Как найти импульс пружины

Enter the spring constant, the displacement, and the time of spring force into the calculator to determine the Spring Momentum. 

  • All Momentum Calculators
  • Arrow Momentum Calculator
  • Linear Momentum Calculator
  • Spring Force Calculator

Spring Momentum Formula

The following equation is used to calculate the Spring Momentum.

pS = K*x *t

  • Where ps is the Spring Momentum (m/s*kg)
  • k is the spring constant (N/m)
  • x is the displacement (m)
  • t is the time of spring force (s)

What are the units for Spring Momentum?

The most common units for Spring Momentum are m/s*kg.

How to Calculate Spring Momentum?

Example Problem:

The following example problem outlines the steps and information needed to calculate the Spring Momentum.

First, determine the spring constant. In this example, the spring constant is determined to be 50 (N/m).

Next, determine the displacement. For this problem, the displacement is measured to be 3 (m).

Next, determine the time of spring force. In this case, the time of spring force is found to be .123 (s).

Finally, calculate the Spring Momentum using the formula above: 

pS = K*x *t

Inserting the values from above and solving the equation with the imputed values gives: 

pS = 50*3 *.123= 18.45 (m/s*kg)

spring momentum calculator

Пусть у нас есть пружина, прикрепленная к стене.

Допустим, что длина пружины составляет 1 метр, и до некоторого момента никакие горизонтальные силы на нее не действуют. Но затем кто-то прикладывает к ней силу в 30 Н, направленную влево. Что с ней случится? Очевидно, что пружина сожмется под действием внешней силы, иными словами, деформируется.

Предположим, что длина ее уменьшилась до 60 см, после чего наступило равновесие: пружина перестала сжиматься, несмотря на то, что на нее продолжают действовать с силой. Значит, по первому закону Ньютона, есть какая-то сила, которая мешает дальше двигать правый край пружины. Эту силу называют силой упругости, именно она стремится вернуть деформированное тело в исходное положение и уравновешивает силу внешнего воздействия. Обозначают ее обыкновенно так: vec{F}_{упр}.

Если к пружине приложить силу не в 30 Н, а в 60 Н, что тогда произойдет? Нетрудно догадаться, что пружина теперь будет сжиматься до тех пор, пока сила упругости не достигнет величины в 60 Н. То есть ее деформация будет больше. Но насколько больше?

Роберт Гук, современник Исаака Ньютона, однажды задался тем же вопросом. И он открыл, что между деформацией тела и величиной силы упругости существует линейная зависимость. Чем сильнее мы пытаемся изменить размеры тела, тем больше оно сопротивляется этому:

F_{упр}proptovarDelta{x}

F_{упр} – это модуль силы упругости, силы, возникающей в ответ на внешнее воздействие. varDelta{x} – это модуль деформации пружины.

Из этого выражения следует, что должен существовать коэффициент пропорциональности между силой упругости и сжатием (растяжением) пружины.

Вы, наверняка, знаете о том, что пружины бывают разные. Некоторые сжать очень просто, другие сжать практически нереально, настолько они неподатливы. Вот это различие между ними характеризуется жесткостью пружины. Обычно эта штука обозначается маленькой буквой k, измеряется она в Н/м. Чем больше этот коэффициент, тем труднее деформировать пружину.

Итак, мы можем объединить все вышеизложенные идеи с помощью математики:

boxed{F_{упр}=kvarDelta{x}}

Вот это и есть закон Гука. Стоит отметить, что и деформация пружины, и сила упругости являются векторами. В уравнении, которое мы только что получили, речь идет о модулях этих величин.

Если вы хотите векторную форму закона Гука, она выглядит так:

boxed{vec{F}_{упр}=-,kvarDelta{vec{x}}}

Почему знак минус стоит перед выражением справа? Потому что сила упругости всегда действует в направлении противоположном деформации. Рассмотрим это на конкретном примере.

Пусть у нас есть еще одна пружина, прикрепленная к стене. Длина ее составляет 30 сантиметров, а жесткость равна 50 Н/м. Предположим,  к этой пружине прикладывают некоторую силу, направленную вправо, тем самым растягивая ее.

Нужно найти силу упругости (не только величину, но и направление).

Мы решим эту задачу при помощи векторной формы закона Гука:

vec{F}_{упр}=-,kvarDelta{vec{x}}

Жесткость пружины известна. Что насчет деформации? Из рисунка наверху видно, что длина пружины увеличилась на 10 сантиметров. Направление деформации совпадает с  направлением силы, являющейся ее причиной. Сила внешнего воздействия направлена вправо (в положительном направлении). Таким образом:

varDelta{vec{x}}=0.1thickspaceм

Найдем силу упругости:

vec{F}_{упр}=-,kvarDelta{vec{x}}=-,50thickspaceН/м×0.1thickspaceм=-,5thickspaceН

Она отрицательна, и в этом есть смысл. Пружина растягивается вправо вследствие силы, с которой на нее действуют. Сила упругости противостоит причине деформации и стремится вернуть пружину обратно. Поэтому она направлена влево (в направлении, которое мы условно считаем отрицательным).

Кратко повторим все наиболее важное.

Под деформацией подразумевают любое изменение формы или размеров тела.

Сила упругости – это сила, возникающая вследствие деформации. Она стремится вернуть тело в исходное состояние.

Закон Гука – это закон, выражающий линейную зависимость между деформацией тела и силой упругости, возникающей внутри него.

Формулы пружинного маятника в физике

Формулы пружинного маятника

Определение и формулы пружинного маятника

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Формулы пружинного маятника, рисунок 1

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

[ddot{x}+{omega }^2_0x=0left(1right),]

где ${щu}^2_0=frac{k}{m}$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

[x=A{cos left({omega }_0t+varphi right)=A{sin left({omega }_0t+{varphi }_1right) } }left(2right),]

где ${omega }_0=sqrt{frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; ${(omega }_0t+varphi )$ — фаза колебаний; $varphi $ и ${varphi }_1$ — начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

[Re tilde{x}=Releft(Acdot exp left(ileft({omega }_0t+varphi right)right)right)left(3right).]

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

[T=2pi sqrt{frac{m}{k}}left(4right).]

Так как частота колебаний ($nu $) — величина обратная к периоду, то:

[nu =frac{1}{T}=frac{1}{2pi }sqrt{frac{k}{m}}left(5right).]

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

Амплитуду можно найти как:

[A=sqrt{x^2_0+frac{v^2_0}{{omega }^2_0}}left(6right),]

начальная фаза при этом:

[tg varphi =-frac{v_0}{x_0{omega }_0}left(7right),]

где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

[E_p=-frac{dF}{dx}(8)]

учитывая, что для пружинного маятника $F=-kx$,

Формулы пружинного маятника, рисунок 2

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

[E_p=frac{kx^2}{2}=frac{m{{omega }_0}^2x^2}{2}left(9right).]

Закон сохранения энергии для пружинного маятника запишем как:

[frac{m{dot{x}}^2}{2}+frac{m{{omega }_0}^2x^2}{2}=const left(10right),]

где $dot{x}=v$ — скорость движения груза; $E_k=frac{m{dot{x}}^2}{2}$ — кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Пример 1

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac{м}{с}$?

Решение. Сделаем рисунок.

Формулы пружинного маятника, пример 1

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

[E_{pmax}=E_{kmax }left(1.1right),]

где $E_{pmax}$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax }$ — кинетическая энергия шарика, в момент прохождения положения равновесия.

[E_{kmax }=frac{mv^2}{2}left(1.2right).]

Потенциальная энергия равна:

[E_{pmax}=frac{k{x_0}^2}{2}left(1.3right).]

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

[frac{mv^2}{2}=frac{k{x_0}^2}{2}left(1.4right).]

Из (1.4) выразим искомую величину:

[x_0=vsqrt{frac{m}{k}}.]

Вычислим начальное (максимальное) смещение груза от положения равновесия:

[x_0=1cdot sqrt{frac{0,36}{1600}}=1,5 cdot {10}^{-3}(м).]

Ответ. $x_0=1,5$ мм

Пример 2

Задание. Пружинный маятник совершает колебания по закону: $x=A{cos left(omega tright), } $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$.
В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

[F=-kx=-kA{cos left(omega tright)left(2.1right). }]

Потенциальную энергию колебаний груза найдем как:

[E_p=frac{kx^2}{2}=frac{kA^2{{cos }^2 left(omega tright) }}{2}left(2.2right).]

В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:

[frac{E_{p0}}{F_0}=-frac{A}{2}{cos left(omega tright) }to t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}right) }.]

Ответ. $t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}right) }$

Читать дальше: формулы равноускоренного прямолинейного движения.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пружинный маятник — колебательная система, которая состоит из тела, подвешенного к пружине. Эта система способна к совершению свободных колебаний.

Подобные системы довольно широко распространены за счет своей функциональной гибкости. Механизмы на основе таких маятников часто используются как элементы средств автоматики. 

В том числе они нашли применение в контактных взрывателях различных боеприпасов, в качестве акселерометров в контурах управления ракет. Так же они активно используются в предохранительных клапанах, устанавливаемых в трубопроводах.

Что такое пружинный маятник

Пружинным маятником в физике называют систему, совершающую колебательные движения под действием силы упругости. 

Приняты следующие обозначения:

  • m — масса тела;

  • k — коэффициент жесткости пружины.

Общий вид маятника:

Пружинный маятник

Особенностями пружинных маятников являются:

  1. Сочетание тела и пружины. Массой пружины обычно в расчетах пренебрегают. Роль тела могут играть различные объекты. На них оказывают действие внешние силы. Груз может крепиться разными способами. Витки пружины, которыми она начинается и заканчивается, изготавливают с учетом повышенной нагрузки;

  2. У любой пружины есть исходное положение, предел сжатия и растяжения. При максимальном сжатии зазора между витками нет. Когда она максимально растянута, возникает необратимая деформация;

  3. Полная механическая энергия появляется с началом процесса обратимого деформирования. В этот момент на объект не оказывает действие сила упругости;

  4. Колебательные движения происходят под влиянием силы упругости. Масштаб влияния определяется несколькими причинами (тип сплава, расположение витков и т. д.). Так как может происходить и сжатие и растяжение, можно сделать вывод, что сила упругости действует в двух противоположных направлениях;

  5. От массы тела, величины и направления прикладываемой силы зависит скорость в плоскости его перемещения. Например, если подвесить груз к пружине и, растянув её, отпустить, то груз будет перемещаться в двух плоскостях: вертикально и горизонтально.

Виды пружинных маятников

Горизонтальный пружинный маятник

Существует два типа данной системы:

  1. Вертикальный маятник — на тело довольно сильно влияет сила тяжести. Это влияние обуславливает увеличение инерционных движений, которые совершает тело в исходной точке.

  2. Горизонтальный — в таком варианте при движении на груз начинает действовать сила трения, возникающая по причине того, что груз лежит на поверхности.

Сила трения в горизонтальном маятнике

Сила упругости в пружинном маятнике

До начала деформирования пружина находится в равновесном состоянии. Прикладываемое усилие может как растягивать, так и сжимать её. 

Применяя к пружинному маятнику закон сохранения энергии, мы можем рассчитать силу упругости в нем. Упругость прямо пропорциональна расстоянию, на которое сместился груз.

Расчёт силы упругости может быть проведен таким образом:

Fупр = — k*x

где k — коэффициент жесткости пружины (Нм),

x – смещение (м).

Уравнения колебаний пружинного маятника

Свободные колебания пружинного маятника описываются с помощью гармонического закона. 

Если допустить вероятность того, что колебания идут вдоль оси Х, и при этом выполняется закон Гука, то уравнение примет вид:

F(t) = ma(t) = — mw2x(t),

где w — радиальная частота гармонического колебания.

Для проведения расчета колебаний, учитывая все вероятности, применяют следующие формулы:

Свободные колебания пружинного маятника

Период и частота свободных колебаний пружинного маятника

При разработке проектов всегда определяется период колебаний и их частота. Для их измерения используются известные в физике формулы.

Период и частота колебаний пружинного маятника

Изменение циклической частоты покажет формула, приведенная на рисунке:

Циклическая частота

Факторы, от которых зависит частота:

  1. Коэффициент упругости. На этот коэффициент влияет количество витков, их диаметр, расстояние между ними, длина пружины, жесткость используемого сплава и т. д.

  2. Масса груза. От этого фактора зависит возникающая инерция и скорость перемещения.

Амплитуда и начальная фаза пружинного маятника

Учитывая начальные условия и рассчитав уравнение колебаний, можем точно описать колебания пружинного маятника. 

В качестве начальных условий используются: амплитуда (А) и начальная фаза колебаний (ϕ).

Амплитуда и начальная фаза пружинного маятника

Энергия пружинного маятника

При рассмотрении колебания тел учитывают, что груз движется прямолинейно. Полная механическая энергия тела в каждой точке траектории является константой и равняется сумме его потенциальной энергии и кинетической энергии.

kolebanija

Потенциальная энергия:

68

Кинетическая энергия:

69

Полная энергия:

70

Энергия гармонического колебания

Расчет имеет особенности. При его проведении нужно учитывать несколько условий:

  1. Колебания проходят в двух плоскостях: вертикальной и горизонтальной.

  2. В качестве равновесного положения выбирается ноль потенциальной энергии. Находясь в этом положении пружина сохраняет свою форму.

  3. Влияние силы трения при расчете не учитывают.

Дифференциальное уравнение гармонических колебаний пружинного маятника 

Дифуравнения пружинного маятника

Отметим, что пружинный маятник — это обобщенное определение. Скорость движения груза (тела) напрямую зависит от комплекса условий, в том числе приложенного к нему усилия.

Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

Пружина

Понятие потенциальной энергии пружины

При рассмотрении того, что такое потенциальная энергия пружины следует уделить внимание самому понятию – свойство, которым могут обладать тела при нахождении на земле. Этот момент определяет то, что ей могут обладать самые разнообразные изделия, в том числе рассматриваемое. К особенностям рассматриваемого понятия можно отнести следующее:

  1. Потенциальная энергия в рассматриваемом случае формируется по причине изменения состояния. Даже при несущественном смещении витков относительно друг друга считается изменением состояния подобного изделия.
  2. Для того чтобы изменить состояние изделия совершается определенное действие. Зачастую для этого проводится прикладывание усилия. При этом важно провести расчет требуемого усилия для сжатия витков.
  3. После выполнения определенной работы большая часть усилия, которое было потрачено на выполнение действия высвобождается при определенных обстоятельствах. Как правило, этот процесс предусматривает возврат витков в свое первоначальное положение. Это достигается за счет особой формы изделия, а также применения соответствующего материала, который обладает повышенной упругостью. Именно за счет этого свойства зачастую проводится установка рассматриваемого изделия. Показатель может достигать весьма высоких показателей, которой достаточно для реализации различных задач. Распространенным примером можно назвать установку пружины в запорных и предохранительных элементах, которые отвечают за непосредственное возращение запорного элемента в требуемое положение.

Определение потенциальной энергии пружины

Она также широко применяется при создании самых различных механизмов, к примеру, заводных часов. При проектировании различных механизмов учитывается закон сохранения механической силы, которая характеризуется довольно большим количеством особенностей.

Закон сохранения механической энергии

Согласно установленным законам механическое воздействие консервативной механической системы сохраняется во времени. Этот момент определяет то, что потенциальная энергия деформированной пружины не может возникнуть сама или исчезнуть куда-нибудь. Именно поэтому для ее создания нужно приложить соответствующее усилие.

Рассматриваемый закон относится к категории интегральных равенств. Эта закономерность определяет то, что он складывается их действия дифференциальных законов, является свойством или признаком совокупного воздействия.

Для проведения соответствующих расчетов должна применяться определенная формула. Сила, с которой оказывается воздействие, не является постоянной. Именно поэтому для ее вычисления применяется графический метод. Самая простая зависимость может быть описана следующим образом: F=kx. При применении подобной зависимости построенная координатная линия будет представлена прямой линией, которая расположена под углом относительно системы координат.

Закон сохранения механической энергии

Приписать подобному устройству потенциальную энергию можно только в том случае, если она равна максимальной работе и не зависит от условной траектории движения. Проведенные исследования указывают на то, что подобная работа подчиняется закону Гука. Для определения основного показателя применяется следующая формула: U=kk2/2.

Для деформирования витков к ним должно быть приложено определенное усилие, так как в противном случае кинетическая сила не возникнет.

Динамика твердого тела

Некоторые определить выражения (определяется при применении наиболее подходящих формул) можно только с учетом правил, касающихся динамики твердых объектов. Этому вопросу посвящен целый раздел. При расчете потенциальной энергии сжатой пружины также применяются некоторые законы этого раздела

Динамика твердого тела рассматривается по причине того, что в большинстве случаев механизм совершает действие, связанное с непосредственным перемещением какого-либо объекта.

Рассматриваемое свойство изделия может изменяться в зависимости от динамики твердого тела. Это связано с тем, что на изделие оказывается и воздействие со стороны окружающей среды. Примером можно назвать трение или нагрев. Динамика твердого тела

Момент силы и момент импульса относительно оси

Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

Момент импульса – величина, которая применяется для определения количества вращательного движения.

Среди особенностей подобного показателя можно отметить следующее:

  1. Масса вращения. Объект может характеризоваться различной массой.
  2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
  3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.

Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

Уравнение движения вращающегося тела

Рассматривая подобное свойство также следует уделить внимание уравнению движения вращающегося тела. Не стоит забывать о том, что вращательное движение твердого тела характеризуется наличием как минимум двух точек. При этом отметим нижеприведенные особенности:

  1. Прямая, которая соединяет две точки, выступает в качестве оси вращения.
  2. Есть возможность провести определение места положения объекта в случае вычисления заднего угла между двумя плоскостями.
  3. Наиболее важным показателем можно назвать угловую скорость. Она связана с инерцией, которая возникает при вращении объекта.

Для вычисления угловой скорости применяется специальная формула, которая выглядит следующим образом: w=df/dt. В некоторых случаях проводится вычисление углового ускорения, которое также является важной величиной.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить пентакли
  • Как найти скутер на алиэкспресс
  • Как найти код препарата
  • Как найти человека который воевал на войне
  • Как найти эксцентриситет орбиты земли

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии