контура с током / магнитный момент определяется как

где S — площадь поверхности контура (рамки), — единичный вектор нормали к поверхности рамки. В этом случае вращающий момент

Если в данную точку магнитного поля помещать рамки с различными магнитными моментами, то на них действуют различные вращающие моменты, но отношение для всех контуров одно и то же.

Аналогично тому, как силовая векторная характеристика электростатиче­ского поля — напряженность — определялась как сила, действующая на пробный заряд, силовая характеристика магнитного поля — магнитная индукция — определяется максимальным вращающим моментом, действующим на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля.

Графически магнитное поле, так же как электрическое, изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора

Линии магнитной индукции всегда замкнуты и охватывают проводники с током, в то время как линии электростатического поля — разомкнуты (они начинаются на положительных и заканчиваются на отрицательных зарядах).

4. Макротоки и микротоки.

В дальнейшем мы будем различать макроскопические токи, т.е. электрические токи, протекающие по проводникам в электрических цепях и микроскопические токи, обусловленных движением электронов в атомах и молекулах.

Намагниченность постоянных магнитов является следствием существова­нием в них микротоков.

Внешнее магнитное поле оказывает ориентирующее, упорядочивающее действие на эти микротоки. Например, если вблизи какого-то тела поместить проводник с током (макроток), то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле.

Вектор магнитной индукции характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками.

Поэтому, при одном и том же макротоке, вектор в различных средах будет иметь разные значения.

Магнитное поле макротока описывается вектором напряженности магнитного поля

В среде магнитное поле макротоков усиливается за счет поля микротоков среды.

5. Связь между и

Для однородной изотропной среды вектор магнитной индукции

где — магнитная постоянная (см. п.12), магнитная проницаемость

среды (п.39), безразмерная величина, показывающая, во сколько раз магнитное поле макротоков Н усиливается за счет поля микротоков среды.

6. Подобие векторных характеристик электростатического и магнитного полей.

Вектор магнитной индукции — аналог вектора напряженности электро­статического поля .Эти величины определяют силовые действия этих полей и зависят от свойств среды.

Аналогомвектора электрического смещения является вектор напряженности магнитного поля.

Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.

7. Закон Био-Савара-Лапласа.

Элемент проводника с током создает в некоторой точке А индукцию поля

Где — радиус-вектор, проведенный из элемента проводника в точку А.

Направление перпендикулярно и , и совпадает с касательной к линии магнитной индукции. Модуль вектора определяется выражением

где α ­- угол между векторами и .

8. Магнитное поле прямого тока.

Ток течет по прямому проводу бесконечной длины. В качестве постоянной интегрирования выберем угол а .

Из рисунка ,

Следовательно

Угол α для всех элементов прямого провода

изменяется от 0 до . По принципу суперпозиции

Если ток течет по отрезку провода (см. рисунок), то

Эта формула переходит в формулу для бесконечного длинного проводника при , .

9. Магнитное поле в центре кругового тока.

В данном случае сложение векторов можно заменить сложением их модулей, учитывая sin α = 1 и r = R,

Можно показать, что на расстоянии r от центра витка вдоль оси витка магнитное поле будет равно

Напряженность магнитного поля, создаваемого круговым током, на большом расстоянии от витка стоком (r >> R)

где pm=IS — магнитный момент витка с током.

Сравним эту формулу с формулой для электрического поля диполя (с электрическим дипольным моментом pe) на оси диполя

Очевидное подобие этих формул объясняет, почему часто говорят, что контур с током подобен «магнитному диполю», имеющему равный с контуром магнитный момент.

10. Закон Ампера.

Действие магнитного поля на рамку с током — это пример воздействия магнитного поля на проводник с током. Ампер установил, что сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, равна
,

где — вектор по модулю равный dl и совпадающий по направлению с током, — вектор магнитной индукции.

Наглядно направление силы Ампера принято определять по правилу левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор , а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы Ампера.

11. Взаимодействие параллельных токов.

Закон Ампера применяется для определения силы взаимодействия двух токов.

Два параллельных проводника с токами I1 и I2 находятся на расстоянии R друг от друга. Направление сил и , с которыми поля и действуют на проводники с токами I1 и I2 определяются по правилу левой руки.

Отсюда: . Аналогично

. Таким образом:

Проводники с токами одинакового направления притягиваются, с токами разного направления — отталкиваются.

12. Магнитная постоянная.

В системе СИ единица измерения силы тока — ампер — вместе с килограммом, метром и секундой является основной единицей. По определению «ампер есть сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 метра один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2∙10 -7 ньютона на каждый метр длины».

В вакууме (µ=1) сила взаимодействия на единицу длины проводника

При Н/м.

Отсюда

где генри (Гн) — единица индуктивности — будет определена позднее.

13. Единицы магнитной индукции и напряженности магнитного поля.

Пусть элемент проводника dl с током I перпендикулярен направлению магнитного поля. Закон Ампера dF = IBdl, откуда

Единица магнитной индукции В — тесла (Тл) — магнитная индукция такого однородного магнитного поля, которое действует с силой 1Н на каждый метр длины прямолинейного проводника, расположенного перпендикулярно направлению поля, если по этому проводнику проходит ток 1А:

Из формулы в вакууме (µ=1) получим

Единица напряженности магнитного поля Н — ампер на метр (А/м) —

напряженность такого поля, индукция которого в вакууме равна Тл.

14. Магнитное поле свободно движущегося заряда.

Проводник с током создает вокруг себя магнитное поле. Электрический ток — это упорядоченное движение электрических зарядов. Магнитное поле точечного заряда q, свободно движущегося с постоянной нерелятивистской скоростью

Где — радиус-вектор, проведенный из заряда q к точке наблюдения,α -угол между и

15. Сила Лоренца.

Так же как и на проводник с током, магнитное поле действует и на отдельный заряд, движущийся в магнитном поле.

Сила, действующая на электрический заряд q, движущийся в магнитном поле со скоростью называется силой Лоренца

или

где α- угол между и

Сводная таблица.

Направление силы Лоренца, так же как и силы Ампера, определяется по правилу левой руки. Сила Лоренца всегда перпендикулярна скорости движения заряженной частицы. Поэтому она изменяет только направление этой скорости, не изменяя ее модуля. Следовательно, сила Лоренца работы не совершает.

Постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей и кинетическая энергия этой частицы при движении в магнитном поле не изменяется.

Движение заряда, на который кроме магнитного поля с индукцией действует и электрическое поле с напряженностью , описывается формулой Лоренца

16. Движение заряженных частиц в магнитном поле.

Считаем, что магнитное поле однородно и на частицы не действуют электрические поля. Рассмотрим три возможных случая:

1. — Заряженная частица движется в магнитном поле вдоль линий

магнитной индукции (угол α между векторами и равен 0 или ). Сила Лоренца равна нулю. Магнитное поле на частицу не действует, и она движется равномерно и прямолинейно.

2. — Заряженная частица движется в магнитном поле перпендику­лярно линиям магнитной индукции (угол ).

Сила Лоренца : постоянна по модулю и нормальна к траектории

частицы. Частица будет двигаться по окружности радиуса R с центро­стремительным ускорением . Из второго закона Ньютона получаем радиус окружности и период вращения

3.Заряженная частица движется под углом α к линиям магнитной

Движение частицы можно представить в виде суммы двух движений.

1)равномерного прямолинейного движения вдоль поля со скоростью

2)равномерного движения по окружности в плоскости, перпендикулярной полю.

Суммарное движение будет движением по спирали, ось которой параллельна магнитному полю. Шаг винтовой линии , где — период вращения частицы, и

Если магнитное поле неоднородно и заряженная частица движется под углом к линиям магнитного поля в направлении возрастания поля, то величины R и h уменьшаются с ростом . На этом основана фокусировка заряженных частиц магнитным полем.

17. Эффект Холла.

Эффект Холла — это возникновение электрического поля в проводнике или полупроводнике с током при помещении его в магнитное поле.

Эффект Холла — следствие влияния силы Лоренца на движение носителей тока. В магнитном поле при протекании через проводник тока с плотностью устанавливается электрическое поле с напряженностью

гдеR постоянная Холла.

Пусть, например, металлическая пластинка с током расположена в магнитном поле перпендикулярном току (см. рисунок). Сила Лоренца приводит к повышению концентрации носителей тока — электронов — у верхнего края пластинки.

При этом верхний край зарядится отрицательно, а нижний, соответственно — положительно. Стационарное распределение зарядов будет достигнуто, когда действие созданного таким образом электрического поля уравновесит силу Лоренца: , или , где a — ширина пластинки, е — заряд электрона, — поперечная (холловская) разность потенциалов.

Поскольку сила тока (S = ad — площадь поперечного сечения пластинки толщиной d и шириной a, n — концентрация электронов, — средняя скорость упорядоченного движения электронов), то

Знак постоянной Холла совпадает со знаком носителей тока, поэтому эффект Холла используют для определения природы носителей тока в веществах и определения их концентрации.

18. Теорема о циркуляции вектора

Циркуляцией вектора В по задан­ному замкнутому контуру L называется следующий интеграл по этому контуру:

где — элемент длины контура, направленный вдоль обхода контура;

составляющая вектора в направлении касательной к контуру, с учетом выбранного направления обхода;α — угол между векторами и .

Теорема о циркуляции вектора (закон полного магнитного поля в вакууме): циркуляция вектора по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром

где n — число проводников с токами, охватываемых контуром L произвольной формы.

Эта теорема справедлива только для поля в вакууме, поскольку для поля в веществе надо учитывать молекулярные токи. Каждый ток учитывается столько раз, сколько он охватывается контуром. Положительным считается ток, направление которого связано с направлением обхода по контуру правилом правого винта.

Пример: магнитное поле прямого тока. Замкнутый контур представим в виде окружности радиуса r.

В каждой точке этой окружности вектор одинаков по модулю и направлен по касательной к окружности:

отсюда

Сравним выражения для циркуляций векторов и

Принципиальное различие между этими формулами в том, что циркуляция вектора электростатического поля всегда равна нулю. Такое поле является потенциальным. Циркуляция вектора магнитного поля не равна нулю. Такое поле называется вихревым или соленоидальным.

19. Магнитное поле соленоида.

Соленоидом называется свернутый в спираль изолированный проводник по которому течет электрический ток. Рассмотрим соленоид длиной l, имеющий N витков. Циркуляция вектора по замкнутому контуру ABCDA, охватывающему все N витков, равна

На участках АВ и CD контур перпендикулярен линиям магнитной индукции, следовательно . Можно показать, что вне бесконечного соленоида магнитное поле В = О (удалив участок СВ на бесконечность, где магнитное поле соленоида равно нулю, поскольку магнитное поле каждого витка соленоида уменьшается с расстоянием

r 3 ). На участке DA контур совпадает с линией магнитной индукции, внутри соленоида поле однородно ( ), поэтому

Магнитная индукция (бесконечного) соленоида в вакууме

20. Магнитное поле тороида в вакууме.

Тороидом — называется кольцевая катушка с витками, намотанными на сердечник, имеющий форму тора, по которой течет ток.

Магнитное поле отсутствует вне тороида, а внутри его оно является однородным.

Линии магнитной индукции, как следует из соображений симметрии, есть окружности, центры которых расположены на оси тороида.

В качестве контура выберем одну такую окружность радиуса r. По теореме о циркуляции , где N — число витков тороида. Отсюда

21. Поток вектора магнитной индукции.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная

где — проекция вектора на направление нормали к площадке

dS, α — угол между векторами и , — вектор, модуль которого равен dS, а направление совпадает с направлением нормали к площадке.

Поток вектора может быть как положительным, так и отрицательным в зависимости от знака cos α

Поток вектора связывают с контуром по которому течет ток. Положительное направление нормали к контуру связано с направлением тока по правилу правого винта. Поэтому магнитный поток, создаваемый контуром с током через поверхность, ограниченную им самим, всегда положителен.

Поток вектора магнитной индукции через произвольную поверхность S

Если поле однородно и перпендикулярно ему расположена плоская поверхность с площадью S, то

Единица магнитного потока — вебер (Вб): 1В6 — магнитный поток, проходящий сквозь плоскую поверхность площадью 1м 2 , расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1Тл (1 Вб=1 Тлм 2 ).

22. Теорема Гаусса для магнитного поля в вакууме

Поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю

Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала ни конца и являются замкнутыми.

Магнитный поток через поверхность, ограниченную замкнутым контуром, называется потокосцеплением этого контура.

Потокосцепление контура, обусловленное магнитным полем тока в самом этом контуре, называется потокосцеплением самоиндукции.

Например, найдем потокосцепление самоиндукции соленоида с сердечником с магнитной проницаемостью µ. Магнитный поток сквозь один

виток соленоида площадью S равен . Полный магнитный поток,

сцепленный со всеми витками соленоида равен

Потокосцепление контура, обусловленное магнитным полем тока, идущего в другом контуре, называется потокосцеплением взаимной индукции этих двух контуров.

24. Работа по перемещению проводника с током в магнитном поле.

Проводник длиной l (он может свободно перемещаться) с током I находится в однородном магнитном поле (см. рисунок). Поле направлено перпендикулярно плоскости рисунка — из-за чертежа. Сила Ампера F = IBl.

Под ее действием проводник переместился из положения 1 в положение 2.

Работа, совершаемая магнитным полем:

dS = ldx — площадь, пересекаемая проводником при его перемещении в магнитном поле; BdS=dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,

Работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником.

25. Работа по перемещению контура с током в магнитном поле.

Магнитное поле направлено перпендикулярно плоскости рисунка — за чертеж. Работа dА сил Ампера при перемещении контура ABCDA равна

сумме работ по перемещению проводников ABC (dAl) и CDA (dА2), т.е.

При перемещении участка CDA силы Ампера направлены в сторону перемещения (образуют с направлением перемещения острые углы), поэтому dА2 >0

Силы, действующие на участок ABC контура, направлены против перемещения (образуют с направлением перемещения тупые углы), поэтому dА1 > R0) ЭДС самоиндукции может во много раз превысить , что может привести к пробою изоляции и выводу из строя измерительных приборов.

При замыкании цепи помимо внешней ЭДС возникает ЭДС

Самоиндукции препятствующая возрастанию тока. По закону Ома,

, или . Можно показать, что решение этого уравнения имеет вид

(кривая 2)

где — установившийся ток (при ).

Таким образом, при включении источника тока сила тока возрастает по экспоненциальному закону (а не мгновенно).

34. Взаимная индукция

Взаимной индукцией называется явление возбуждения ЭДС электро­магнитной индукции в одной электрической цепи при изменении электрического тока в другой цепи или при изменении взаимного расположения этих двух цепей.

Рассмотрим два неподвижных контура 1 и 2 с токами I1 и I2, расположенных достаточно близко друг от друга. При протекании в контуре 1 тока I1 магнитный поток пронизывает второй контур

Коэффициенты пропорциональности L21 и L12 равны друг другу L12 = L2l = L и называются взаимной индуктивностью контуров.

При изменении силы тока в одном из контуров, в другом индуцируется

Взаимная индуктивность контуров зависит от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды.

Для примера рассчитаем взаимную индуктивность двух катушек, намотанных на тороидальный сердечник.

Первая катушка с числом витков N1 и током I1 создает поле . Магнитный поток сквозь один виток второй катушки

где l — длина сердечника по средней линии. Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N2 витков: . Поскольку поток создается током I1, то

Данное устройство является примером трансформатора.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Переменный ток I1 создает в первичной обмотке переменное магнитное поле. Это вызывает во вторичной обмотке появление ЭДС взаимной индукции. При этом
где jVj и N2 — число витков в первичной и вторичной обмотках, соответственно.
Отношение , показывающее, во сколько раз ЭДС во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.
Если k> 1, то трансформатор — повышающий, если k 11 — удельный заряд электрона.

Кроме орбитальных моментов, электрон обладает собственным механическим моментом импульса Ls, называемый спином.

Спину электрона соответствует собственный (спиновый) магнитный момент . Проекция спина на направление вектора может принимать только одно из следующих двух значений

где (h — постоянная Планка), μB — магнетон Бора, являющийся

единицей магнитного момента электрона.

Общий магнитный момент атома или молекулы равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов

Магнитные моменты атомных ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими как правило пренебрегают.

38.Диа- и парамагнетики.

Всякое вещество является магнетиком, т.е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться).

На вращающийся по орбите электрон, как на замкнутый ток, в магнитном поле действует вращающий момент сил. В результате электрон получает дополнительное равномерное вращение, при котором вектор будет описывать конус вокруг направления индукции с некоторой угловой скоростью Ω. Такое движение называется прецессией.

Теорема Лармора: действие магнитного поля на электронную орбиту можно свести ксообщению этой орбите прецессии с угловой скоростью

Прецессионное движение электронных орбит эквивалентно круговому микротоку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется магнитный момент, направленный против внешнего поля.

Наведенные составляющие магнитных полей атомов складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле. Этот эффект получил название диамагнитного эффекта, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками (например, Ag, Au, Си. ).

Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам.

Наряду с диамагнитными веществами существуют и парамагнитные — вещества, намагничивающиеся во внешнем магнитном поле по направлению поля (пример: редкоземельные металлы, Pt, А1. ).

У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и молекулы парамагнетиков всегда обладают магнитным моментом (такие молекулы называются полярными).

Вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому, в отсутствие магнитного поля, парамагнитные вещества магнитными свойствами не обладают.

При внесении парамагнетика во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов (молекул) по полю (полной ориентации препятствует тепловое движение атомов).

Дата добавления: 2014-10-31 ; просмотров: 536 ; Нарушение авторских прав

Магнитное поле и его характеристики

теория по физике 🧲 магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Способы обозначения направлений векторов:

Читайте также:

  1. II. Объем и сроки выполнения задач в рамках проекта
  2. VII. Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Технология» (направление «Технический труд»).
  3. Алгоритм позиционирования товаров в рамках формирования товарной линии
  4. Анализ неоднородности магнитного поля над дефектом
  5. Аномалии магнитного поля Земли.
  6. Атеистическо-материалистическое направление философии французского Просвещения XVIII в.
  7. Биологическое действие СВЧ-поля.
  8. Быстропеременные региональные поля или (в других источниках литературы) переменные низкочастотные поля.
  9. В. Консервативное направление. Либеральное направление. Западники и славянофилы
  10. Взаимодействие электромагнитного поля и движущегося заряда.
Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 3. Магнитная индукция. Действие магнитного поля на проводник и движущуюся заряжённую частицу

Перечень вопросов, рассматриваемых на уроке:

1) магнитное поле;

2) вектор магнитной индукции, линии магнитной индукции;

3) сила Ампера, сила Лоренца;

4) правило буравчика, правило левой руки.

Глоссарий по теме

Магнитная индукция – векторная величина, характеризующая величину и направление магнитного поля.

Сила Ампера – сила, действующая со стороны магнитного поля на проводник с током.

Сила Лоренца – сила, действующая со стороны магнитного поля на движущую частицу с зарядом.

Правило «буравчика» — правило для определения направления магнитного поля проводника с током.

Правило левой руки – правило для определения направления силы Ампера и силы Лоренца.

Соленоид – проволочная катушка.

Рамка с током – небольшой длины катушка с двумя выводами из скрученного гибкого проводника с током, способная поворачиваться вокруг оси, проходящей через диаметр катушки.

Основная и дополнительная литература по теме урока

Мякишев Г.Я., Буховцев Б.Б. Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций. М.: Просвещение, 2014. – С. 3 – 20

2. А.П. Рымкевич. Сборник задач по физике. 10-11 классы. — М: Дрофа, 2009. – С.109 — 112

Основное содержание урока

Магнитное поле – особый вид материи, которая создаётся электрическим током или постоянными магнитами. Для демонстрации действия и доказательства существования магнитного поля служат магнитная стрелка, способная вращаться на оси, или небольшая рамка (или катушка) с током, подвешенная на тонких скрученных гибких проводах.

Рамка с током и магнитная стрелка под действием магнитного поля поворачиваются так, что северный полюс (синяя часть) стрелки и положительная нормаль рамки указывают направление магнитного поля.

Магнитное поле, созданное постоянным магнитом или проводником с током, занимает всё пространство в окрестности этих тел. Магнитное поле принято (удобно) изображать в виде линий, которые называются линиями магнитного поля. Магнитные линии имеют вихревой характер, т.е. линии не имеют ни начала, ни конца, т.е. замкнуты. Направление касательной в каждой точке линии совпадает с направлением вектора магнитной индукции. Поля с замкнутыми линиями называются вихревыми.

Магнитное поле характеризуется векторной величиной, называемой магнитной индукцией. Магнитная индукция характеризует «силу» и направление магнитного поля – это количественная характеристика магнитного поля.

Она обозначается символом За направление вектора магнитной индукции принимают направление от южного полюса к северному магнитной стрелки, свободно установившейся в магнитном поле.

Направление магнитного поля устанавливают с помощью вектора магнитной индукции.

Направление вектора магнитной индукции прямого провода с током определяют по правилу буравчика (или правого винта).

Правило буравчика звучит следующим образом:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Направление магнитного поля внутри соленоида определяют по правилу правой руки.

Определим модуль вектора магнитной индукции.

Наблюдения показывают, что максимальное значение силы, действующей на проводник, прямо пропорционально силе тока, длине проводника, находящегося в магнитном поле.

Тогда, зависимость силы от этих двух величин выглядит следующим образом

Отношение зависит только от магнитного поля и может быть принята за характеристику магнитного поля в данной точке.

Величина, численно равная отношению максимальной силы, действующей на проводник с током, на произведение силы тока и длины проводника, называется модулем вектора магнитной индукции:

Единицей измерения магнитной индукции является 1 тесла (Тл).

Сила, действующая на проводник с током в магнитном поле, равна произведению модуля магнитной индукции, силы тока, длины проводника и синуса угла между вектором магнитной индукции и направлением тока:

где α – угол между вектором B и направлением тока.

Направление силы Ампера определяется правилом левой руки:

Если ладонь левой руки развернуть так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 0 большой палец покажет направление силы Ампера.

Сила Ампера — сила, действующая на проводник с током со стороны магнитного поля.

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля. Её численное значение равно произведению заряда частицы на модули скорости и магнитной индукции и синус угла меду векторами скорости и магнитной индукции:

– заряд частицы;

– скорость частицы;

B – модуль магнитной индукции;

– угол между векторами скорости частицы и магнитной индукции.

Направление силы Лоренца также определяют по правилу левой руки:

Если четыре вытянутых пальца левой руки направлены вдоль вектора скорости заряженной частицы, а вектор магнитной индукции направлен в ладонь, то отведённый на 90 0 большой палец покажет направление силы Лоренца. Если частица имеет заряд отрицательного знака, то направление силы Лоренца противоположно тому направлению, которое имела бы положительная частица.

Получим формулы для радиуса окружности и периода вращения частицы, которая влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции, применяя формулы второго закона Ньютона и центростремительного ускорения.

Согласно 2-му закону Ньютона

Время, за которое частица делает полный оборот (период обращения), равно:

Многим юным бывает досадно, что они не родились в старые времена, когда делались открытия. Им кажется, что теперь всё известно и никаких открытий на их долю не осталось.

Одной из нераскрытых тайн является механизм земного магнитного поля. Как же и чем вызывается магнитное поле Земли? Подумайте и может быть…

Одна из возможных гипотез.

Как известно, ядро Земли имеет высокую температуру

и высокую плотность. Судя по исследованиям, в самом центре содержится твёрдое ядро. При вращении Земли вокруг своей оси центр тяжести не совпадает с геометрическим центром из-за притяжения Солнца. В результате сместившееся из центра ядро вращаясь относительно оболочки Земли вызывает такое же движение жидкой расплавленной массы мантии, как чайная ложка, перемешивающая воду в стакане. Получается не что иное, как направленное движение зарядов. Есть электрический ток, а он, в свою очередь, создаёт магнитное поле.

Разбор тренировочных заданий

1. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

— точка означает, что магнитная индукция направлена на нас из глубины плоскости рисунка.

Используя правило левой руки, определяем направление силы Ампера:

Левую руку располагаем так, чтобы линии магнитной индукции входили в ладонь, 4 пальца направим вниз по направлению тока, тогда отогнутый на 90 0 большой палец покажет направление силы Ампера, т. е. она направлена влево.

2. По проводнику длиной 40 см протекает ток силой 10 А. Чему равна индукция магнитного поля, в которое помещён проводник, если на проводник действует сила 8 мН?

(Ответ выразите в мТл).

3. Определите модуль силы, действующей на проводник длиной 50 см при силе тока 10 А в магнитном поле с индукцией 0,15 Тл. (Ответ выразите в мН).

4. Протон в магнитном поле с индукцией 0,01 Тл описал окружность радиусом 10 см. Найдите скорость протона. (Ответ выразите в км/с, округлив до десятков)

5. С какой скоростью влетает электрон в однородное магнитное поле (индукция 1,8 Тл) перпендикулярно к линиям индукции, если магнитное поле действует на него с силой 3,6∙10 — ¹² Н? Ответ выразите в км/с.

6. Электрон движется в однородном магнитном поле с индукцией 3,14мТл. Чему равен период обращения электрона? (Ответ выразите в наносекундах, округлив до целых)

Запишем формулу модуля магнитной индукции:

B = 0,008 Н / ( 0,4м·10 A) = 0,002 Tл = 2 мTл.

Запишем формулу силы Ампера:

F = 0,l5 Tл· 10 A· 0,5 м = 0,75 Н = 750 мН

Заряд протона равен: q₀ = l,6·l0⁻ˡ⁹ Кл,

масса протона: m = l,67·l0⁻²⁷ кг.

Согласно 2-му закону Ньютона:

v = ( l,6·l0⁻ˡ⁹ Кл·0,l м·0,0l Tл) / l,67·l0⁻²⁷ кг ≈ 0,00096·l0⁸ м/с ≈ l00 км/с.

Ответ: v ≈ l00 км/с.

Найти:

Заряд электрона равен: q₀ = l,6·l0⁻ˡ⁹ Кл.

Используем формулу силы Лоренца:

.

Выразим из формулы силы скорость, учитывая, что sin90°=l,

v = 3,6·l0⁻¹² Н / (l,6·l0⁻ˡ⁹ Кл· l,8 Tл) = l,25·l0⁷м/с = l2500 км/с.

Ответ: v = l2500 км/с.

B = 3,l4 мТл = 3,l4·l0⁻³ Tл,

Масса электрона равна: m = 9,l·l0⁻³¹ кг.

Время, за которое частица делает полный оборот (период обращения), равно:

T = 2·3,l4·9,l·l0⁻³¹ кг/( l,6·l0⁻ˡ⁹ Кл·3,l4·l0⁻³ Tл) = ll,375·l0⁻⁹ с ≈ ll нс.

источники:

Магнитное поле и его характеристики

http://resh.edu.ru/subject/lesson/3806/conspect/

— это силовая характеристика магнитного поля.

img cpURJ7 Домострой

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

img 6S9mBu Домострой

Направление линий магнитной индукции

— определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

img fJHNvH Домострой

Правило правой руки ( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

img yW0yaf Домострой

Существуют другие возможные варианты применения правил буравчика и правой руки.

Сила ампера

— это сила, с которой магнитное поле действует на проводник с током.

img 2PuZpS Домострой

img ZtNKM3 Домострой

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

img eB1mwX Домостройили img bootVi Домострой

Действие магнитного поля на рамку с током

Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).

img YzpcAG Домострой

Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током. Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

img 2l68Rg Домострой

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

img XTG7ZC Домострой

Рисунок — 1 круговой виток с током

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

img Домострой

Рисунок— 2 Воображаемый полосовой магнит на оси витка

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Рассмотрим, как поведет себя прямоугольная рамка с током в однородном магнитном поле. Допустим, она расположена, как показано на рис. 13.8. Нормаль п к плоскости рамки образует с направлением магнитной индукции В угол а, а ток / направлен, как показано на рис. 13.8, а. Согласно закону Ампера на горизонтальные участки рамки (длиной Ь) действуют две равные силы — Р2 и F4, которые пытаются ее растянуть. Если она достаточно жесткая, то эти силы взаимно компенсируют друг друга и никакого влияния на движение рамки не оказывают. На вертикальные участки (длиной а) действуют две противоположно направленные силы, а закон Ампера (13.9) для них

761 Домострой 762 Домострой

Силы F и F3 образуют пару сил с плечом / = b sin а (см. рис. 13.8, б), создающие момент сил

763 Домострой

или в векторной форме

764 Домострой

где S — ориентированная площадь рамки, S = abn. Произведение

765 Домострой

называется магнитным моментом рамки с током. Это соотношение так же, как и выражение для момента (13.11), справедливо для плоских рамок (токов) любой конфигурации. Очевидно, что магнитный момент старается повернуть рамку перпендикулярно индукции В.

Соотношение (13.11) используют для определения единицы интенсивности магнитного поля — его магнитной индукции В. Из него следует, что момент, действующий на рамку с током, максимален, когда а = 7г/2, т.е. когда силовые линии В скользят вдоль поверхности рамки. В этом случае

766 Домострой

767 Домострой

Подставляя в это выражение размерности момента (Н • м) и магнитного момента (А • м 2 ), получаем размерность магнитной индукции:

768 Домострой

Эта единица измерения называется тесла (Тл) (по фамилии сербского ученого Николы Тесла).

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В — физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция — векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

image100 Домострой

Единица магнитной индукции. В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

image073 Домострой

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера FА = IBlsin a , а сила Лоренца действует на движущийся заряд:

image074 Домострой

где a — угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует силаimage004 Домостройм , постоянная по модулю и направленная перпендикулярно вектору скоростиimage075 Домострой.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

image076 Домострой

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияimage077 Домостройоткуда следует,

image078 Домострой

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

image079 Домострой

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца image004 Домостройл равна магнитной силе image004 Домостройм :

image080 Домострой

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S — величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором image081 Домостройи нормалью image Домостройк поверхности:

Ф=BScos080 Домострой

В СИ единица магнитного потока 1 Вебер (Вб) — магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

image082 Домострой

Электромагнитная индукция-явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции , пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

image083 Домострой

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции εi.

По закону Ома для замкнутой цепи

image084 Домострой

Так как R не зависит от image086 Домострой, то

image085 Домострой

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

image087 Домострой

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Индуктивность контура L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция — частный случай электромагнитной индукции.

image088 Домострой

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

image089 Домострой

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела 041 Домострой:

image090 Домострой

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I — начальное значение тока, t — промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = Icpt . Так как Icp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

image092 Домострой

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

image090 Домострой

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

image095 Домостройimage093 Домострой

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1. Следовательно,

image096 Домострой

Ответ: энергия поля равна 8,6 Дж; при уменьшении тока вдвое она уменьшится в 4 раза.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Функция найди айфон как использовать
  • Как найти посредника в китае для 1688
  • Как найти хороший мультфильм
  • Как найти потерянный загранпаспорт
  • Как найти датчик температуры охлаждающей жидкости

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии