До конца XIX века нормальное распределение считалась всеобщим законом вариации данных. Однако К. Пирсон заметил, что эмпирические частоты могут сильно отличаться от нормального распределения. Встал вопрос, как это доказать. Требовалось не только графическое сопоставление, которое имеет субъективный характер, но и строгое количественное обоснование.
Так был изобретен критерий χ2 (хи квадрат), который проверяет значимость расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Это произошло в далеком 1900 году, однако критерий и сегодня на ходу. Более того, его приспособили для решения широкого круга задач. Прежде всего, это анализ категориальных данных, т.е. таких, которые выражаются не количеством, а принадлежностью к какой-то категории. Например, класс автомобиля, пол участника эксперимента, вид растения и т.д. К таким данным нельзя применять математические операции вроде сложения и умножения, для них можно только подсчитать частоты.
Наблюдаемые частоты обозначим О (Observed), ожидаемые – E (Expected). В качестве примера возьмем результат 60-кратного бросания игральной кости. Если она симметрична и однородна, вероятность выпадения любой стороны равна 1/6 и, следовательно, ожидаемое количество выпадения каждой из сторон равна 10 (1/6∙60). Наблюдаемые и ожидаемые частоты запишем в таблицу и нарисуем гистограмму.
Нулевая гипотеза заключается в том, что частоты согласованы, то есть фактические данные не противоречат ожидаемым. Альтернативная гипотеза – отклонения в частотах выходят за рамки случайных колебаний, расхождения статистически значимы. Чтобы сделать строгий вывод, нам потребуется.
- Обобщающая мера расхождения между наблюдаемыми и ожидаемыми частотами.
- Распределение этой меры при справедливости гипотезы о том, что различий нет.
Начнем с расстояния между частотами. Если взять просто разницу О — E, то такая мера будет зависеть от масштаба данных (частот). Например, 20 — 5 =15 и 1020 – 1005 = 15. В обоих случаях разница составляет 15. Но в первом случае ожидаемые частоты в 3 раза меньше наблюдаемых, а во втором случае – лишь на 1,5%. Нужна относительная мера, не зависящая от масштаба.
Обратим внимание на следующие факты. В общем случае количество категорий, по которым измеряются частоты, может быть гораздо больше, поэтому вероятность того, что отдельно взятое наблюдение попадет в ту или иную категорию, довольно мала. Раз так, то, распределение такой случайной величины будет подчинятся закону редких событий, известному под названием закон Пуассона. В законе Пуассона, как известно, значение математического ожидания и дисперсии совпадают (параметр λ). Значит, ожидаемая частота для некоторой категории номинальной переменной Ei будет являться одновременное и ее дисперсией. Далее, закон Пуассона при большом количестве наблюдений стремится к нормальному. Соединяя эти два факта, получаем, что, если гипотеза о согласии наблюдаемых и ожидаемых частот верна, то, при большом количестве наблюдений, выражение
имеет стандартное нормальное распределение.
Важно помнить, что нормальность будет проявляться только при достаточно больших частотах. В статистике принято считать, что общее количество наблюдений (сумма частот) должна быть не менее 50 и ожидаемая частота в каждой группе должна быть не менее 5. Только в этом случае величина, показанная выше, имеет стандартное нормальное распределение. Предположим, что это условие выполнено.
У стандартного нормального распределения почти все значение находятся в пределах ±3 (правило трех сигм). Таким образом, мы получили относительную разность в частотах для одной группы. Нам нужна обобщающая мера. Просто сложить все отклонения нельзя – получим 0 (догадайтесь почему). Пирсон предложил сложить квадраты этих отклонений.
Это и есть статистика для критерия Хи-квадрат Пирсона. Если частоты действительно соответствуют ожидаемым, то значение статистики Хи-квадрат будет относительно не большим (отклонения находятся близко к нулю). Большое значение статистики свидетельствует в пользу существенных различий между частотами.
«Большой» статистика Хи-квадрат становится тогда, когда появление наблюдаемого или еще большего значения становится маловероятным. И чтобы рассчитать такую вероятность, необходимо знать распределение статистики Хи-квадрат при многократном повторении эксперимента, когда гипотеза о согласии частот верна.
Как нетрудно заметить, величина хи-квадрат также зависит от количества слагаемых. Чем больше слагаемых, тем больше ожидается значение статистики, ведь каждое слагаемое вносит свой вклад в общую сумму. Следовательно, для каждого количества независимых слагаемых, будет собственное распределение. Получается, что χ2 – это целое семейство распределений.
И здесь мы подошли к одному щекотливому моменту. Что такое число независимых слагаемых? Вроде как любое слагаемое (т.е. отклонение) независимо. К. Пирсон тоже так думал, но оказался неправ. На самом деле число независимых слагаемых будет на один меньше, чем количество групп номинальной переменной n. Почему? Потому что, если мы имеем выборку, по которой уже посчитана сумма частот, то одну из частот всегда можно определить, как разность общего количества и суммой всех остальных. Отсюда и вариация будет несколько меньше. Данный факт Рональд Фишер заметил лет через 20 после разработки Пирсоном своего критерия. Даже таблицы пришлось переделывать.
По этому поводу Фишер ввел в статистику новое понятие – степень свободы (degrees of freedom), которое и представляет собой количество независимых слагаемых в сумме. Понятие степеней свободы имеет математическое объяснение и проявляется только в распределениях, связанных с нормальным (Стьюдента, Фишера-Снедекора и сам Хи-квадрат).
Чтобы лучше уловить смысл степеней свободы, обратимся к физическому аналогу. Представим точку, свободно движущуюся в пространстве. Она имеет 3 степени свободы, т.к. может перемещаться в любом направлении трехмерного пространства. Если точка движется по какой-либо поверхности, то у нее уже две степени свободы (вперед-назад, вправо-влево), хотя и продолжает находиться в трехмерном пространстве. Точка, перемещающаяся по пружине, снова находится в трехмерном пространстве, но имеет лишь одну степень свободы, т.к. может двигаться либо вперед, либо назад. Как видно, пространство, где находится объект, не всегда соответствует реальной свободе перемещения.
Примерно также распределение статистики может зависеть от меньшего количества элементов, чем нужно слагаемых для его расчета. В общем случае количество степеней свободы меньше наблюдений на число имеющихся зависимостей.
Таким образом, распределение хи квадрат (χ2) – это семейство распределений, каждое из которых зависит от параметра степеней свободы. Формальное определение следующее. Распределение χ2 (хи-квадрат) с k степенями свободы — это распределение суммы квадратов k независимых стандартных нормальных случайных величин.
Далее можно было бы перейти к самой формуле, по которой вычисляется функция распределения хи-квадрат, но, к счастью, все давно подсчитано за нас. Чтобы получить интересующую вероятность, можно воспользоваться либо соответствующей статистической таблицей, либо готовой функцией в Excel.
Интересно посмотреть, как меняется форма распределения хи-квадрат в зависимости от количества степеней свободы.
С увеличением степеней свободы распределение хи-квадрат стремится к нормальному. Это объясняется действием центральной предельной теоремы, согласно которой сумма большого количества независимых случайных величин имеет нормальное распределение. Про квадраты там ничего не сказано )).
Проверка гипотезы по критерию Хи квадрат Пирсона
Вот мы и подошли к проверке гипотез по методу хи-квадрат. В целом техника остается прежней. Выдвигается нулевая гипотеза о том, что наблюдаемые частоты соответствуют ожидаемым (т.е. между ними нет разницы, т.к. они взяты из той же генеральной совокупности). Если этот так, то разброс будет относительно небольшим, в пределах случайных колебаний. Меру разброса определяют по статистике Хи-квадрат. Далее либо полученную статистику сравнивают с критическим значением (для соответствующего уровня значимости и степеней свободы), либо, что более правильно, рассчитывают наблюдаемый p-value, т.е. вероятность получить такое или еще больше значение статистики при справедливости нулевой гипотезы.
Т.к. нас интересует согласие частот, то отклонение гипотезы произойдет, когда статистика окажется больше критического уровня. Т.е. критерий является односторонним. Однако иногда (иногда) требуется проверить левостороннюю гипотезу. Например, когда эмпирические данные уж оооочень сильно похожи на теоретические. Тогда критерий может попасть в маловероятную область, но уже слева. Дело в том, что в естественных условиях, маловероятно получить частоты, практически совпадающие с теоретическими. Всегда есть некоторая случайность, которая дает погрешность. А вот если такой погрешности нет, то, возможно, данные были сфальсифицированы. Но все же обычно проверяют правостороннюю гипотезу.
Вернемся к задаче с игральной костью. Рассчитаем по имеющимся данным значение статистики критерия хи-квадрат.
Теперь найдем критическое значение при 5-ти степенях свободы (k) и уровне значимости 0,05 (α) по таблице критических значений распределения хи квадрат.
То есть квантиль 0,05 хи квадрат распределения (правый хвост) с 5-ю степенями свободы χ20,05; 5 = 11,1.
Сравним фактическое и табличное значение. 3,4 (χ2) < 11,1 (χ20,05; 5). Расчетный значение оказалось меньшим, значит гипотеза о равенстве (согласии) частот не отклоняется. На рисунке ситуация выглядит вот так.
Если бы расчетное значение попало в критическую область, то нулевая гипотеза была бы отклонена.
Более правильным будет рассчитать еще и p-value. Для этого нужно в таблице найти ближайшее значение для заданного количества степеней свободы и посмотреть соответствующий ему уровень значимости. Но это прошлый век. Воспользуемся ЭВМ, в частности MS Excel. В эксель есть несколько функций, связанных с хи-квадрат.
Ниже их краткое описание.
ХИ2.ОБР – критическое значение Хи-квадрат при заданной вероятности слева (как в статистических таблицах)
ХИ2.ОБР.ПХ – критическое значение при заданной вероятности справа. Функция по сути дублирует предыдущую. Но здесь можно сразу указывать уровень α, а не вычитать его из 1. Это более удобно, т.к. в большинстве случаев нужен именно правый хвост распределения.
ХИ2.РАСП – p-value слева (можно рассчитать плотность).
ХИ2.РАСП.ПХ – p-value справа.
ХИ2.ТЕСТ – по двум диапазонам частот сразу проводит тест хи-квадрат. Количество степеней свободы берется на одну меньше, чем количество частот в столбце (так и должно быть), возвращая значение p-value.
Давайте пока рассчитаем для нашего эксперимента критическое (табличное) значение для 5-ти степеней свободы и альфа 0,05. Формула Excel будет выглядеть так:
=ХИ2.ОБР(0,95;5)
Или так
=ХИ2.ОБР.ПХ(0,05;5)
Результат будет одинаковым – 11,0705. Именно это значение мы видим в таблице (округленное до 1 знака после запятой).
Рассчитаем, наконец, p-value для 5-ти степеней свободы критерия χ2 = 3,4. Нужна вероятность справа, поэтому берем функцию с добавкой ПХ (правый хвост)
=ХИ2.РАСП.ПХ(3,4;5) = 0,63857
Значит, при 5-ти степенях свободы вероятность получить значение критерия χ2 = 3,4 и больше равна почти 64%. Естественно, гипотеза не отклоняется (p-value больше 5%), частоты очень хорошо согласуются.
А теперь проверим гипотезу о согласии частот с помощью теста хи квадрат и функции Excel ХИ2.ТЕСТ.
Никаких таблиц, никаких громоздких расчетов. Указав в качестве аргументов функции столбцы с наблюдаемыми и ожидаемыми частотами, сразу получаем p-value. Красота.
Представим теперь, что вы играете в кости с подозрительным типом. Распределение очков от 1 до 5 остается прежним, но он выкидывает 26 шестерок (количество всех бросков становится 78).
p-value в этом случае оказывается 0,003, что гораздо меньше чем, 0,05. Есть серьезные основания сомневаться в правильности игральной кости. Вот, как выглядит эта вероятность на диаграмме распределения хи-квадрат.
Статистика критерия хи-квадрат здесь получается 17,8, что, естественно, больше табличного (11,1).
Надеюсь, мне удалось объяснить, что такое критерий согласия χ2 (хи-квадрат) Пирсона и как с его помощью проверяются статистические гипотезы.
Напоследок еще раз о важном условии! Критерий хи-квадрат исправно работает только в случае, когда количество всех частот превышает 50, а минимальное ожидаемое значение для каждой группы не меньше 5. Если в какой-либо категории ожидаемая частота менее 5, но при этом сумма всех частот превышает 50, то такую категорию объединяют с ближайшей, чтобы их общая частота превысила 5. Если это сделать невозможно, или сумма частот меньше 50, то следует использовать более точные методы проверки гипотез. О них поговорим в другой раз.
Ниже находится видео ролик о том, как в Excel проверить гипотезу с помощью критерия хи-квадрат.
Скачать файл с примером.
Поделиться в социальных сетях:
17 авг. 2022 г.
читать 1 мин
Когда вы проводите тест Хи-квадрат, в результате вы получаете тестовую статистику. Чтобы определить, являются ли результаты теста хи-квадрат статистически значимыми, можно сравнить статистику теста с критическим значением хи-квадрат.Если статистика теста больше критического значения хи-квадрат, то результаты теста являются статистически значимыми.
Критическое значение хи-квадрат можно найти с помощью таблицы распределения хи-квадрат или с помощью статистического программного обеспечения.
Чтобы найти критическое значение хи-квадрат, вам нужно:
- Уровень значимости (обычно выбирают 0,01, 0,05 и 0,10).
- Степени свободы
Используя эти два значения, вы можете определить значение хи-квадрата, которое будет сравниваться со статистикой теста.
Как найти критическое значение хи-квадрат в Excel
Чтобы найти критическое значение хи-квадрат в Excel, вы можете использовать функцию ХИИЗВ.ОБР.ПВ() , которая использует следующий синтаксис:
CHISQ.INV.RT (вероятность, град_свободы)
- вероятность: уровень значимости для использования
- deg_freedom : Степени свободы
Эта функция возвращает критическое значение из распределения хи-квадрат на основе уровня значимости и предоставленных степеней свободы.
Например, предположим, что мы хотим найти критическое значение хи-квадрат для уровня значимости 0,05 и степеней свободы = 11.
В Excel мы можем ввести следующую формулу: CHISQ.ОБР.ВУ(0,05, 11)
Это возвращает значение 19,67514.Это критическое значение для уровня значимости 0,05 и степеней свободы = 11.
Обратите внимание, что это также соответствует числу, которое мы нашли бы в таблице распределения хи-квадрата с α = 0,05, DF (степени свободы) = 11.
Предостережения по поиску критического значения хи-квадрат в Excel
Обратите внимание, что функция ХИ.ОБР.ПВ() в Excel выдаст ошибку, если произойдет одно из следующих событий:
- Если какой-либо аргумент не является числовым.
- Если значение вероятности меньше нуля или больше 1.
- Если значение для deg_freedomменьше 1.
5.7. Критерий согласия Пирсона
Спасибо, Карл: …Всем
понятно, почему величина случайная? – По той причине, что в разных выборках мы будем получать
разные, заранее непредсказуемые эмпирические частоты.
При достаточно большом (объёме выборки) распределение этой случайной
величины близкО к распределению хи-квадрат с количеством степеней свободы , где
– количество оцениваемых параметров закона
.
Далее строится правосторонняя критическая область:
Критическое значение можно найти с помощью соответствующей
таблицы или Макета (пункт 3б).
Наблюдаемое значение критерия рассчитывается по эмпирическим и найденным теоретическим
частотам:
Если , то на уровне значимости
нет оснований
отвергать гипотезу о том, что
генеральная совокупность распределена по закону . То есть, различие между эмпирическими и теоретическими
частотами незначимо и, скорее всего, обусловлено случайными факторами (случайностью самой выборки, способом отбора,
группировки данных и т.д.)
Если , то нулевую гипотезу
отвергаем, иными словами эмпирические и теоретические частоты отличаются значимо, и это различие вряд ли
случайно.
И, наконец, коровы, которые нас уже заждались. Реалистичность фактических данных оставлю на совести автора методички
сельскохозяйственной академии:
Пример 36
По результатам выборочного исследования найдено распределение средних удоев молока в фермерском хозяйстве (литров) от
одной коровы за день:
На уровне значимости 0,05 проверить гипотезу о том, что генеральная совокупность (средний удой коров
всей фермы) распределена нормально. Построить эмпирическую гистограмму и теоретическую кривую.
…Если не любите молоко, то пусть это будет чай, сок, пиво или другой напиток, который вам нравится Чтобы было
интереснее исследовать эту волшебную ферму.
Решение: на уровне значимости проверим гипотезу
о нормальном распределении генеральной совокупности против
конкурирующей гипотезы о том,
что она так НЕ распределена. Используем критерий согласия Пирсона .
Эмпирические частоты известны из предложенного интервального ряда, и
осталось найти теоретические. Для этого нужно вычислить выборочную среднюю и выборочное стандартное отклонение
. Выберем в качестве вариант
середины частичных интервалов (длина каждого интервала
) и заполним расчётную таблицу:
Вычислим выборочную среднюю: литра.
Выборочную дисперсию вычислим по формуле:
И выборочное стандартное отклонение: литра, по причине большого объёма выборки его исправлением можно пренебречь.
Теоретические частоты рассчитываются по формуле:
, где
– функция Гаусса, а
.
Входные данные известны: и
мы заполняем ещё одну расчётную таблицу:
вычисления удобно проводить в Экселе и на всякий случай я распишу 1-ю строчку:
– здесь выгодно использовать
встроенную экселевскую функцию =НОРМРАСП(-2,23; 0; 1; 0), первый аргумент которой равен текущему значению . За неимением Экселя и калькулятора
пользуйтесь стандартной таблицей, которая есть в любом учебнике по теорверу.
И, наконец, теоретическая частота: , довольно часто её округляют до целого значения, но без округления
результат всё же точнее.
Построим эмпирическую гистограмму с высотой «ступенек» и теоретическую кривую, которая проходит через точки
:
Нормальная кривая построена на основе выборочных данных (выборочной средней и стандартного отклонения), и
наилучшим образом приближает гистограмму. Дальнейшая задача состоит в том, чтобы оценить, насколько ЗНАЧИМО отличаются
эмпирические частоты (ступеньки гистограммы) от соответствующих теоретических частот (уровень коричневых
точек).
Но перед тем как сравнивать теоретические и эмпирические частоты, следует объединить интервалы с малыми (меньше пяти)
частотами. В данном случае объединяем два первых и два последних интервала, для этого суммируем частоты, обведённые красным
цветом, и получаем оранжевые результаты:
Это нужно для того, чтобы сгладить неоправданно большое расхождением между малыми частотами по краям выборки. Действие не
обязательное, но крайне желательное, ибо студентов на моей памяти из-за этого заставляли переделывать задание.
Найдём критическое значение критерия согласия Пирсона. Количество степеней свободы определяется
по формуле , где
– количество интервалов, а
– количество оцениваемых
параметров рассматриваемого закона распределения.
Так как мы объединяли интервалы, то теперь их не девять, а .
У нормального закона мы оцениваем параметра.
Пояснение: – это
оценка неизвестного генерального матоожидания, а – это оценка неизвестного генерального стандартного отклонения,
итого два оцениваемых параметра.
Таким образом, и для
уровня значимости :
Это значение можно найти по таблице критических значений распределения хи-квадрат или
с помощью Макета (Пункт 3б).
При нулевая гипотеза
отвергается, а при таких
оснований нет (заметьте, что формулировка не утверждает истинность гипотезы!):
Вычислим наблюдаемое значение критерия (суть – сумму расхождений между частотами), для этого
заполним ещё одну расчётную табличку:
На всякий пожарный пример расчёта: .
В нижней строке таблицы у нас получилось готовое значение , поэтому на уровне значимости 0,05 гипотезу
о нормальном распределении генеральной
совокупности отвергаем.
Иными словами различие между эмпирическими и теоретическими частотами статистически значимо и вряд ли объяснимо
случайными факторами. При этом с вероятностью 5% мы совершили ошибку 1-го рода (то есть, ген.
совокупность на самом деле распределена нормально, но мы отвергли верную нулевую гипотезу).
Ответ: на уровне значимости 0,05 гипотезу о нормальном распределении генеральной совокупности
отвергаем
В чём может быть причина? Ведь по теореме Ляпунова, большинство коров не оказывают практически никакого влияния
на удой других коров, и поэтому распределение ген. совокупности должно быть близкО к нормальному.
Причины могут быть разными. Например, неоднородный состав совокупности (коровы разной породы), или на ферме есть
VIP-хлев, где коровы получают улучшенное питание А может быть, некоторые коровы больны и как раз оказывают существенное
влияние на остальных, в связи с чем нарушается условие теоремы Ляпунова.
Интересно отметить, что при уменьшении уровня значимости до 0,01 критическое значение , и гипотеза о нормальном распределении уже принимается.
Однако не нужно забывать, что здесь выросла -вероятность того, что мы приняли неправильную гипотезу (совершили ошибку 2-го рода). С оценкой этой вероятности можно ознакомиться в специализированной литературе
по статистике.
И, конечно, в случае сомнений имеет смысл увеличить объём выборки, чтобы провести повторное исследование.
Да, и видео по вычислениям! Хотя особой технической новизны
тут нет.
Рассмотренная задача может встретиться в более простой или более сложной формулировке. В версии-«лайт» вам предложат
готовые теоретические частоты, где остаётся только проверить гипотезу. Продвинутое же условие звучит примерно так:
На основании исследования выборки выдвинуть гипотезу о законе распределения генеральной совокупности
То есть, здесь не говорится о том, что предполагаемый закон нормальный (или какой-то другой) – этот
вопрос вам предлагается проанализировать самостоятельно.
Каким образом это можно сделать?
Во-первых, гипотезу можно выдвинуть априорно, даже не исследуя выборку. В частности, на основании упомянутой выше
теоремы Ляпунова: если каждый объект совокупности оказывается ничтожно малое влияние на всю совокупность, то её
распределение близкО к нормальному.
Это утверждение носит статус теоремы! То есть, строго доказано в теории.
Но по условию, требуют опираться на выборочные данные, и здесь есть сразу несколько признаков, чтобы «вычислить»
этот закон. Самый простой и наглядный способ – графический. Грубо говоря, чертим и смотрим. Интервальный вариационный ряд чаще
всего изображают гистограммой, возвращаемся к нашим коровам:
Построенная гистограмма по форме напоминает колоколообразный график плотности нормального распределения,
и это является веской причиной предположить, что генеральная совокупность распределена нормально. Да, здесь есть слишком
высокий средний столбик, но, возможно, это просто случайность выборки.
Если столбики примерно одинаковы по высоте, то предполагаем, что генеральная совокупность распределена равномерно. Для показательного распределениятоже будет
своя, характерная гистограмма.
В случае дискретных распределений тоже никаких проблем – строим полигон и смотрим,
на что он похож.
Следующие признаки аналитические, приведу их для нормального распределения:
1) У нормального распределения математическое ожидание совпадает с модой и
медианой. В нашем случае соответствующие выборочные показатели весьма близкИ друг к другу (матожидание оценивается выборочной средней):
(литры)
Желающие могут рассчитать моду и медиану
самостоятельно. Впрочем, желающими часто становятся поневоле, поскольку задача, которую мы рассматриваем, нередко идёт в
комплексе со всеми этими заданиями.
2) Выполнение правила «трёх» сигм. Практически все значения нормальной случайной величины находятся в
интервале . Найдём этот интервал
для нашей выборки. Матожидание «а» оценивается выборочной средней , а стандартное отклонение «сигма» – выборочным стандартным
отклонением .Таким образом, наш
эмпирический интервал:
– и в него действительно
попадают все коровы!
3) Кроме того, есть ещё коэффициенты
асимметрии и эксцесса нормального распределения, которые не вошли в этот курс
На практике в исследование желательно включить все пункты за исключением, возможно, третьего (т.к. асимметрию и
эксцесс рассчитывают далеко не всегда).
Следует отметить, что перечисленные выше предпосылки ещё не означают, что соответствующая гипотеза будет принята, в чём
мы недавно убедились. А если гипотеза и окажется принятой, то это всё равно на 100% не гарантирует нормальность распределения
(так как существует -вероятность принять неверную гипотезу (ошибка 2-го рода)).
И, конечно, задача для самостоятельного решения, передаю привет студентам Университета путей сообщения:
Пример 37
В результате проверки 500 контейнеров со стеклянными изделиями установлено, что число повреждённых изделий имеет следующее эмпирическое распределение:
( – количество
повреждённых изделий в контейнере, – количество контейнеров) …Здесь тоже представьте изделия по своему
интересу
С помощью критерия согласия Пирсона на уровне значимости 0,05 проверить гипотезу о том, что случайная величина – число повреждённых
изделий распределена по закону
Пуассона.
Перелистываем страницу и читаем инструкцию по решению.
Все числа забиты в Эксель, придерживайтесь следующего алгоритма:
1) Находим выборочную среднюю . Это значение будет точечной
оценкой параметра «лямбда» теоретического распределения .
2) Находим значения для
. Вычисления можно проводить на
обычном калькуляторе, но удобнее использовать экселевскую функцию =ПУАССОН(i; «икс выборочное»; 0).
3) Находим теоретические частоты
4) Находим критическое значение критерия согласия Пирсона, где
. В данной задаче мы объединяем две последние варианты
ввиду их малых частот, следовательно, . Оценивается один параметр («лямбда»), поэтому
.
5) Рассчитываем наблюдаемое значение критерия .
6) Делаем вывод.
Примерный образец чистового оформления задачи в конце книги.
5.8. Итоги по главе
5.6. Гипотеза о законе распределения генеральной совокупности
| Оглавление |
Pearson’s chi-squared test () is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates, likelihood ratio, portmanteau test in time series, etc.) – statistical procedures whose results are evaluated by reference to the chi-squared distribution. Its properties were first investigated by Karl Pearson in 1900.[1] In contexts where it is important to improve a distinction between the test statistic and its distribution, names similar to Pearson χ-squared test or statistic are used.
It tests a null hypothesis stating that the frequency distribution of certain events observed in a sample is consistent with a particular theoretical distribution. The events considered must be mutually exclusive and have total probability 1. A common case for this is where the events each cover an outcome of a categorical variable.
A simple example is the hypothesis that an ordinary six-sided die is «fair» (i. e., all six outcomes are equally likely to occur.)
Definition[edit]
Pearson’s chi-squared test is used to assess three types of comparison: goodness of fit, homogeneity, and independence.
- A test of goodness of fit establishes whether an observed frequency distribution differs from a theoretical distribution.
- A test of homogeneity compares the distribution of counts for two or more groups using the same categorical variable (e.g. choice of activity—college, military, employment, travel—of graduates of a high school reported a year after graduation, sorted by graduation year, to see if number of graduates choosing a given activity has changed from class to class, or from decade to decade).[2]
- A test of independence assesses whether observations consisting of measures on two variables, expressed in a contingency table, are independent of each other (e.g. polling responses from people of different nationalities to see if one’s nationality is related to the response).
For all three tests, the computational procedure includes the following steps:
- Calculate the chi-squared test statistic,
, which resembles a normalized sum of squared deviations between observed and theoretical frequencies (see below).
- Determine the degrees of freedom, df, of that statistic.
- For a test of goodness-of-fit, df = Cats − Parms, where Cats is the number of observation categories recognized by the model, and Parms is the number of parameters in the model adjusted to make the model best fit the observations: The number of categories reduced by the number of fitted parameters in the distribution.
- For a test of homogeneity, df = (Rows − 1)×(Cols − 1), where Rows corresponds to the number of categories (i.e. rows in the associated contingency table), and Cols corresponds to the number of independent groups (i.e. columns in the associated contingency table).[2]
- For a test of independence, df = (Rows − 1)×(Cols − 1), where in this case, Rows corresponds to the number of categories in one variable, and Cols corresponds to the number of categories in the second variable.[2]
- Select a desired level of confidence (significance level, p-value, or the corresponding alpha level) for the result of the test.
- Compare
to the critical value from the chi-squared distribution with df degrees of freedom and the selected confidence level (one-sided, since the test is only in one direction, i.e. is the test value greater than the critical value?), which in many cases gives a good approximation of the distribution of
.
- Sustain or reject the null hypothesis that the observed frequency distribution is the same as the theoretical distribution based on whether the test statistic exceeds the critical value of
. If the test statistic exceeds the critical value of
, the null hypothesis (
= there is no difference between the distributions) can be rejected, and the alternative hypothesis (
= there is a difference between the distributions) can be accepted, both with the selected level of confidence. If the test statistic falls below the threshold
value, then no clear conclusion can be reached, and the null hypothesis is sustained (we fail to reject the null hypothesis), though not necessarily accepted.
Test for fit of a distribution[edit]
Discrete uniform distribution[edit]
In this case observations are divided among
cells. A simple application is to test the hypothesis that, in the general population, values would occur in each cell with equal frequency. The «theoretical frequency» for any cell (under the null hypothesis of a discrete uniform distribution) is thus calculated as
and the reduction in the degrees of freedom is , notionally because the observed frequencies
are constrained to sum to
.
One specific example of its application would be its application for log-rank test.
Other distributions[edit]
When testing whether observations are random variables whose distribution belongs to a given family of distributions, the «theoretical frequencies» are calculated using a distribution from that family fitted in some standard way. The reduction in the degrees of freedom is calculated as , where
is the number of parameters used in fitting the distribution. For instance, when checking a three-parameter Generalized gamma distribution,
, and when checking a normal distribution (where the parameters are mean and standard deviation),
, and when checking a Poisson distribution (where the parameter is the expected value),
. Thus, there will be
degrees of freedom, where
is the number of categories.
The degrees of freedom are not based on the number of observations as with a Student’s t or F-distribution. For example, if testing for a fair, six-sided die, there would be five degrees of freedom because there are six categories or parameters (each number); the number of times the die is rolled does not influence the number of degrees of freedom.
Calculating the test-statistic[edit]
Upper-tail critical values of chi-square distribution[3] | |||||
---|---|---|---|---|---|
Degrees of freedom |
Probability less than the critical value | ||||
0.90 | 0.95 | 0.975 | 0.99 | 0.999 | |
1 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
2 | 4.605 | 5.991 | 7.378 | 9.210 | 13.816 |
3 | 6.251 | 7.815 | 9.348 | 11.345 | 16.266 |
4 | 7.779 | 9.488 | 11.143 | 13.277 | 18.467 |
5 | 9.236 | 11.070 | 12.833 | 15.086 | 20.515 |
6 | 10.645 | 12.592 | 14.449 | 16.812 | 22.458 |
7 | 12.017 | 14.067 | 16.013 | 18.475 | 24.322 |
8 | 13.362 | 15.507 | 17.535 | 20.090 | 26.125 |
9 | 14.684 | 16.919 | 19.023 | 21.666 | 27.877 |
10 | 15.987 | 18.307 | 20.483 | 23.209 | 29.588 |
11 | 17.275 | 19.675 | 21.920 | 24.725 | 31.264 |
12 | 18.549 | 21.026 | 23.337 | 26.217 | 32.910 |
13 | 19.812 | 22.362 | 24.736 | 27.688 | 34.528 |
14 | 21.064 | 23.685 | 26.119 | 29.141 | 36.123 |
15 | 22.307 | 24.996 | 27.488 | 30.578 | 37.697 |
16 | 23.542 | 26.296 | 28.845 | 32.000 | 39.252 |
17 | 24.769 | 27.587 | 30.191 | 33.409 | 40.790 |
18 | 25.989 | 28.869 | 31.526 | 34.805 | 42.312 |
19 | 27.204 | 30.144 | 32.852 | 36.191 | 43.820 |
20 | 28.412 | 31.410 | 34.170 | 37.566 | 45.315 |
21 | 29.615 | 32.671 | 35.479 | 38.932 | 46.797 |
22 | 30.813 | 33.924 | 36.781 | 40.289 | 48.268 |
23 | 32.007 | 35.172 | 38.076 | 41.638 | 49.728 |
24 | 33.196 | 36.415 | 39.364 | 42.980 | 51.179 |
25 | 34.382 | 37.652 | 40.646 | 44.314 | 52.620 |
26 | 35.563 | 38.885 | 41.923 | 45.642 | 54.052 |
27 | 36.741 | 40.113 | 43.195 | 46.963 | 55.476 |
28 | 37.916 | 41.337 | 44.461 | 48.278 | 56.892 |
29 | 39.087 | 42.557 | 45.722 | 49.588 | 58.301 |
30 | 40.256 | 43.773 | 46.979 | 50.892 | 59.703 |
31 | 41.422 | 44.985 | 48.232 | 52.191 | 61.098 |
32 | 42.585 | 46.194 | 49.480 | 53.486 | 62.487 |
33 | 43.745 | 47.400 | 50.725 | 54.776 | 63.870 |
34 | 44.903 | 48.602 | 51.966 | 56.061 | 65.247 |
35 | 46.059 | 49.802 | 53.203 | 57.342 | 66.619 |
36 | 47.212 | 50.998 | 54.437 | 58.619 | 67.985 |
37 | 48.363 | 52.192 | 55.668 | 59.893 | 69.347 |
38 | 49.513 | 53.384 | 56.896 | 61.162 | 70.703 |
39 | 50.660 | 54.572 | 58.120 | 62.428 | 72.055 |
40 | 51.805 | 55.758 | 59.342 | 63.691 | 73.402 |
41 | 52.949 | 56.942 | 60.561 | 64.950 | 74.745 |
42 | 54.090 | 58.124 | 61.777 | 66.206 | 76.084 |
43 | 55.230 | 59.304 | 62.990 | 67.459 | 77.419 |
44 | 56.369 | 60.481 | 64.201 | 68.710 | 78.750 |
45 | 57.505 | 61.656 | 65.410 | 69.957 | 80.077 |
46 | 58.641 | 62.830 | 66.617 | 71.201 | 81.400 |
47 | 59.774 | 64.001 | 67.821 | 72.443 | 82.720 |
48 | 60.907 | 65.171 | 69.023 | 73.683 | 84.037 |
49 | 62.038 | 66.339 | 70.222 | 74.919 | 85.351 |
50 | 63.167 | 67.505 | 71.420 | 76.154 | 86.661 |
51 | 64.295 | 68.669 | 72.616 | 77.386 | 87.968 |
52 | 65.422 | 69.832 | 73.810 | 78.616 | 89.272 |
53 | 66.548 | 70.993 | 75.002 | 79.843 | 90.573 |
54 | 67.673 | 72.153 | 76.192 | 81.069 | 91.872 |
55 | 68.796 | 73.311 | 77.380 | 82.292 | 93.168 |
56 | 69.919 | 74.468 | 78.567 | 83.513 | 94.461 |
57 | 71.040 | 75.624 | 79.752 | 84.733 | 95.751 |
58 | 72.160 | 76.778 | 80.936 | 85.950 | 97.039 |
59 | 73.279 | 77.931 | 82.117 | 87.166 | 98.324 |
60 | 74.397 | 79.082 | 83.298 | 88.379 | 99.607 |
61 | 75.514 | 80.232 | 84.476 | 89.591 | 100.888 |
62 | 76.630 | 81.381 | 85.654 | 90.802 | 102.166 |
63 | 77.745 | 82.529 | 86.830 | 92.010 | 103.442 |
64 | 78.860 | 83.675 | 88.004 | 93.217 | 104.716 |
65 | 79.973 | 84.821 | 89.177 | 94.422 | 105.988 |
66 | 81.085 | 85.965 | 90.349 | 95.626 | 107.258 |
67 | 82.197 | 87.108 | 91.519 | 96.828 | 108.526 |
68 | 83.308 | 88.250 | 92.689 | 98.028 | 109.791 |
69 | 84.418 | 89.391 | 93.856 | 99.228 | 111.055 |
70 | 85.527 | 90.531 | 95.023 | 100.425 | 112.317 |
71 | 86.635 | 91.670 | 96.189 | 101.621 | 113.577 |
72 | 87.743 | 92.808 | 97.353 | 102.816 | 114.835 |
73 | 88.850 | 93.945 | 98.516 | 104.010 | 116.092 |
74 | 89.956 | 95.081 | 99.678 | 105.202 | 117.346 |
75 | 91.061 | 96.217 | 100.839 | 106.393 | 118.599 |
76 | 92.166 | 97.351 | 101.999 | 107.583 | 119.850 |
77 | 93.270 | 98.484 | 103.158 | 108.771 | 121.100 |
78 | 94.374 | 99.617 | 104.316 | 109.958 | 122.348 |
79 | 95.476 | 100.749 | 105.473 | 111.144 | 123.594 |
80 | 96.578 | 101.879 | 106.629 | 112.329 | 124.839 |
81 | 97.680 | 103.010 | 107.783 | 113.512 | 126.083 |
82 | 98.780 | 104.139 | 108.937 | 114.695 | 127.324 |
83 | 99.880 | 105.267 | 110.090 | 115.876 | 128.565 |
84 | 100.980 | 106.395 | 111.242 | 117.057 | 129.804 |
85 | 102.079 | 107.522 | 112.393 | 118.236 | 131.041 |
86 | 103.177 | 108.648 | 113.544 | 119.414 | 132.277 |
87 | 104.275 | 109.773 | 114.693 | 120.591 | 133.512 |
88 | 105.372 | 110.898 | 115.841 | 121.767 | 134.746 |
89 | 106.469 | 112.022 | 116.989 | 122.942 | 135.978 |
90 | 107.565 | 113.145 | 118.136 | 124.116 | 137.208 |
91 | 108.661 | 114.268 | 119.282 | 125.289 | 138.438 |
92 | 109.756 | 115.390 | 120.427 | 126.462 | 139.666 |
93 | 110.850 | 116.511 | 121.571 | 127.633 | 140.893 |
94 | 111.944 | 117.632 | 122.715 | 128.803 | 142.119 |
95 | 113.038 | 118.752 | 123.858 | 129.973 | 143.344 |
96 | 114.131 | 119.871 | 125.000 | 131.141 | 144.567 |
97 | 115.223 | 120.990 | 126.141 | 132.309 | 145.789 |
98 | 116.315 | 122.108 | 127.282 | 133.476 | 147.010 |
99 | 117.407 | 123.225 | 128.422 | 134.642 | 148.230 |
100 | 118.498 | 124.342 | 129.561 | 135.807 | 149.449 |
The value of the test-statistic is
where
The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells , minus the reduction in degrees of freedom,
.
The chi-squared statistic can be also calculated as
This result is the consequence of the Pythagorean theorem.
The result about the numbers of degrees of freedom is valid when the original data are multinomial and hence the estimated parameters are efficient for minimizing the chi-squared statistic. More generally however, when maximum likelihood estimation does not coincide with minimum chi-squared estimation, the distribution will lie somewhere between a chi-squared distribution with and
degrees of freedom (See for instance Chernoff and Lehmann, 1954).
Bayesian method[edit]
In Bayesian statistics, one would instead use a Dirichlet distribution as conjugate prior. If one took a uniform prior, then the maximum likelihood estimate for the population probability is the observed probability, and one may compute a credible region around this or another estimate.
Testing for statistical independence[edit]
In this case, an «observation» consists of the values of two outcomes and the null hypothesis is that the occurrence of these outcomes is statistically independent. Each observation is allocated to one cell of a two-dimensional array of cells (called a contingency table) according to the values of the two outcomes. If there are r rows and c columns in the table, the «theoretical frequency» for a cell, given the hypothesis of independence, is
where is the total sample size (the sum of all cells in the table), and
is the fraction of observations of type i ignoring the column attribute (fraction of row totals), and
is the fraction of observations of type j ignoring the row attribute (fraction of column totals). The term «frequencies» refers to absolute numbers rather than already normalized values.
The value of the test-statistic is
Note that is 0 if and only if
, i.e. only if the expected and true number of observations are equal in all cells.
Fitting the model of «independence» reduces the number of degrees of freedom by p = r + c − 1. The number of degrees of freedom is equal to the number of cells rc, minus the reduction in degrees of freedom, p, which reduces to (r − 1)(c − 1).
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the column variable.[4]
The alternative hypothesis corresponds to the variables having an association or relationship where the structure of this relationship is not specified.
Assumptions[edit]
The chi-squared test, when used with the standard approximation that a chi-squared distribution is applicable, has the following assumptions:[5]
- Simple random sample
- The sample data is a random sampling from a fixed distribution or population where every collection of members of the population of the given sample size has an equal probability of selection. Variants of the test have been developed for complex samples, such as where the data is weighted. Other forms can be used such as purposive sampling.[6]
- Sample size (whole table)
- A sample with a sufficiently large size is assumed. If a chi squared test is conducted on a sample with a smaller size, then the chi squared test will yield an inaccurate inference. The researcher, by using chi squared test on small samples, might end up committing a Type II error. For small sample sizes the Cash test is preferred.[7][8]
- Expected cell count
- Adequate expected cell counts. Some require 5 or more, and others require 10 or more. A common rule is 5 or more in all cells of a 2-by-2 table, and 5 or more in 80% of cells in larger tables, but no cells with zero expected count. When this assumption is not met, Yates’s correction is applied.
- Independence
- The observations are always assumed to be independent of each other. This means chi-squared cannot be used to test correlated data (like matched pairs or panel data). In those cases, McNemar’s test may be more appropriate.
A test that relies on different assumptions is Fisher’s exact test; if its assumption of fixed marginal distributions is met it is substantially more accurate in obtaining a significance level, especially with few observations. In the vast majority of applications this assumption will not be met, and Fisher’s exact test will be over conservative and not have correct coverage.[9]
Derivation[edit]
Examples[edit]
Fairness of dice[edit]
A 6-sided die is thrown 60 times. The number of times it lands with 1, 2, 3, 4, 5 and 6 face up is 5, 8, 9, 8, 10 and 20, respectively. Is the die biased, according to the Pearson’s chi-squared test at a significance level of 95% and/or 99%?
The null hypothesis is that the die is unbiased, hence each number is expected to occur the same number of times, in this case, 60/n = 10. The outcomes can be tabulated as follows:
1 | 5 | 10 | −5 | 25 |
2 | 8 | 10 | −2 | 4 |
3 | 9 | 10 | −1 | 1 |
4 | 8 | 10 | −2 | 4 |
5 | 10 | 10 | 0 | 0 |
6 | 20 | 10 | 10 | 100 |
Sum | 134 |
We then consult an Upper-tail critical values of chi-square distribution table, the tabular value refers to the sum of the squared variables each divided by the expected outcomes. For the present example, this means
This is the experimental result whose unlikeliness (with a fair die) we wish to estimate.
Degrees of freedom |
Probability less than the critical value | ||||
---|---|---|---|---|---|
0.90 | 0.95 | 0.975 | 0.99 | 0.999 | |
5 | 9.236 | 11.070 | 12.833 | 15.086 | 20.515 |
The experimental sum of 13.4 is between the critical values of 97.5% and 99% significance or confidence (p-value). Specifically, getting 20 rolls of 6, when the expectation is only 10 such values, is unlikely with a fair die.
Chi-Squared Goodness of Fit Test
In this context, the frequencies of both theoretical and empirical distributions are unnormalised counts, and for a chi-squared test the total sample sizes of both these distributions (sums of all cells of the corresponding contingency tables) have to be the same.
For example, to test the hypothesis that a random sample of 100 people has been drawn from a population in which men and women are equal in frequency, the observed number of men and women would be compared to the theoretical frequencies of 50 men and 50 women. If there were 44 men in the sample and 56 women, then
If the null hypothesis is true (i.e., men and women are chosen with equal probability), the test statistic will be drawn from a chi-squared distribution with one degree of freedom (because if the male frequency is known, then the female frequency is determined).
Consultation of the chi-squared distribution for 1 degree of freedom shows that the probability of observing this difference (or a more extreme difference than this) if men and women are equally numerous in the population is approximately 0.23. This probability is higher than conventional criteria for statistical significance (0.01 or 0.05), so normally we would not reject the null hypothesis that the number of men in the population is the same as the number of women (i.e., we would consider our sample within the range of what we would expect for a 50/50 male/female ratio.)
Problems[edit]
The approximation to the chi-squared distribution breaks down if expected frequencies are too low. It will normally be acceptable so long as no more than 20% of the events have expected frequencies below 5. Where there is only 1 degree of freedom, the approximation is not reliable if expected frequencies are below 10. In this case, a better approximation can be obtained by reducing the absolute value of each difference between observed and expected frequencies by 0.5 before squaring; this is called Yates’s correction for continuity.
In cases where the expected value, E, is found to be small (indicating a small underlying population probability, and/or a small number of observations), the normal approximation of the multinomial distribution can fail, and in such cases it is found to be more appropriate to use the G-test, a likelihood ratio-based test statistic. When the total sample size is small, it is necessary to use an appropriate exact test, typically either the binomial test or, for contingency tables, Fisher’s exact test. This test uses the conditional distribution of the test statistic given the marginal totals, and thus assumes that the margins were determined before the study; alternatives such as Boschloo’s test which do not make this assumption are uniformly more powerful.
It can be shown that the test is a low order approximation of the
test.[12] The above reasons for the above issues become apparent when the higher order terms are investigated.
See also[edit]
- Chi-squared nomogram
- Cramér’s V – a measure of correlation for the chi-squared test
- Degrees of freedom (statistics)
- Deviance (statistics), another measure of the quality of fit
- Fisher’s exact test
- G-test, test to which chi-squared test is an approximation
- Lexis ratio, earlier statistic, replaced by chi-squared
- Mann–Whitney U test
- Median test
- Minimum chi-square estimation
Notes[edit]
- ^ Pearson, Karl (1900). «On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling». Philosophical Magazine. Series 5. 50 (302): 157–175. doi:10.1080/14786440009463897.
- ^ a b c David E. Bock, Paul F. Velleman, Richard D. De Veaux (2007). «Stats, Modeling the World,» pp. 606-627, Pearson Addison Wesley, Boston, ISBN 0-13-187621-X
- ^ «1.3.6.7.4. Critical Values of the Chi-Square Distribution». Retrieved 14 October 2014.
- ^ «Critical Values of the Chi-Squared Distribution». NIST/SEMATECH e-Handbook of Statistical Methods. National Institute of Standards and Technology.
- ^ McHugh, Mary (15 June 2013). «The chi-square test of independence». Biochemia Medica. 23 – via National Library of Medicine.
- ^ See Field, Andy. Discovering Statistics Using SPSS. for assumptions on Chi Square.
- ^ Cash, W. (1979). «Parameter estimation in astronomy through application of the likelihood ratio». The Astrophysical Journal. 228: 939. Bibcode:1979ApJ…228..939C. doi:10.1086/156922. ISSN 0004-637X.
- ^ «The Cash Statistic and Forward Fitting». hesperia.gsfc.nasa.gov. Retrieved 19 October 2021.
- ^ «A Bayesian Formulation for Exploratory Data Analysis and Goodness-of-Fit Testing» (PDF). International Statistical Review. p. 375.
- ^ Statistics for Applications. MIT OpenCourseWare. Lecture 23. Pearson’s Theorem. Retrieved 21 March 2007.
- ^ «Seven Proofs of the Pearson Chi-Squared Independence Test and its Graphical Interpretation». SSRN (preprint). p. 5-6. SSRN 3239829.
- ^ Jaynes, E.T. (2003). Probability Theory: The Logic of Science. C. University Press. p. 298. ISBN 978-0-521-59271-0. (Link is to a fragmentary edition of March 1996.)
References[edit]
- Chernoff, H.; Lehmann, E. L. (1954). «The Use of Maximum Likelihood Estimates in
Tests for Goodness of Fit». The Annals of Mathematical Statistics. 25 (3): 579–586. doi:10.1214/aoms/1177728726.
- Plackett, R. L. (1983). «Karl Pearson and the Chi-Squared Test». International Statistical Review. International Statistical Institute (ISI). 51 (1): 59–72. doi:10.2307/1402731. JSTOR 1402731.
- Greenwood, P.E.; Nikulin, M.S. (1996). A guide to chi-squared testing. New York: Wiley. ISBN 0-471-55779-X.
Ниже представлена таблица значений критических точек распределения χ2 (хи-квадрат) критерия Пирсона, широко используемые в задачах математической статистики, таких как построение доверительных интервалов,
проверка статистических гипотез и непараметрическое оценивание.
Число степеней свободы k |
Уровень значимости α | |||||
0,01 | 0,025 | 0,05 | 0,95 | 0,975 | 0,99 | |
1 | 6,6 | 5 | 3,8 | 0,0039 | 0,00098 | 0,00016 |
2 | 9,2 | 7,4 | 6 | 0,103 | 0,051 | 0,02 |
3 | 11,3 | 9,4 | 7,8 | 0,352 | 0,216 | 0,115 |
4 | 13,3 | 11,1 | 9,5 | 0,711 | 0,484 | 0,297 |
5 | 15,1 | 12,8 | 11,1 | 1,15 | 0,831 | 0,554 |
6 | 16,8 | 14,4 | 12,6 | 1,64 | 1,24 | 0,872 |
7 | 18,5 | 16 | 14,1 | 2,17 | 1,69 | 1,24 |
8 | 20,1 | 17,5 | 15,5 | 2,73 | 2,18 | 1,65 |
9 | 21,7 | 19 | 16,9 | 3,33 | 2,7 | 2,09 |
10 | 23,2 | 20,5 | 18,3 | 3,94 | 3,25 | 2,56 |
11 | 24,7 | 21,9 | 19,7 | 4,57 | 3,82 | 3,05 |
12 | 26,2 | 23,3 | 21 ,0 | 5,23 | 4,4 | 3,57 |
13 | 27,7 | 24,7 | 22,4 | 5,89 | 5,01 | 4,11 |
14 | 29,1 | 26,1 | 23,7 | 6,57 | 5,63 | 4,66 |
15 | 30,6 | 27,5 | 25 | 7,26 | 6,26 | 5,23 |
16 | 32 | 28,8 | 26,3 | 7,96 | 6,91 | 5,81 |
17 | 33,4 | 30,2 | 27,6 | 8,67 | 7,56 | 6,41 |
18 | 34,8 | 31,5 | 28,9 | 9,39 | 8,23 | 7,01 |
19 | 36,2 | 32,9 | 30,1 | 10,1 | 8,91 | 7,63 |
20 | 37,6 | 34,2 | 31,4 | 10,9 | 9,59 | 8,26 |
21 | 38,9 | 35,5 | 32,7 | 11,6 | 10,3 | 8,9 |
22 | 40,3 | 36,8 | 33,9 | 12,3 | 11 | 9,54 |
23 | 41,6 | 38,1 | 35,2 | 13,1 | 11,7 | 10,2 |
24 | 43 | 39,4 | 36,4 | 13,8 | 12,4 | 10,9 |
25 | 44,3 | 40,6 | 37,7 | 14,6 | 13,1 | 11,5 |
26 | 45,6 | 41,9 | 38,9 | 15,4 | 13,8 | 12,2 |
27 | 47 | 43,2 | 40,1 | 16,2 | 14,6 | 12,9 |
28 | 48,3 | 44,5 | 41,3 | 16,9 | 15,3 | 13,6 |
29 | 49,6 | 45,7 | 42,6 | 17,7 | 16 | 14,3 |
30 | 50,9 | 47 | 43,8 | 18,5 | 16,8 | 15 |
Пример решения задачи
Задача
Имеется
три независимых реализации нормальной случайной величины: 0.6, 3.4, 2.0.
Проверить
гипотезу
: дисперсия равна
10.0.
Используются
таблицы распределения хи-квадрат.
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Решение
Вычислим
среднее и
исправленную дисперсию:
Для
того, чтобы при заданном уровне значимости
проверить нулевую гипотезу
о равенстве неизвестной генеральной дисперсии
гипотетическому значению
при конкурирующей гипотезе
вычисляем наблюдаемое значение критерия:
При
уровне значимости
находим:
— нет
оснований отвергнуть нулевую гипотезу