Как найти грубую ошибку




В статье рассмотрены различные критерии отбрасывания грубых погрешностей измерений, применяемые в практической деятельности, на основе рекомендаций ведущих специалистов-метрологов, а также с учетом действующих в настоящий момент нормативных документов.


Приведен пример использования Excel при оценке грубых погрешностей по критериям Стьюдента и Романовского при обработке реальных результатов измерений.



Ключевые слова:



грубые погрешности, критерии согласия, сомнительные значения, уровень значимости, нормальное распределение, критерий согласия Стьюдента, критерий Романовского, выборка, отклонения, Excel.

Одним из важнейших условий правильного применения статистических оценок является отсутствие грубых ошибок при наблюдениях. Поэтому все грубые ошибки должны быть выявлены и исключены из рассмотрения в самом начале обработки наблюдений.

Единственным достаточно надежным способом выявления грубых ошибок является тщательный анализ условий самих испытаний. При этом наблюдения, проводившиеся в нарушенных условиях, должны отбрасываться, независимо от их результата. Например, если при проведении эксперимента, связанного с электричеством, в лаборатории на некоторое время был выключен ток, то весь эксперимент обязательно нужно проводить заново, хотя результат, быть может, не сильно отличается от предыдущих измерений. Точно так же отбрасываются результаты измерений на фотопластинках с поврежденной эмульсией и вообще на любых образцах с обнаруженным позднее дефектом.

На практике, однако, не всегда удается провести подобный анализ условий испытания. Чаще всего приходится иметь дело с окончательным цифровым материалом, в котором отдельные данные вызывают сомнение лишь своим значительным отклонением от остальных. При этом сама «значительность» отклонения во многом субъективна — зачастую приходится сталкиваться со случаями, когда исследователь отбрасывает наблюдения, которые ему не понравились, как ошибочные исключительно по той причине, что они нарушают уже созданную им в воображении картину изучаемого процесса.

Строгий научный анализ готового ряда наблюдений может быть проведен лишь статистическим путем, причем должен быть достаточно хорошо известен характер распределения наблюдаемой случайной величины. В большинстве случаев исследователи исходят из нормального распределения. Каждая грубая ошибка будет соответствовать нарушению этого распределения, изменению его параметров, иными словами, нарушится однородность испытаний (или, как говорят

,

однородность наблюдений), поэтому выявление грубых ошибок можно трактовать как проверку однородности наблюдений.

Промахи, или грубые погрешности, возникают при единичном измерении и обычно устраняются путем повторных измерений. Причиной их возникновения могут быть:

  1. Объективная реальность (наш реальный мир отличается от идеальной модели мира, которую мы принимаем в данной измерительной задаче);
  2. Внезапные кратковременные изменения условий измерения (могут быть вызваны неисправностью аппаратуры или источников питания);
  3. Ошибка оператора (неправильное снятие показаний, неправильная запись и т. п.).

В третьем случае, если оператор в процессе измерения обнаружит промах, он вправе отбросить этот результат и провести повторные измерения.

В настоящее время определение грубой погрешности приведено в ГОСТ Р 8.736–2011: «Грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей» [1, с. 6].

Общие подходы к методам отсеивания грубых погрешностей, как это уже давно принято в практике измерений, заключаются в следующем.

Задаются вероятностью

Р

или уровнем значимости

α

(

) того, что результат наблюдения содержит промах. Выявление сомнительного результата осуществляют с помощью специальных критериев. Операция отбрасывания удаленных от центра выборки сомнительных значений измеряемой величины называется «цензурированием выборки».

Проверяемая гипотеза состоит в утверждении, что результат наблюдения

x

i


не содержит грубой погрешности, т. е. является одним из значений случайной величины

x

с законом распределения Fx(x), статистические оценки параметров которого предварительно определены. Сомнительным может быть в первую очередь лишь наибольший x

max

или наименьший xmin из результатов наблюдений.

Предложим для практического использования наиболее простые методы отсева грубых погрешностей.

Если в распоряжении экспериментатора имеется выборка небольшого объема

n

≤ 25, то можно воспользоваться методом вычисления максимального относительного отклонения [2, с. 149]:

(1)

где

x


i

— крайний (наибольший или наименьший) элемент выборки, по которой подсчитывались оценки среднего значения

и среднеквадратичного отклонения

;


τ


1-


p

— табличное значение статистики

τ

, вычисленной при доверительной вероятности

.

Таким образом, для выделения аномального значения вычисляют значение статистики,

(2)

которое затем сравнивают с табличным значением

τ

1-α


:

τ





τ

1-α


. Если неравенство

τ



τ


1-α

соблюдается, то наблюдение не отсеивают, если не соблюдается, то наблюдение исключают. После исключения того или иного наблюдения или нескольких наблюдений характеристики эмпирического распределения должны быть пересчитаны по данным сокращенной выборки.

Квантили распределения статистики

τ

при уровнях значимости

α

= 0,10; 0,05; 0,025 и 0,01 или доверительной вероятности


=

0,90; 0,95; 0,975 и 0,99 приведены в таблице 1. На практике очень часто используют уровень значимости

α

= 0,05 (результат получается с 95 %-й доверительной вероятностью).

Функции распределения статистики

τ

определяют методами теории вероятностей. По данным таблицы, приведенной в источниках [2, с. 283; 3, с. 184] при заданной доверительной вероятности

или уровне значимости

α

можно для чисел измерения п = 3–25 найти те наибольшие значения

которые случайная величина

может еще принять по чисто случайным причинам.

Процедуру отсева можно повторить и для следующего по абсолютной величине максимального относительного отклонения, но предварительно необходимо пересчитать оценки среднего значения

и среднеквадратичного отклонения

для выборки нового объема

Таблица 1


Квантили распределения максимального относительного отклонения при отсеве грубых погрешностей [2, с. 283]


n

Уровень значимости

α


n

Уровень значимости

α

0,10

0,05

0,025

0,01

0,10

0,05

0,025

0,01

3

1,41

1,41

1,41

1,41

15

2,33

2,49

2,64

2,80

4

1,65

1,69

1,71

1,72

16

2,35

2,52

2,67

2,84

5

1,79

1,87

1,92

1,96

17

2,38

2,55

2,70

2,87

6

1,89

2,00

2,07

2,13

18

2,40

2,58

2,73

2,90

7

1,97

2,09

2,18

2,27

19

2,43

2,60

2,75

2,93

8

2,04

2,17

2,27

2,37

20

2,45

2,62

2,78

2,96

9

2,10

2,24

2,35

2,46

21

2,47

2,64

2,80

2,98

10

2,15

2,29

2,41

2,54

22

2,49

2,66

2,82

3,01

11

2,19

2,34

2,47

2,61

23

2,50

2,68

2,84

3,03

12

2,23

2,39

2,52

2,66

24

2,52

2,70

2,86

3,05

13

2,26

2,43

2,56

2,71

25

2,54

2,72

2,88

3,07

14

2,30

2,46

2,60

2,76

В литературе можно встретить большое количество методических рекомендаций для проведения отсева грубых погрешностей измерений, подробно рассмотренных в [4, с. 25]. Обратим внимание на некоторые из существующих критериев отсеивания грубых погрешностей.

  1. Критерий «трех сигм» применяется для случая, когда измеряемая величина

    x

    распределена по нормальному закону. По этому критерию считается, что с вероятностью

    Р

    = 0,9973 и значимостью

    α

    = 0,0027 появление даже одной случайной погрешности, большей, чем

    маловероятное событие и ее можно считать промахом, если



    x

    i


    > 3

    S

    x


    , где

    S

    x







    оценка среднеквадратического отклонения (СКО) измерений. Величины

    и

    S

    x


    вычисляют без учета экстремальных значений

    x

    i


    . Данный критерий надежен при числе измерений

    n

    ≥ 20…50 и поэтому он широко применяется. Это правило обычно считается слишком жестким, поэтому рекомендуется назначать границу цензурирования в зависимости от объема выборки: при

6 <

n

≤100 она равна 4

S

x


; при 100 <

n

≤1000 − 4,5

S

x


; при 1000 <

n

≤10000–5

Sx

. Данное правило также используется только при нормальном распределении.

Практические вычисления проводят следующим образом [5, с. 65]:

  1. Выявляют сомнительное значение измеряемой величины. Сомнительным значением может быть лишь наибольшее, либо наименьшее значение наблюдения измеряемой величины.
  2. Вычисляют среднее арифметическое значение выборки

    без учета сомнительного значения

    измеряемой величины.

(3)

  1. Вычисляют оценку СКО выборки

    без учета сомнительного значения

    измеряемой величины.

(4)

  1. Вычисляют разность среднеарифметического и сомнительного значения измеряемой величины и сравнивают.

Если

то сомнительное значение отбрасывают, как промах.

Если

то сомнительное значение оставляют как равноправное в ряду наблюдений.

Данный метод «трех сигм» среди метрологов-практиков является самым популярным, достаточно надежным и удобным, так как при этом иметь под рукой какие-то таблицы нет необходимости.

  1. Критерий В. И. Романовского применяется, если число измерений невелико,

    n

    ≤ 20. При этом вычисляется соотношение

(5)

где

— результат, вызывающий сомнение,

— коэффициент, предельное значение которого

определяют по таблице 2. Если

, сомнительное значение

исключают («отбрасывают») как промах. Если


,

сомнительное значение оставляют как равноправное в ряду наблюдений [5, с. 65].

Таблица 2

Значение критерия Романовского

Уровень значимости,

α

Число измерений,

n


n

= 4


n

= 6


n

= 8


n

= 10


n

= 12


n

= 15


n

= 20

0,01

1,73

2,16

2,43

2,62

2,75

2,90

3,08

0,02

1,72

2,13

2,37

2,54

2,66

2,80

2,96

0,05

1,71

2,10

2,27

2,41

2,52

2,64

2,78

0,10

1,69

2,00

2,17

2,29

2,39

2,49

2,62

Несмотря на многообразие существующих и применяемых на практике методов отсеивания грубых погрешностей в настоящее время действует национальный стандарт ГОСТ Р 8.736–2011, который является основным нормативным документом в данной области. В новом стандарте для исключения грубых погрешностей применяется критерий Граббса.

  1. Статистический критерий Граббса (Смирнова) исключения грубых погрешностей основан на предположении о том, что группа результатов измерений принадлежит нормальному распределению [1, с. 8]. Для этого вычисляют критерии Граббса (Смирнова) G1 и G2, предполагая, что наибольший хmax или наименьший xmin результат измерений вызван грубыми погрешностями.

и

(6)

Сравнивают G1 и G2 с теоретическим значением GT критерия Граббса (Смирнова) при выбранном уровне значимости α. Таблица критических значений критерия Граббса (Смирнова) приведена в приложении к стандарту [1, с. 12]. Следует отметить, что критические значения критерия Граббса (Смирнова) GT отличаются от критических значений критериев

t

-статистик или значений критериев Стьюдента при одних и тех же величинах уровней значимости, что может вызывать некоторые трудности у пользователей при выборе конкретного метода отсеивания погрешностей, соответствующего нормативным документам.

Если G1>GТ, то хmax исключают как маловероятное значение. Если G2>GТ, то xmin исключают как маловероятное значение. Далее вновь вычисляют среднее арифметическое и среднее квадратическое отклонение ряда результатов измерений и процедуру проверки наличия грубых погрешностей повторяют.

Если G1

GТ, то хmax не считают промахом и его сохраняют в ряду результатов измерений. Если G2

GТ, то xmin не считают промахом и его сохраняют в ряду результатов измерений.

Отсев грубых погрешностей можно производить и для больших выборок (

n

= 50…100). Для практических целей лучше всего использовать таблицы распределения Стьюдента. Этот метод исключения аномальных значений для выборок большого объема отличается простотой, а таблицы распределения Стьюдента имеются практически в любой книге по математической статистике, кроме того, распределение Стьюдента реализовано в пакете Excel. Распределение Стьюдента относится к категории распределений, связанных с нормальным распределением. Подробно эти распределения рассмотрены в учебниках по математической статистике [3, с. 24].

Известно, что критическое значение

τ


p

(

p

— процентная точка нормирования выборочного отклонения) выражается через критическое значение распределения Стьюдента

t

α, n-2


[6, с. 26]:

(7)

Учитывая это, можно предложить следующую процедуру отсева грубых погрешностей измерения для больших выборок (

n

= 100):

1) из таблицы наблюдений выбирают наблюдение имеющее наибольшее отклонение;


2)

по формуле

вычисляют значение статистики

τ

;


3)

по таблице (или в программе Excel) находят процентные точки

t

-распределения Стьюдента

t


(



α,


n


-2



)

:

t


(95




%, 98)

= 1,6602, и

t

(



99




%, 98)

= 3,1737;

По предыдущей формуле в программе Excel вычисляют соответствующие точки

t


(95




%, 100)

= 1,66023и

t


(99




%, 100)

=3,17374.

Сравнивают значение расчетной статистики с табличными критическими значениями и принимают решение по отсеву грубых погрешностей.

Рекомендуемый метод отсева грубых погрешностей удобен еще тем, что максимальные относительные отклонения могут быть разделены на три группы: 1)

2)

3)

.

Наблюдения, попавшие в первую группу, нельзя отсеивать ни в коем случае. Наблюдения второй группы можно отсеять, если в пользу этой процедуры имеются еще и другие соображения экспериментатора (например, заключения, сделанные на основе изучения физических, химических и других свойств изучаемого явления). Наблюдения третьей группы, как правило, отсеивают всегда.

Рассмотрим далее пример с использованием средств программного пакета Excel, который позволяет снизить трудоемкость расчетов при осуществлении данной процедуры. К сожалению, в настоящее время средства Excel не позволяют автоматизировать расчеты по всем известным критериям отсеивания грубых погрешностей, поэтому проиллюстрируем рассмотренные методы с использованием доступных в Excel критериев Стьюдента.


Пример 1.

Имеется выборка из 100 шт. резисторов с номинальным сопротивлением

R


н

= (150,0 ± 5 %) кОм, которая используется для оценки качества партии резисторов (генеральная совокупность). Используя критерий Стьюдента, отсеем грубые погрешности (промахи) при измерениях.

  1. Заносим данные измерений в таблицу Excel в ячейки В2:В101
  2. Составляем вариационный ряд — располагаем данные в порядке возрастания с помощью функции «Сортировка по возрастанию» в ячейках С2:С101 (рис. 1)

Фрагмент диалогового окна с данными измерений и вариационного ряда

Рис. 1. Фрагмент диалогового окна с данными измерений и вариационного ряда

3. Находим среднее значение выборки с помощью мастера функций в категории «Статистические» и функции — СРЗНАЧ, результат в ячейке Н3 (рис. 2).

Фрагмент диалогового окна при нахождении среднего значения выборки

Рис. 2. Фрагмент диалогового окна при нахождении среднего значения выборки

  1. Находим среднеквадратическое отклонение —

    S


    x

    . Выделяем ячейку Н4, вызываем «Мастер функций», категория «Статистические», функция — СТАНДОТКЛОН, результат в ячейке Н4–1,20 (рис. 3).

Фрагмент диалогового окна при нахождении среднего квадратического отклонения

Рис. 3. Фрагмент диалогового окна при нахождении среднего квадратического отклонения

  1. Находим максимальное значение в выборке —

    x


    макс

    . Выделяем ячейку Н5, в категории «Статистические», функция — МАКС, выделяем мышкой вариационный ряд C2:С101, результат в ячейке Н5–153,10 (рис. 4).

Фрагмент диалогового окна при нахождении максимального значения

Рис. 4. Фрагмент диалогового окна при нахождении максимального значения

  1. Находим минимальное значение в выборке —

    x


    мин

    . Выделяем ячейку Н6, в категории «Статистические», функция — МИН, выделяем мышкой вариационный ряд C2:С101, результат в ячейке Н6–147,6 (рис. 5).

Фрагмент диалогового окна при нахождении минимального значения

Рис. 5. Фрагмент диалогового окна при нахождении минимального значения

  1. Находим максимальное и минимальное отклонения — Δ

    макс

    и Δ

    мин

    . Вводим в ячейки Н7 и Н8 формулы:

  1. Находим теоретическое значение —

    t


    теор

    . для максимального и минимального отклонений. Вводим в ячейки Н9 и Н12 формулу

. и

  1. Находим табличное значение

    t


    табл.

    Выделяем ячейку Н10, вызываем в категории «Статистические» функцию — СТЬЮДЕНТ.ОБР, «Вероятность» — 0,95, степени свободы (

    n

    -2) — 98, результат в ячейке Н10–1,66 (рис. 6).

Фрагмент диалогового окна при нахождении табличного значения критерия Стьюдента

Рис. 6. Фрагмент диалогового окна при нахождении табличного значения критерия Стьюдента

  1. Сравниваем теоретическое значение

    t


    теор

    = 2,24 критерия Стьюдента для максимального значения — 153,1 кОм с табличным значением:

    t


    табл

    .= 1,6605.
  2. Аналогично п. 9 проверим на наличие грубой погрешности у минимального значения в выборке — 147,6 кОм. Результат в ячейке Н12–2,35 (рис. 7).

Фрагмент диалогового окна при окончательном анализе данных

Рис. 7. Фрагмент диалогового окна при окончательном анализе данных

  1. Делаем вывод о наличии грубых ошибок в данных измерениях. Рассмотренная процедура подтвердила наши сомнения относительно достоверности максимального и минимального значений в данной выборке, т. е., указанные результаты могут быть отброшены из результатов измерений, и проверка может быть повторена снова без этих данных.

Пример расчета теоретического критерия Романовского по аналогичным формулам в Excel и диалоговое окно представлены на рис. 8, при условии α = 0,05, число измерений

n

= 20, β

табл

= 2,78 (из таблицы 2).

Фрагмент диалогового окна при расчете критерия Романовского

Рис. 8. Фрагмент диалогового окна при расчете критерия Романовского


Выводы

  1. Для использования различных критериев отбрасывания грубых погрешностей измерений необходимо учитывать требования действующих нормативных документов.
  2. Рассмотренный пример показал, что расчеты погрешностей по критерию Стьюдента с использованием таблиц и формул Excel значительно упрощаются, а процесс отбрасывания грубых погрешностей можно осуществить наиболее качественно и быстро.

Литература:

1. ГОСТ Р 8.736–2011 Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения. — М.: ФГУП Стандартинформ, 2013. — 24 с.

2. Пустыльник Е. И. Статистические методы анализа и обработки наблюдений. — М.: Наука, 1968. — 288 с.

3. Львовский Е. Н. Статистические методы построения эмпирических формул: Учеб. пособие. — М.: Высш. школа, 1982. — 224 с.

4. Фаюстов А. А. Ещё раз о критериях отсеивания грубых погрешностей. — Законодательная и прикладная метрология, 2016, № 5, с. 25–30.

5. Сергеев А. Г. Метрология: Учебник. — М.: Логос, 2005. — 272 с.

6. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, Главная редакция физико-математической литературы, 1983. — 416 с.

Основные термины (генерируются автоматически): диалоговое окно, сомнительное значение, уровень значимости, измеряемая величина, погрешность, критерий, нормальное распределение, ячейка, вариационный ряд, минимальное значение.




В статье рассмотрены различные критерии отбрасывания грубых погрешностей измерений, применяемые в практической деятельности, на основе рекомендаций ведущих специалистов-метрологов, а также с учетом действующих в настоящий момент нормативных документов.


Приведен пример использования Excel при оценке грубых погрешностей по критериям Стьюдента и Романовского при обработке реальных результатов измерений.



Ключевые слова:



грубые погрешности, критерии согласия, сомнительные значения, уровень значимости, нормальное распределение, критерий согласия Стьюдента, критерий Романовского, выборка, отклонения, Excel.

Одним из важнейших условий правильного применения статистических оценок является отсутствие грубых ошибок при наблюдениях. Поэтому все грубые ошибки должны быть выявлены и исключены из рассмотрения в самом начале обработки наблюдений.

Единственным достаточно надежным способом выявления грубых ошибок является тщательный анализ условий самих испытаний. При этом наблюдения, проводившиеся в нарушенных условиях, должны отбрасываться, независимо от их результата. Например, если при проведении эксперимента, связанного с электричеством, в лаборатории на некоторое время был выключен ток, то весь эксперимент обязательно нужно проводить заново, хотя результат, быть может, не сильно отличается от предыдущих измерений. Точно так же отбрасываются результаты измерений на фотопластинках с поврежденной эмульсией и вообще на любых образцах с обнаруженным позднее дефектом.

На практике, однако, не всегда удается провести подобный анализ условий испытания. Чаще всего приходится иметь дело с окончательным цифровым материалом, в котором отдельные данные вызывают сомнение лишь своим значительным отклонением от остальных. При этом сама «значительность» отклонения во многом субъективна — зачастую приходится сталкиваться со случаями, когда исследователь отбрасывает наблюдения, которые ему не понравились, как ошибочные исключительно по той причине, что они нарушают уже созданную им в воображении картину изучаемого процесса.

Строгий научный анализ готового ряда наблюдений может быть проведен лишь статистическим путем, причем должен быть достаточно хорошо известен характер распределения наблюдаемой случайной величины. В большинстве случаев исследователи исходят из нормального распределения. Каждая грубая ошибка будет соответствовать нарушению этого распределения, изменению его параметров, иными словами, нарушится однородность испытаний (или, как говорят

,

однородность наблюдений), поэтому выявление грубых ошибок можно трактовать как проверку однородности наблюдений.

Промахи, или грубые погрешности, возникают при единичном измерении и обычно устраняются путем повторных измерений. Причиной их возникновения могут быть:

  1. Объективная реальность (наш реальный мир отличается от идеальной модели мира, которую мы принимаем в данной измерительной задаче);
  2. Внезапные кратковременные изменения условий измерения (могут быть вызваны неисправностью аппаратуры или источников питания);
  3. Ошибка оператора (неправильное снятие показаний, неправильная запись и т. п.).

В третьем случае, если оператор в процессе измерения обнаружит промах, он вправе отбросить этот результат и провести повторные измерения.

В настоящее время определение грубой погрешности приведено в ГОСТ Р 8.736–2011: «Грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей» [1, с. 6].

Общие подходы к методам отсеивания грубых погрешностей, как это уже давно принято в практике измерений, заключаются в следующем.

Задаются вероятностью

Р

или уровнем значимости

α

(

) того, что результат наблюдения содержит промах. Выявление сомнительного результата осуществляют с помощью специальных критериев. Операция отбрасывания удаленных от центра выборки сомнительных значений измеряемой величины называется «цензурированием выборки».

Проверяемая гипотеза состоит в утверждении, что результат наблюдения

x

i


не содержит грубой погрешности, т. е. является одним из значений случайной величины

x

с законом распределения Fx(x), статистические оценки параметров которого предварительно определены. Сомнительным может быть в первую очередь лишь наибольший x

max

или наименьший xmin из результатов наблюдений.

Предложим для практического использования наиболее простые методы отсева грубых погрешностей.

Если в распоряжении экспериментатора имеется выборка небольшого объема

n

≤ 25, то можно воспользоваться методом вычисления максимального относительного отклонения [2, с. 149]:

(1)

где

x


i

— крайний (наибольший или наименьший) элемент выборки, по которой подсчитывались оценки среднего значения

и среднеквадратичного отклонения

;


τ


1-


p

— табличное значение статистики

τ

, вычисленной при доверительной вероятности

.

Таким образом, для выделения аномального значения вычисляют значение статистики,

(2)

которое затем сравнивают с табличным значением

τ

1-α


:

τ





τ

1-α


. Если неравенство

τ



τ


1-α

соблюдается, то наблюдение не отсеивают, если не соблюдается, то наблюдение исключают. После исключения того или иного наблюдения или нескольких наблюдений характеристики эмпирического распределения должны быть пересчитаны по данным сокращенной выборки.

Квантили распределения статистики

τ

при уровнях значимости

α

= 0,10; 0,05; 0,025 и 0,01 или доверительной вероятности


=

0,90; 0,95; 0,975 и 0,99 приведены в таблице 1. На практике очень часто используют уровень значимости

α

= 0,05 (результат получается с 95 %-й доверительной вероятностью).

Функции распределения статистики

τ

определяют методами теории вероятностей. По данным таблицы, приведенной в источниках [2, с. 283; 3, с. 184] при заданной доверительной вероятности

или уровне значимости

α

можно для чисел измерения п = 3–25 найти те наибольшие значения

которые случайная величина

может еще принять по чисто случайным причинам.

Процедуру отсева можно повторить и для следующего по абсолютной величине максимального относительного отклонения, но предварительно необходимо пересчитать оценки среднего значения

и среднеквадратичного отклонения

для выборки нового объема

Таблица 1


Квантили распределения максимального относительного отклонения при отсеве грубых погрешностей [2, с. 283]


n

Уровень значимости

α


n

Уровень значимости

α

0,10

0,05

0,025

0,01

0,10

0,05

0,025

0,01

3

1,41

1,41

1,41

1,41

15

2,33

2,49

2,64

2,80

4

1,65

1,69

1,71

1,72

16

2,35

2,52

2,67

2,84

5

1,79

1,87

1,92

1,96

17

2,38

2,55

2,70

2,87

6

1,89

2,00

2,07

2,13

18

2,40

2,58

2,73

2,90

7

1,97

2,09

2,18

2,27

19

2,43

2,60

2,75

2,93

8

2,04

2,17

2,27

2,37

20

2,45

2,62

2,78

2,96

9

2,10

2,24

2,35

2,46

21

2,47

2,64

2,80

2,98

10

2,15

2,29

2,41

2,54

22

2,49

2,66

2,82

3,01

11

2,19

2,34

2,47

2,61

23

2,50

2,68

2,84

3,03

12

2,23

2,39

2,52

2,66

24

2,52

2,70

2,86

3,05

13

2,26

2,43

2,56

2,71

25

2,54

2,72

2,88

3,07

14

2,30

2,46

2,60

2,76

В литературе можно встретить большое количество методических рекомендаций для проведения отсева грубых погрешностей измерений, подробно рассмотренных в [4, с. 25]. Обратим внимание на некоторые из существующих критериев отсеивания грубых погрешностей.

  1. Критерий «трех сигм» применяется для случая, когда измеряемая величина

    x

    распределена по нормальному закону. По этому критерию считается, что с вероятностью

    Р

    = 0,9973 и значимостью

    α

    = 0,0027 появление даже одной случайной погрешности, большей, чем

    маловероятное событие и ее можно считать промахом, если



    x

    i


    > 3

    S

    x


    , где

    S

    x







    оценка среднеквадратического отклонения (СКО) измерений. Величины

    и

    S

    x


    вычисляют без учета экстремальных значений

    x

    i


    . Данный критерий надежен при числе измерений

    n

    ≥ 20…50 и поэтому он широко применяется. Это правило обычно считается слишком жестким, поэтому рекомендуется назначать границу цензурирования в зависимости от объема выборки: при

6 <

n

≤100 она равна 4

S

x


; при 100 <

n

≤1000 − 4,5

S

x


; при 1000 <

n

≤10000–5

Sx

. Данное правило также используется только при нормальном распределении.

Практические вычисления проводят следующим образом [5, с. 65]:

  1. Выявляют сомнительное значение измеряемой величины. Сомнительным значением может быть лишь наибольшее, либо наименьшее значение наблюдения измеряемой величины.
  2. Вычисляют среднее арифметическое значение выборки

    без учета сомнительного значения

    измеряемой величины.

(3)

  1. Вычисляют оценку СКО выборки

    без учета сомнительного значения

    измеряемой величины.

(4)

  1. Вычисляют разность среднеарифметического и сомнительного значения измеряемой величины и сравнивают.

Если

то сомнительное значение отбрасывают, как промах.

Если

то сомнительное значение оставляют как равноправное в ряду наблюдений.

Данный метод «трех сигм» среди метрологов-практиков является самым популярным, достаточно надежным и удобным, так как при этом иметь под рукой какие-то таблицы нет необходимости.

  1. Критерий В. И. Романовского применяется, если число измерений невелико,

    n

    ≤ 20. При этом вычисляется соотношение

(5)

где

— результат, вызывающий сомнение,

— коэффициент, предельное значение которого

определяют по таблице 2. Если

, сомнительное значение

исключают («отбрасывают») как промах. Если


,

сомнительное значение оставляют как равноправное в ряду наблюдений [5, с. 65].

Таблица 2

Значение критерия Романовского

Уровень значимости,

α

Число измерений,

n


n

= 4


n

= 6


n

= 8


n

= 10


n

= 12


n

= 15


n

= 20

0,01

1,73

2,16

2,43

2,62

2,75

2,90

3,08

0,02

1,72

2,13

2,37

2,54

2,66

2,80

2,96

0,05

1,71

2,10

2,27

2,41

2,52

2,64

2,78

0,10

1,69

2,00

2,17

2,29

2,39

2,49

2,62

Несмотря на многообразие существующих и применяемых на практике методов отсеивания грубых погрешностей в настоящее время действует национальный стандарт ГОСТ Р 8.736–2011, который является основным нормативным документом в данной области. В новом стандарте для исключения грубых погрешностей применяется критерий Граббса.

  1. Статистический критерий Граббса (Смирнова) исключения грубых погрешностей основан на предположении о том, что группа результатов измерений принадлежит нормальному распределению [1, с. 8]. Для этого вычисляют критерии Граббса (Смирнова) G1 и G2, предполагая, что наибольший хmax или наименьший xmin результат измерений вызван грубыми погрешностями.

и

(6)

Сравнивают G1 и G2 с теоретическим значением GT критерия Граббса (Смирнова) при выбранном уровне значимости α. Таблица критических значений критерия Граббса (Смирнова) приведена в приложении к стандарту [1, с. 12]. Следует отметить, что критические значения критерия Граббса (Смирнова) GT отличаются от критических значений критериев

t

-статистик или значений критериев Стьюдента при одних и тех же величинах уровней значимости, что может вызывать некоторые трудности у пользователей при выборе конкретного метода отсеивания погрешностей, соответствующего нормативным документам.

Если G1>GТ, то хmax исключают как маловероятное значение. Если G2>GТ, то xmin исключают как маловероятное значение. Далее вновь вычисляют среднее арифметическое и среднее квадратическое отклонение ряда результатов измерений и процедуру проверки наличия грубых погрешностей повторяют.

Если G1

GТ, то хmax не считают промахом и его сохраняют в ряду результатов измерений. Если G2

GТ, то xmin не считают промахом и его сохраняют в ряду результатов измерений.

Отсев грубых погрешностей можно производить и для больших выборок (

n

= 50…100). Для практических целей лучше всего использовать таблицы распределения Стьюдента. Этот метод исключения аномальных значений для выборок большого объема отличается простотой, а таблицы распределения Стьюдента имеются практически в любой книге по математической статистике, кроме того, распределение Стьюдента реализовано в пакете Excel. Распределение Стьюдента относится к категории распределений, связанных с нормальным распределением. Подробно эти распределения рассмотрены в учебниках по математической статистике [3, с. 24].

Известно, что критическое значение

τ


p

(

p

— процентная точка нормирования выборочного отклонения) выражается через критическое значение распределения Стьюдента

t

α, n-2


[6, с. 26]:

(7)

Учитывая это, можно предложить следующую процедуру отсева грубых погрешностей измерения для больших выборок (

n

= 100):

1) из таблицы наблюдений выбирают наблюдение имеющее наибольшее отклонение;


2)

по формуле

вычисляют значение статистики

τ

;


3)

по таблице (или в программе Excel) находят процентные точки

t

-распределения Стьюдента

t


(



α,


n


-2



)

:

t


(95




%, 98)

= 1,6602, и

t

(



99




%, 98)

= 3,1737;

По предыдущей формуле в программе Excel вычисляют соответствующие точки

t


(95




%, 100)

= 1,66023и

t


(99




%, 100)

=3,17374.

Сравнивают значение расчетной статистики с табличными критическими значениями и принимают решение по отсеву грубых погрешностей.

Рекомендуемый метод отсева грубых погрешностей удобен еще тем, что максимальные относительные отклонения могут быть разделены на три группы: 1)

2)

3)

.

Наблюдения, попавшие в первую группу, нельзя отсеивать ни в коем случае. Наблюдения второй группы можно отсеять, если в пользу этой процедуры имеются еще и другие соображения экспериментатора (например, заключения, сделанные на основе изучения физических, химических и других свойств изучаемого явления). Наблюдения третьей группы, как правило, отсеивают всегда.

Рассмотрим далее пример с использованием средств программного пакета Excel, который позволяет снизить трудоемкость расчетов при осуществлении данной процедуры. К сожалению, в настоящее время средства Excel не позволяют автоматизировать расчеты по всем известным критериям отсеивания грубых погрешностей, поэтому проиллюстрируем рассмотренные методы с использованием доступных в Excel критериев Стьюдента.


Пример 1.

Имеется выборка из 100 шт. резисторов с номинальным сопротивлением

R


н

= (150,0 ± 5 %) кОм, которая используется для оценки качества партии резисторов (генеральная совокупность). Используя критерий Стьюдента, отсеем грубые погрешности (промахи) при измерениях.

  1. Заносим данные измерений в таблицу Excel в ячейки В2:В101
  2. Составляем вариационный ряд — располагаем данные в порядке возрастания с помощью функции «Сортировка по возрастанию» в ячейках С2:С101 (рис. 1)

Фрагмент диалогового окна с данными измерений и вариационного ряда

Рис. 1. Фрагмент диалогового окна с данными измерений и вариационного ряда

3. Находим среднее значение выборки с помощью мастера функций в категории «Статистические» и функции — СРЗНАЧ, результат в ячейке Н3 (рис. 2).

Фрагмент диалогового окна при нахождении среднего значения выборки

Рис. 2. Фрагмент диалогового окна при нахождении среднего значения выборки

  1. Находим среднеквадратическое отклонение —

    S


    x

    . Выделяем ячейку Н4, вызываем «Мастер функций», категория «Статистические», функция — СТАНДОТКЛОН, результат в ячейке Н4–1,20 (рис. 3).

Фрагмент диалогового окна при нахождении среднего квадратического отклонения

Рис. 3. Фрагмент диалогового окна при нахождении среднего квадратического отклонения

  1. Находим максимальное значение в выборке —

    x


    макс

    . Выделяем ячейку Н5, в категории «Статистические», функция — МАКС, выделяем мышкой вариационный ряд C2:С101, результат в ячейке Н5–153,10 (рис. 4).

Фрагмент диалогового окна при нахождении максимального значения

Рис. 4. Фрагмент диалогового окна при нахождении максимального значения

  1. Находим минимальное значение в выборке —

    x


    мин

    . Выделяем ячейку Н6, в категории «Статистические», функция — МИН, выделяем мышкой вариационный ряд C2:С101, результат в ячейке Н6–147,6 (рис. 5).

Фрагмент диалогового окна при нахождении минимального значения

Рис. 5. Фрагмент диалогового окна при нахождении минимального значения

  1. Находим максимальное и минимальное отклонения — Δ

    макс

    и Δ

    мин

    . Вводим в ячейки Н7 и Н8 формулы:

  1. Находим теоретическое значение —

    t


    теор

    . для максимального и минимального отклонений. Вводим в ячейки Н9 и Н12 формулу

. и

  1. Находим табличное значение

    t


    табл.

    Выделяем ячейку Н10, вызываем в категории «Статистические» функцию — СТЬЮДЕНТ.ОБР, «Вероятность» — 0,95, степени свободы (

    n

    -2) — 98, результат в ячейке Н10–1,66 (рис. 6).

Фрагмент диалогового окна при нахождении табличного значения критерия Стьюдента

Рис. 6. Фрагмент диалогового окна при нахождении табличного значения критерия Стьюдента

  1. Сравниваем теоретическое значение

    t


    теор

    = 2,24 критерия Стьюдента для максимального значения — 153,1 кОм с табличным значением:

    t


    табл

    .= 1,6605.
  2. Аналогично п. 9 проверим на наличие грубой погрешности у минимального значения в выборке — 147,6 кОм. Результат в ячейке Н12–2,35 (рис. 7).

Фрагмент диалогового окна при окончательном анализе данных

Рис. 7. Фрагмент диалогового окна при окончательном анализе данных

  1. Делаем вывод о наличии грубых ошибок в данных измерениях. Рассмотренная процедура подтвердила наши сомнения относительно достоверности максимального и минимального значений в данной выборке, т. е., указанные результаты могут быть отброшены из результатов измерений, и проверка может быть повторена снова без этих данных.

Пример расчета теоретического критерия Романовского по аналогичным формулам в Excel и диалоговое окно представлены на рис. 8, при условии α = 0,05, число измерений

n

= 20, β

табл

= 2,78 (из таблицы 2).

Фрагмент диалогового окна при расчете критерия Романовского

Рис. 8. Фрагмент диалогового окна при расчете критерия Романовского


Выводы

  1. Для использования различных критериев отбрасывания грубых погрешностей измерений необходимо учитывать требования действующих нормативных документов.
  2. Рассмотренный пример показал, что расчеты погрешностей по критерию Стьюдента с использованием таблиц и формул Excel значительно упрощаются, а процесс отбрасывания грубых погрешностей можно осуществить наиболее качественно и быстро.

Литература:

1. ГОСТ Р 8.736–2011 Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения. — М.: ФГУП Стандартинформ, 2013. — 24 с.

2. Пустыльник Е. И. Статистические методы анализа и обработки наблюдений. — М.: Наука, 1968. — 288 с.

3. Львовский Е. Н. Статистические методы построения эмпирических формул: Учеб. пособие. — М.: Высш. школа, 1982. — 224 с.

4. Фаюстов А. А. Ещё раз о критериях отсеивания грубых погрешностей. — Законодательная и прикладная метрология, 2016, № 5, с. 25–30.

5. Сергеев А. Г. Метрология: Учебник. — М.: Логос, 2005. — 272 с.

6. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, Главная редакция физико-математической литературы, 1983. — 416 с.

Основные термины (генерируются автоматически): диалоговое окно, сомнительное значение, уровень значимости, измеряемая величина, погрешность, критерий, нормальное распределение, ячейка, вариационный ряд, минимальное значение.

При
статистическом анализе экспериментальных
данных для процессов, негативный
результат которых не создает ситуаций,
опасных для жизни людей или утраты
больших материальных ценностей,
доверительная вероятность обычно
принимают равной Р=0,95

Среди
результатов yk
повторностей опыта могут быть результаты,
значительно отличающиеся от других.
Это может быть связано либо с какой-то
грубой ошибкой, либо с неизбежным
случайным влиянием неучтенных факторов
на результат данной повторности опыта.

Признаком
наличия «выделяющегося» результата
среди других является большая величина
отклонения │▲yk│=
yk
– yˉ.

Если
▲yk>yпред,
то такие результаты относятся к грубым
ошибкам. Предельное абсолютное отклонение
определяют в зависимости от сложившейся
ситуации различными методами. Если,
например, проводиться статистический
анализ экспериментальных данных опыта
с эталонным процессом (известно истинное
значение результата опыта и ▲yk=yk-y)
и если исследователь имеет в своем
распоряжении оценку дисперсии S2(yk)
с таким большим числом степеней свободы,
то может принять f→∞
и S2(yk)=σ2,
то для определения грубых ошибок можно
применить правило
«2-х сигм»:
все
результаты, абсолютные отклонения
которых по модулю превышают величину
двух среднеквадратичных отклонений с
надежностью 0,95 считаются грубыми
ошибками и исключаются из массива
экспериментальных данных (вероятность
исключения достоверных результатов
равна уровню значимости q=0,05).

Если
доверительная вероятность отличается
от 0,95 то пользуются правилом
«одной сигмы»
(Р=0,68)
или правилом
«трех сигм»
(Р=0,997),
или по заданной вероятности Р=2Ф(t) –
1 находят Ф(t)
по справочным данным и параметр t,
по которому и рассчитывают абсолютное
отклонение:

Если
в распоряжении исследователя имеется
лишь приближенная оценка дисперсии с
небольшим (конечным) числом степеней
свободы, то применение правила «сигм»
может привести либо к необоснованному
исключению достоверных результатов
либо к необоснованному оставлению
ошибочных результатов.

В
этой ситуации для определения грубых
ошибок можно применить критерий
максимального отклонения

rmax(P,
m),
взятый из соответствующих таблиц. Для
этого rmax
сравнивают
с величиной r,
равной

(22)

Если
r
> rmax,
то данный результат должен исключаться
из дальнейшего анализа, оценка yˉ
должна
быть пересчитана, изменяются абсолютные
отклонения ▲yk
и соответственно оценка дисперсии
S2(yk)
и S2(yˉ).
Анализ на грубые ошибки повторяют при
новых значениях оценок yˉ
и S2(yk),
прекращают его при r
<= rmax.

При
пользовании формулой (22) следует применять
оценку дисперсии, полученную по
результатам повторностей опыта, среди
которых находится сомнительный результат.

Для
определения грубых ошибок существуют
и другие методы, среди которых наиболее
быстрым является метод «по
размаху»
,
основанный на оценке максимальных
различий полученных результатов. Анализ
по этому методу проводят в такой
последовательности:

1)
располагают
результаты yk
в упорядоченный ряд, в котором максимальному
результату присваивается номер первый
(y1),
а максимальному – наибольший (ym).

2)
Если
результатом, вызывающим сомнение, будет
ym,
рассчитывают отношение

(23)

если
сомнительным результатом будет y1
– отношение

(24)

3)
при
заданном уровни значимости q
и известном числе повторностей m
по приложению 6 находят табличное
значение критерия αТ.

4)
если
α
> αТ,
то подозреваемый результат является
ошибочным и его следует исключить.

После
исключения грубой ошибки находят по
таблице новую величину αТ
и решают судьбу следующего «подозреваемого»
результата, сравнивая αТ
и рассчитанный для него α.

Если
есть основание предполагать, что 2
наибольших (2 наименьших) результата
являются «промахами», то их можно выявить
в один прием, используя соответствующий
столбец таблицы приложения 6 для
определения αТ
и рассчитывая α
по формуле:

(25)

или

(26)

Средневзвешенные
оценки дисперсии. Анализ однородности
исходных оценок дисперсии

Если
в распоряжении экспериментатора имеются
результаты многократных измерений
величин критерия оптимальности в опытах
при различных условиях ведения процесса,
то появляется возможность расчета
средневзвешенной
оценки дисперсии
единичного
результата, единой для всех опытов
эксперимента.

В
каждом из N опытов (номер опыта и
=
1+N)
оценка
дисперсии единичного результата равна

где
т
и
– число повторностей и-го опыта.

Средневзвешенная
оценка дисперсии единичного результата
рассчитывается по всем оценкам дисперсии
единичного результата опытов:

а)
при различных ти

где



число
степеней свободы средневзвешенной
оценки дисперсии; т
и

1 = fu
– «вес» соответствующей и-ой оценки
дисперсии, равный числу степеней свободы
fu;

б)
при
ти
= т =
const

где
N
(m-1)=f
– число степеней
свободы средневзвешенной оценки
дисперсии.

Прежде
чем пользоваться соотношениями (28) и
(29) для расчета средневзвешенных
уточненных оценок дисперсии (чем больше
число степеней свободы, тем более точной
будет оценка дисперсии), надо доказать
однородность исходных оценок дисперсии.

Определение
«однородные» в статистике означает
«являющиеся оценкой одного и того же
параметра» (в данном случае – дисперсии
σ
2
).

Если
измеряемая случайная величина уик
распределена
по нормальному закону во всем исследуемом
диапазоне, то независимо от значений

и
дисперсия
σ
не будет изменять своей величины и
оценки этой дисперсии должны быть
однородными. Однородность этих оценок
проявляется в том, что они могут отличаться
друг от друга лишь незначительно, в
пределах, зависящих от принятой
вероятности и объема экспериментальных
данных.

Если
ти
= т и
f
=
const,
то однородность оценок дисперсий можно
проанализировать при помощи критерия
Кохрена
Gkp.
Вычисляют
отношение максимальной дисперсии
S2(yuk)max
к
сумме всех дисперсий

и
сравнивают это отношение с величиной
критерия Кохрена Gkp
(
P;
f;
N).
Если
G
<
Gkp,
то
оценки однородны.

Таблица
значений критерия Кохрена в зависимости
от числа степеней свободы числителя
fu,
числа
сравниваемых дисперсий N и принятого
уровня значимости q
=
1 – Р
дана
в приложении.

Если
число повторностей в опытах различно
(flt
const),
однородность оценок дисперсии можно
проанализировать с помощью критерия
Фишера
FТ.
Для
этого из N
оценок
дисперсии выбирают 2: максимальную
S2(yuk)max
и минимальную S2(yuk)min.
Если вычисленное значение F
их
отношения меньше Ft,

то
все N
оценок
дисперсии будут однородны.

Значения
критерия Фишера FT
даны
в приложении в зависимости от принятого
уровня значимости q
и
числа степеней свободы f1
и
f2
оценок S2(yuk)max
и S2(yuk)min
соответственно.

Если
оценки дисперсии непосредственно
измеряемого параметра у
оказались
неоднородными, т.е. оценками различных
дисперсий, то средневзвешенная оценка
не может быть рассчитана. И кроме того,
величины ук
уже
нельзя считать подчиняющимися нормальному
закону, при котором дисперсия может
быть лишь одной и неизменной при любом
у.

Причиной
нарушения нормального закона распределения
может быть наличие оставшихся грубых
ошибок (анализ на грубые ошибки либо не
проводился, либо проведен недостаточно
тщательно).

Другой
причиной может быть наличие активного
фактора, ошибочно отнесенного
исследователем к неактивным и не
снабженного системой стабилизации.
Поскольку условия изменились, этот
фактор стал значимо влиять на процесс.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Методы робастного оценивания — это статистические методы, которые позволяют получать достаточно надежные оценки статистической совокупности(См.[6]).

Единицы статистической совокупности, у которых значения анализируемого признака существенно отклоняются от основного массива, называются аномальными явлениями, «грубыми ошибками» или выбросами.

При решении задач статистического анализа проблема наличия в выборке аномальных измерений имеет чрезвычайно важное значение. Присутствие единственного аномального наблюдения может приводить к оценкам, которые совершенно не согласуются с выборочными данными.

Для данных индексов построим точечный график (Рисунок 7). В ходе визуального анализа выявляем наличие в выборке аномальных значений (выбросов).

Точечный график

Рисунок 7. Точечный график

Самым простым методом обнаружения грубых ошибок считается метод, на основании Т — Критерия Граббса:

, где (1.4)

— среднее значение, x — аномальное значение, s — выборочное среднеквадратическое отклонение СВ.

Данный критерий можно использовать для выделения аномальных результатов измерений только в случае нормального закона.

Так как выборка распределена нормально, мы можем найти Тк, и проверить наличие грубых ошибок в выборке.

Результаты расчетов по выборке представлены на Рисунке 8:

Результаты вычисления

Рисунок 8.Результаты вычисления

Полученные значения сравнивают с табличными значениями процентных точек критерия Смирнова Граббса (Таблица 1). В том случае, если >, мы может утверждать, что проверяемое значение является грубой ошибкой и относится к классу выбросов.

Таблица 1. Значения процентных точек критерия Смирнова Граббса

0.99

0.95

30

0.4257

0.4791

31

0.4376

0.4885

32

0.4477

0.4995

33

0.4558

0.5099

34

0.4688

0.5189

35

0.4779

0.5285

36

0.4874

0.5374

37

0.4970

0.5459

38

0.5048

0.5540

39

0.5145

0.5617

40

0.5211

0.5692

41

0.5307

0.5767

42

0.5385

0.5835

43

0.5450

0.5902

44

0.5522

0.5970

45

0.5599

0.6033

46

0.5675

0.6090

47

0.5742

0.6154

48

0.5789

0.6211

49

0.5861

0.6270

50

0.5910

0.6324

Сравним полученные значения с табличным (при = 0,01) при числе наблюдений равном 48, а Ткр = 0,5789.

Так как Тк(1) =1,9> = 0,5789, то проверяемое значение является грубой ошибкой и относится к классу выбросов.

Аналогично Тк(2) =3,33> = 0,5789, что подтверждает, что рассматриваемое значение является аномальным значением.

Критерий Граббса имеет некоторые недостатки. Он не точен, и не чувствителен к засорениям, когда ошибки группируются на расстоянии от общей совокупности.

Далее подтвердим наличие грубых ошибок на основании L- критерия Титьена-Мура (См.[9]).

Решающее правило для исключения k наибольших членов вариационного ряда основано на статистике:

, где (1.5)

Воспользовавшись формулами, было найдено значение L-критерия Титьена-Мура для рассматриваемой выборки (Рисунок 9)Значение L-критерия Титьена-Мура

Рисунок 9. Значение L-критерия Титьена-Мура

Сравниваем полученное значение с критическим пределом (Таблица 2). При наличии выбросов статистика Lk должна быть меньше критического предела. В данном случае Lk = 0,67887 <Cкр = 0,696, что подтверждает наличие аномальных значений в выборке (См.[9]).

Таблица 2. Критические значения оценки для L — критерия Титьена и Мура (a=0,05)

Для избавления от выбросов изменим данные доходностей, исключим значение 0,076594461 и -0,125593848, что приведет к нормальному распределению.

Гистограмма при этом теперь имеет вид (Рисунок 10):

Гистограмма

Рисунок 10.Гистограмма

Оценка функции распределения и построение ее графика. Интерпретация полученных результатов и предварительный закон распределения

Каждая случайная величина полностью определяется своей функцией распределения.

Если X — случайная величина, то функция F(x) = FX (x) = P (X <x) называется функцией распределения случайной величины X. Здесь P (X <x) — вероятность того, что случайная величина X принимает значение, меньшее x.

Важно понимать, что функция распределения содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением.

Функция распределения любой случайной величины обладает следующими свойствами:

1. F(x) определена на всей числовой прямой R;

2. F(x) не убывает, т.е. если x1x2, то F(x1) F(x2);

3. F(-)=0, F(+)=1, т.е. и ;

4. F(x) непрерывна справа, т.е.

Для построения функции распределения необходимо взять накопленные частоты. Они определяются путем последовательного суммирования частот предшествующих интервалов (Рисунок 11).

Накопленные частоты

Рисунок 11. Накопленные частоты

Таким образом график оценки функции имеет вид (Рисунок 12):

График оценки функции

Рисунок 12. График оценки функции

Полученная функция распределения соответствует нормальному закону распределения, поэтому логично предположить, что финансовые индексы валютной пары евро/рубль распределены нормально.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти заказ музыка
  • Как составить текст по плану 2 класс памятка
  • Как найти скачанное фото на андроид
  • Разность чисел как найти уменьшаемое
  • Как найти периметр квадрата 3 класс формулы

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии