Как найти градус угла равностороннего треугольника

Чему равны углы равностороннего треугольника?

Теорема

(свойство углов равностороннего треугольника)

Все углы равностороннего треугольника равны по 60º.

ugly-ravnostoronnego-treugolnikaДано: ABC,

AB=BC=AC

Доказать: ∠A=∠B=∠C=60º.

Доказательство:

Так как AB=BC, ∠A=∠C (как углы при основании равнобедренного треугольника).

Аналогично, так как AC=BC, ∠A=∠B.

Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C

Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.

Что и требовалось доказать.

Замечание.

Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.

Углы равностороннего треугольника

Чему равны углы равностороннего треугольника?

(свойство углов равностороннего треугольника)

Все углы равностороннего треугольника равны по 60º.

Аналогично, так как AC=BC, ∠A=∠B.

Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C

Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.

Что и требовалось доказать .

Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:

2. Радиус вписанной окружности:

3. Радиус описанной окружности:

4. Периметр:

5. Площадь:

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.

.

Далее, из формулы

.

. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Информация по назначению калькулятора

Треугольник — это одна из основных геометрических фигур: многоугольник с тремя углами (или вершинами) и тремя сторонами (или ребрами), которые являются прямыми отрезками.

В евклидовой геометрии любые три неколлинеарные точки определяют треугольник и единственную плоскость, то есть двумерное декартово пространство.

Сумма длин любых двух сторон треугольника всегда превышает длину третьей стороны. Это и есть неравенство треугольника.

Треугольники могут быть классифицированы в соответствии с относительной длиной их сторон:

В равностороннем треугольнике все стороны имеют одинаковую длину. Равносторонний треугольник также является равноугольным многоугольником, т.е. все его внутренние углы равны, а именно 60° — это правильный многоугольник.

В равнобедренном треугольнике две стороны имеют одинаковую длину. Равнобедренный треугольник также имеет два совпадающих угла (а именно, углы, противоположные совпадающим сторонам). Равносторонний треугольник — это равнобедренный треугольник, но не все равнобедренные треугольники являются равносторонними треугольниками.

В скалярном треугольнике все стороны имеют разную длину. Внутренние углы в скалярном треугольнике все разные.

Треугольники также могут быть классифицированы в соответствии с их внутренними углами:

Прямоугольный треугольник имеет один внутренний угол 90° (прямой угол). Сторона, противоположная прямому углу, является гипотенузой; это самая длинная сторона в прямоугольном треугольнике. Две другие стороны — катеты треугольника.

Тупой треугольник имеет один внутренний угол, больший 90° (тупой угол).

Острый треугольник имеет внутренние углы, которые все меньше 90° (три острых угла). Равносторонний треугольник — это острый треугольник, но не все острые треугольники являются равносторонними треугольниками.

Наклонный треугольник имеет только углы, которые меньше или больше 90°. Следовательно, это любой треугольник, который не является прямоугольным треугольником.

Онлайн калькулятор поможет найти параметры треугольника, такие как:

  • Длины сторон
  • — равны в равностороннем треугольнике

  • Углы
  • — также равны в равностороннем треугольнике

  • Высота
  • — это прямая линия, проходящая через вершину и перпендикулярная противоположной стороне (т. е. образующая прямой угол с ней)

  • Периметр
  • — равен сумме всех 3х сторон (P=AB+BC+AC)

  • Площадь
  • — равна половине произведения высоты и стороны к которой построена высота (S=1/2 * H * AC)

  • Медианы
  • Биссектрисы
  • Радиус Вписанной и Описанной окружностей
  • Диаметр Вписанной и Описанной окружностей
  • Длина Вписанной и Описанной окружностей
  • Площадь Вписанной и Описанной окружностей

Все знают, что из себя представляет такая геометрическая фигура, как треугольник.

Соответственно надо знать несколько правил.

1) У фигуры 3 угла.

2) У равностороннего треугольника — все стороны равны.

3) Также у него равны и углы.

4) Сумма всех углов ЛЮБОГО треугольника 180 градусов.

Значит мы 180 делим на 3 и получаем 60.

Каждый угол такого треугольника равен 60 градусов.

Что такое равносторонний треугольник, площадь равносторонних треугольников, равносторонние треугольники примеры.

Если все углы треугольника равны то, то это равносторонний треугольник и все стороны у такого треугольника равны.

  • Что такое равносторонний треугольник

    В равностороннем треугольнике все углы равны аксиома.

    На странице виды треугольников, мы упоминали о таком виде треугольников, как равносторонний треугольник.

    Что из себя представляет равносторонний треугольник!?

    Из самого названия видно, что все стороны данного треугольника равны:

    Что из себя представляет равносторонний треугольник!?

    Равносторонний треугольник называют еще правильным.

    Какой первый интересный вопрос у вас возникает при виде равностороннего треугольника!?

    Сколько градусов составляет угол в равностороннем треугольнике!?

    Нет!? Не угадал… жаль… wall
    смайлы

    Но тем не менее, раз уж вопрос задан, то узнать сколько градусов составляет угол разностороннего треугольника :

    180° разделить на 3…

    180°/3 = 60°

    Поскольку у нас треугольник равносторонний. то все углы у такого треугольника будут равны…

    Равносторонний треугольник максимальный угол

    Поисковый запрос -> «равносторонний треугольник максимальный угол» — не может быть максимальный, минимальный угол в равностороннем треугольнике — потому, что угол в равностороннем треугольнике всегда один!
    60°

  • Высота равностороннего треугольника

    Формула высоты равностороннего треугольника, если сторону выразить через символ «a», то формула звучит так :

    Высота равностороннего треугольника равна , корень из 3 деленное на 2 и умножить на сторону равностороннего квадрата.

    Высота равностороннего треугольника формула через сторону

    Высота равностороннего треугольника формула через сторону
    Доказательство :

    Докажем что высота равностороннего треугольника равна — корню из 3, умноженное на сторону и деленное на 2.

    Высота равностороннего треугольника формула через сторону

    Если мы опустим высоту из верхнего угла, то это будет биссектрисой, которая в данном случае не только разделит угол пополам, но и сторону противолежащую…

    И если верхний угол будет поделен на 2, то он будет равен :

    60 / 2 = 30

    И если мы прибавим 30 и например оставшийся справа 60, то получим 60 + 30 = 90.

    И далее мы можем получить угол между высотой «h» и стороной «a».

    180 — 90 = 90

    И мы получим прямоугольный треугольник, в котором все стороны обозначены…

    Высота равностороннего треугольника формула через сторону
    …и отсюда мы уже можем вывести по теореме пифагора
    c² = a² + b²

    a² = a²2² + h² = a²4 + h²

    Обе стороны умножим на 4, чтобы избавиться от 4 в дроби :

    4a² = a² + 4h²

    высоту оставляем одну слева и получаем:

    4a² — a² = 4h² -> 4h² = 4a² — a² -> 4h² = 3a² -> h² = 3a²/4

    И осталось извлечь квадратный корень из правой стороны…

    h = √3a²/4
    И далее получаем Высота равностороннего треугольника формула через сторону

  • Площадь равностороннего треугольника

    Какая формула для площади равностороннего треугольника!?

    Она звучит так:

    Площадь равностороннего треугольника равна : корень из 3 деленное на 4, умноженное на сторону в квадрате:

    Площадь равностороннего треугольника

    Доказательство :

    Доказательство очень простое !

    Выше мы уже доказали, чему равна высота… возьмем одну сторону треугольника на высоту h.

    Вторая сторона будет равна а/2

    И далее нам нужно умножить высоту на сторону, поделив на 2. По правилу вычисления площади прямоугольного треугольника.

    Мы получаем предварительный результат:

    Площадь равностороннего треугольника

    И поскольку у нас два таких треугольника, то правую сторону надо умножить на 2, две двойки сокращаются.

    Площадь равностороннего треугольника

    получаем :

    Площадь равностороннего треугольника

    И далее заменим высоту из выше пройденного пункта:

    Площадь равностороннего треугольника

  • Радиус окружности, вписанной в равносторонний треугольник

    Радиус окружности, вписанной в равносторонний треугольник
    Радиус окружности, вписанной в равносторонний треугольник

    Или вам может встретиться вторая формула вписанной окружности в равносторонний треугольник :

    Радиус окружности, вписанной в равносторонний треугольник

    Почему встречаются две формулы радиуса вписанной окружности!?

    Потому, что они выводятся разными путями, хоть они и не похожи — но это одинаковые значения.

    Сможете доказать самостоятельно выше озвученный тезис?

    Доказательство первой формулы радиус вписанной окружности равностороннего треугольника

    Доказательство первой формулы радиус вписанной окружности равностороннего треугольника

    Соотношение радиуса вписанной и описанной окружностей 1 : 2(на момент написания данной страницу мы еще это не прошли на сайте)

    Доказательство первой формулы радиус вписанной окружности равностороннего треугольника

    Отсюда мы получаем, что :

    r =13 * h

    Подставляем ранее выведенную высоту

    r =13 * √32a =
    36a

    Доказательство второй формулы радиус вписанной окружности равностороннего треугольника

    Доказательство второй формулы радиус вписанной окружности равностороннего треугольника

    Не будем здесь доказывать, что два треугольника «ABM» и «AOK» подобные и отличаются в своих размерах и других показателях на коэффициент «Х».

    Из этого мы можем создать зависимость:

    «r» — относится к отрезку «AK», как «BM» к «AM»

    «AK» и «BM» равны одному и тому же а/2.

    «AM» — это у нас высота — «h».

    Далее мы можем записать эту зависимость как :

    r : а2 =
    а2 : h

    Как вы знаете, что при делении подобные выражения ведут себя не так, как при умножении(скоро и про это напишем), поэтому заменим деление на умножение:

    r * 2а =
    а2 * 1h

    Теперь мы можем избавиться в левой стороне от дроби 2/а, умножив две стороны на а/2 :

    r = а2 * а2 * 1h

    В последней дроби заменяем «h» на наши значение из пункта 2 и поскольку получается опять деление, меняем знак и переворачиваем дробь( см.: деление дробей)

    r = а2 * а2 * 1h =
    а2 * а2 * 2√3 * а

    Парами сокращаем а и 2
    r =
    а2 * а2 * 2√3 * а

    И в итоге получаем :

    Доказательство второй формулы радиус вписанной окружности равностороннего треугольника

  • Радиус описанной окружности равностороннего треугольника

    С описанной окружностью доказывается аналогично, лишь с той разницей, что радиус больше в два раза:

    Радиус описанной окружности равностороннего треугольника
    Радиус описанной окружности равностороннего треугольника

    Или :

    Радиус описанной окружности равностороннего треугольника

  • Задача : Вписанный квадрат в равносторонний треугольник.

    Докажите, что вписанный квадрат в равносторонний треугольник делит одним углом, сторону треугольника пополам или не делит.

    Задача : Вписанный квадрат в равносторонний треугольник.

    Решение задачи :

    Мы знаем, что в равностороннем треугольнике все углы равны 60 :

    180°/3 = 60°

    И если мы посмотрим на треугольник

    ABC

    , то поскольку, все углы данного разностороннего треугольника равны 60°,

    То стороны у этого треугольника будут равны между собой.

    И одна из сторон совпадает со стороной квадрата.

    Поэтому сторона «

    AB

    » равна стороне квадрата «

    BC

    » и стороне «

    BE

    «
    Но «

    BE

    » не равна «

    BD

    «. Катет всегда будет меньше гипотенузы.
    Если «

    BE

    » не равно «

    BD

    «, то «

    BD

    » не равно «

    AB

    «, что означает, что точка B не находится в середине отрезка «

    AD

    «.

    Отсюда мы делаем вывод :

    Угол вписанного квадрата не делит сторону равностороннего треугольника пополам!

  • Периметр равностороннего треугольника формула

    Напишите «формулу периметра равностороннего треугольника»:

    Обозначается периметр буквой P

    Сторону обозначим через — а

    Поскольку все стороны у равностороннего треугольника равны,
    то периметр равностороннего треугольника будет равен :

    3 умноженное на сторону а треугольника:

    Периметр равностороннего  треугольника формула

    Формула периметра равностороннего треугольника

    P = 3a

    Конечно, можно еще представить данную формулу таким образом:

    P = a + a + a

    Но такого написания, я никогда не встречал.

  • Задача: найти высоту равностороннего если известна сторона вписанного квадрата.

    Условие задачи :

    Известна сторона «CB» вписанного квадрата, требуется найти высоту равностороннего треугольника «AM».

    Задача: найти высоту равностороннего если известна сторона вписанного квадрата.
    В пункте №6 и подпункте 4, мы вывели, что :

    Сторона «AB» равна стороне квадрата «BC» и стороне «BE»

    Поэтому, высота «AN» маленького треугольника будет равна :

    Задача: найти высоту равностороннего если известна сторона вписанного квадрата.

    И далее мы уже можем вывести высоту треугольника :

    Задача: найти высоту равностороннего если известна сторона вписанного квадрата.

  • Задача: найти сторону равностороннего треугольника через площадь.

    Условие задачи :

    Известна площадь равностороннего треугольника «S», требуется узнать его сторону «а».

    Я уже вывел площадь равностороннего треугольника в этом пункте, там же было доказательство!

    Нам понадобится данная формула для решения выше озвученной задачи!

    Задача: найти сторону равностороннего треугольника через площадь.

    Нам всего-то навсего нужно выразить сторону «а» через «S»

    S = √3 4*a²

    Умножаем обе стороны на

    4√3

    Справа, в выражении дробь сократится, а слева появится данная дробь в перевернутом виде:

    S* 4√3 = a²

    Далее, чтобы получить сторону через площадь, нам нужно извлечь корень :

    Задача: найти сторону равностороннего треугольника через площадь.

    Преобразуем :

    Задача: найти сторону равностороннего треугольника через площадь.

    Преобразуем еще раз:

    Задача: найти сторону равностороннего треугольника через площадь.

    Ответ задачи : найти сторону равностороннего треугольника через площадь.

    Сторона равностороннего треугольника равна корню из площади умноженное на 2, и деленное на корень 4 степени из 3.

  • Задача: если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний

    Повстречал вот такой поисковый запрос :

    «если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний«

    Данную формулировку можно перефразировать и будет выглядеть совсем по другому:

    Докажите, что радиус вписанной окружности равностороннего треугольника больше в два раза, радиуса описанной окружности

    Вообще… эта одна из самых простых задач!

    А почему, вы узнаете дальше.

    Для доказательства данного утверждения нам понадобится :

    Радиус вписанной окружности равностороннего треугольника, о котором я рассказывал здесь :
    Задача: если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний
    И второе — это радиус вписанной окружности равностороннего треугольника, о котором я рассказывал здесь : :
    Задача: если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний

    Далее — нужно разделить больший радиус на меньший:

    Как вы наверное знаете, что при делении одной дроби н вторую существует правило, по которому вторую дробь нужно перевернуть и знак будет умножить…
    После этого, смотрим, что можно сократить

    Сокращаются квадратный корень из 3.

    Сторона «а».

    6 и 3, сокращаются только на 3. Сверху остается 2.

    И вообще… из всех только и остается 2.

    Т.е. вот мы и доказали, что :

    Радиус вписанной окружности равностороннего треугольника больше в два раза, радиуса описанной окружности

    Задача: если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как найти закрытую беседу в вк
  • Как найти самые красивые рисунки
  • Как найти общую папку виртуал бокс
  • Как найти предел натурального логарифма
  • Прожег рубашку сигаретой как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии