Чему равны углы равностороннего треугольника?
Теорема
(свойство углов равностороннего треугольника)
Все углы равностороннего треугольника равны по 60º.
Дано: ABC,
AB=BC=AC
Доказать: ∠A=∠B=∠C=60º.
Доказательство:
Так как AB=BC, ∠A=∠C (как углы при основании равнобедренного треугольника).
Аналогично, так как AC=BC, ∠A=∠B.
Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C
Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.
Что и требовалось доказать.
Замечание.
Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.
Углы равностороннего треугольника
Чему равны углы равностороннего треугольника?
(свойство углов равностороннего треугольника)
Все углы равностороннего треугольника равны по 60º.
Аналогично, так как AC=BC, ∠A=∠B.
Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C
Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.
Что и требовалось доказать .
Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Решение треугольников онлайн
С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.
Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:
- Три стороны треугольника.
- Две стороны треугольника и угол между ними.
- Две стороны и угол противостоящий к одному из этих сторон треугольника.
- Одна сторона и любые два угла.
Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.
Решение треугольника по трем сторонам
Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .
(1) |
(2) |
Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения
.
Пример 1. Известны стороны треугольника ABC: Найти
(Рис.1).
Решение. Из формул (1) и (2) находим:
И, наконец, находим угол C:
Решение треугольника по двум сторонам и углу между ними
Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.
Найдем сторону c используя теорему косинусов:
.
.
Далее, из формулы
.
(3) |
Далее из (3) с помощью калькулятора находим угол A.
Поскольку уже нам известны два угла то находим третий:
.
Пример 2. Известны две стороны треугольника ABC: и
(Рис.2). Найти сторону c и углы A и B.
Решение. Иcпользуя теорму косинусов найдем сторону c:
,
Из формулы (3) найдем cosA:
.
Поскольку уже нам известны два угла то находим третий:
Решение треугольника по стороне и любым двум углам
Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.
Так как, уже известны два угла, то можно найти третий:
.
Далее, для находждения сторон b и c воспользуемся тероемой синусов:
Пример 3. Известна одна сторона треугольника ABC: и углы
(Рис.3). Найти стороны b и c и угол С.
Решение. Поскольку известны два угла, то легко можно найти третий угол С:
Найдем сторону b. Из теоремы синусов имеем:
Найдем сторону с. Из теоремы синусов имеем:
Свойства равностороннего треугольника: теория и пример задачи
http://matworld.ru/geometry/reshenie-treugolnikov.php
Информация по назначению калькулятора
Треугольник — это одна из основных геометрических фигур: многоугольник с тремя углами (или вершинами) и тремя сторонами (или ребрами), которые являются прямыми отрезками.
В евклидовой геометрии любые три неколлинеарные точки определяют треугольник и единственную плоскость, то есть двумерное декартово пространство.
Сумма длин любых двух сторон треугольника всегда превышает длину третьей стороны. Это и есть неравенство треугольника.
Треугольники могут быть классифицированы в соответствии с относительной длиной их сторон:
⇒ В равностороннем треугольнике все стороны имеют одинаковую длину. Равносторонний треугольник также является равноугольным многоугольником, т.е. все его внутренние углы равны, а именно 60° — это правильный многоугольник.
⇒ В равнобедренном треугольнике две стороны имеют одинаковую длину. Равнобедренный треугольник также имеет два совпадающих угла (а именно, углы, противоположные совпадающим сторонам). Равносторонний треугольник — это равнобедренный треугольник, но не все равнобедренные треугольники являются равносторонними треугольниками.
⇒ В скалярном треугольнике все стороны имеют разную длину. Внутренние углы в скалярном треугольнике все разные.
Треугольники также могут быть классифицированы в соответствии с их внутренними углами:
⇒ Прямоугольный треугольник имеет один внутренний угол 90° (прямой угол). Сторона, противоположная прямому углу, является гипотенузой; это самая длинная сторона в прямоугольном треугольнике. Две другие стороны — катеты треугольника.
⇒ Тупой треугольник имеет один внутренний угол, больший 90° (тупой угол).
⇒ Острый треугольник имеет внутренние углы, которые все меньше 90° (три острых угла). Равносторонний треугольник — это острый треугольник, но не все острые треугольники являются равносторонними треугольниками.
⇒ Наклонный треугольник имеет только углы, которые меньше или больше 90°. Следовательно, это любой треугольник, который не является прямоугольным треугольником.
Онлайн калькулятор поможет найти параметры треугольника, такие как:
- Длины сторон
- Углы
- Высота
- Периметр
- Площадь
- Медианы
- Биссектрисы
- Радиус Вписанной и Описанной окружностей
- Диаметр Вписанной и Описанной окружностей
- Длина Вписанной и Описанной окружностей
- Площадь Вписанной и Описанной окружностей
— равны в равностороннем треугольнике
— также равны в равностороннем треугольнике
— это прямая линия, проходящая через вершину и перпендикулярная противоположной стороне (т. е. образующая прямой угол с ней)
— равен сумме всех 3х сторон (P=AB+BC+AC)
— равна половине произведения высоты и стороны к которой построена высота (S=1/2 * H * AC)
Все знают, что из себя представляет такая геометрическая фигура, как треугольник.
Соответственно надо знать несколько правил.
1) У фигуры 3 угла.
2) У равностороннего треугольника — все стороны равны.
3) Также у него равны и углы.
4) Сумма всех углов ЛЮБОГО треугольника 180 градусов.
Значит мы 180 делим на 3 и получаем 60.
Каждый угол такого треугольника равен 60 градусов.
Что такое равносторонний треугольник, площадь равносторонних треугольников, равносторонние треугольники примеры.
Если все углы треугольника равны то, то это равносторонний треугольник и все стороны у такого треугольника равны.
Что такое равносторонний треугольник
В равностороннем треугольнике все углы равны аксиома.
На странице виды треугольников, мы упоминали о таком виде треугольников, как равносторонний треугольник.
Что из себя представляет равносторонний треугольник!?
Из самого названия видно, что все стороны данного треугольника равны:
Равносторонний треугольник называют еще правильным.
Какой первый интересный вопрос у вас возникает при виде равностороннего треугольника!?
Сколько градусов составляет угол в равностороннем треугольнике!?
Нет!? Не угадал… жаль…
смайлы
Но тем не менее, раз уж вопрос задан, то узнать сколько градусов составляет угол разностороннего треугольника :
180° разделить на 3…
180°/3 = 60°
Поскольку у нас треугольник равносторонний. то все углы у такого треугольника будут равны…
Равносторонний треугольник максимальный угол
Поисковый запрос -> «равносторонний треугольник максимальный угол» — не может быть максимальный, минимальный угол в равностороннем треугольнике — потому, что угол в равностороннем треугольнике всегда один!
60°
Высота равностороннего треугольника
Формула высоты равностороннего треугольника, если сторону выразить через символ «a», то формула звучит так :
Высота равностороннего треугольника равна , корень из 3 деленное на 2 и умножить на сторону равностороннего квадрата.
Высота равностороннего треугольника формула через сторону
Доказательство :
Докажем что высота равностороннего треугольника равна — корню из 3, умноженное на сторону и деленное на 2.
Если мы опустим высоту из верхнего угла, то это будет биссектрисой, которая в данном случае не только разделит угол пополам, но и сторону противолежащую…
И если верхний угол будет поделен на 2, то он будет равен :
60 / 2 = 30
И если мы прибавим 30 и например оставшийся справа 60, то получим 60 + 30 = 90.
И далее мы можем получить угол между высотой «h» и стороной «a».
180 — 90 = 90
И мы получим прямоугольный треугольник, в котором все стороны обозначены…
…и отсюда мы уже можем вывести по теореме пифагора
c² = a² + b²
a² = a²2² + h² = a²4 + h²
Обе стороны умножим на 4, чтобы избавиться от 4 в дроби :
4a² = a² + 4h²
высоту оставляем одну слева и получаем:
4a² — a² = 4h² -> 4h² = 4a² — a² -> 4h² = 3a² -> h² = 3a²/4
И осталось извлечь квадратный корень из правой стороны…
h = √3a²/4
И далее получаем
Площадь равностороннего треугольника
Какая формула для площади равностороннего треугольника!?
Она звучит так:
Площадь равностороннего треугольника равна : корень из 3 деленное на 4, умноженное на сторону в квадрате:
Доказательство :
Доказательство очень простое !
Выше мы уже доказали, чему равна высота… возьмем одну сторону треугольника на высоту h.
Вторая сторона будет равна а/2
И далее нам нужно умножить высоту на сторону, поделив на 2. По правилу вычисления площади прямоугольного треугольника.
Мы получаем предварительный результат:
И поскольку у нас два таких треугольника, то правую сторону надо умножить на 2, две двойки сокращаются.
получаем :
И далее заменим высоту из выше пройденного пункта:
Радиус окружности, вписанной в равносторонний треугольник
Или вам может встретиться вторая формула вписанной окружности в равносторонний треугольник :
Почему встречаются две формулы радиуса вписанной окружности!?
Потому, что они выводятся разными путями, хоть они и не похожи — но это одинаковые значения.
Сможете доказать самостоятельно выше озвученный тезис?
Доказательство первой формулы радиус вписанной окружности равностороннего треугольника
Соотношение радиуса вписанной и описанной окружностей 1 : 2(на момент написания данной страницу мы еще это не прошли на сайте)
Отсюда мы получаем, что :
r =13 * h
Подставляем ранее выведенную высоту
r =13 * √32a =
√36a
Доказательство второй формулы радиус вписанной окружности равностороннего треугольника
Не будем здесь доказывать, что два треугольника «ABM» и «AOK» подобные и отличаются в своих размерах и других показателях на коэффициент «Х».
Из этого мы можем создать зависимость:
«r» — относится к отрезку «AK», как «BM» к «AM»
«AK» и «BM» равны одному и тому же а/2.
«AM» — это у нас высота — «h».
Далее мы можем записать эту зависимость как :
r : а2 =
а2 : h
Как вы знаете, что при делении подобные выражения ведут себя не так, как при умножении(скоро и про это напишем), поэтому заменим деление на умножение:
r * 2а =
а2 * 1h
Теперь мы можем избавиться в левой стороне от дроби 2/а, умножив две стороны на а/2 :
r = а2 * а2 * 1h
В последней дроби заменяем «h» на наши значение из пункта 2 и поскольку получается опять деление, меняем знак и переворачиваем дробь( см.: деление дробей)
r = а2 * а2 * 1h =
а2 * а2 * 2√3 * а
Парами сокращаем а и 2
r =
а2 * а2 * 2√3 * а
И в итоге получаем :
Радиус описанной окружности равностороннего треугольника
С описанной окружностью доказывается аналогично, лишь с той разницей, что радиус больше в два раза:
Или :
Задача : Вписанный квадрат в равносторонний треугольник.
Докажите, что вписанный квадрат в равносторонний треугольник делит одним углом, сторону треугольника пополам или не делит.
Решение задачи :
Мы знаем, что в равностороннем треугольнике все углы равны 60 :
180°/3 = 60°
И если мы посмотрим на треугольник
ABC
, то поскольку, все углы данного разностороннего треугольника равны 60°,
То стороны у этого треугольника будут равны между собой.
И одна из сторон совпадает со стороной квадрата.
Поэтому сторона «
AB
» равна стороне квадрата «
BC
» и стороне «
BE
«
Но «
BE
» не равна «
BD
«. Катет всегда будет меньше гипотенузы.
Если «
BE
» не равно «
BD
«, то «
BD
» не равно «
AB
«, что означает, что точка B не находится в середине отрезка «
AD
«.
Отсюда мы делаем вывод :
Угол вписанного квадрата не делит сторону равностороннего треугольника пополам!
Периметр равностороннего треугольника формула
Напишите «формулу периметра равностороннего треугольника»:
Обозначается периметр буквой P
Сторону обозначим через — а
Поскольку все стороны у равностороннего треугольника равны,
то периметр равностороннего треугольника будет равен :
3 умноженное на сторону а треугольника:
Формула периметра равностороннего треугольника
P = 3a
Конечно, можно еще представить данную формулу таким образом:
P = a + a + a
Но такого написания, я никогда не встречал.
Задача: найти высоту равностороннего если известна сторона вписанного квадрата.
Условие задачи :
Известна сторона «CB» вписанного квадрата, требуется найти высоту равностороннего треугольника «AM».
В пункте №6 и подпункте 4, мы вывели, что :
Сторона «AB» равна стороне квадрата «BC» и стороне «BE»
Поэтому, высота «AN» маленького треугольника будет равна :
И далее мы уже можем вывести высоту треугольника :
Задача: найти сторону равностороннего треугольника через площадь.
Условие задачи :
Известна площадь равностороннего треугольника «S», требуется узнать его сторону «а».
Я уже вывел площадь равностороннего треугольника в этом пункте, там же было доказательство!
Нам понадобится данная формула для решения выше озвученной задачи!
Нам всего-то навсего нужно выразить сторону «а» через «S»
S = √3 4*a²
Умножаем обе стороны на
4√3
Справа, в выражении дробь сократится, а слева появится данная дробь в перевернутом виде:
S* 4√3 = a²
Далее, чтобы получить сторону через площадь, нам нужно извлечь корень :
Преобразуем :
Преобразуем еще раз:
Ответ задачи : найти сторону равностороннего треугольника через площадь.
Сторона равностороннего треугольника равна корню из площади умноженное на 2, и деленное на корень 4 степени из 3.
Задача: если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний
Повстречал вот такой поисковый запрос :
«если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний«
Данную формулировку можно перефразировать и будет выглядеть совсем по другому:
Докажите, что радиус вписанной окружности равностороннего треугольника больше в два раза, радиуса описанной окружности
Вообще… эта одна из самых простых задач!
А почему, вы узнаете дальше.
Для доказательства данного утверждения нам понадобится :
Радиус вписанной окружности равностороннего треугольника, о котором я рассказывал здесь :
И второе — это радиус вписанной окружности равностороннего треугольника, о котором я рассказывал здесь : :
Далее — нужно разделить больший радиус на меньший:
Как вы наверное знаете, что при делении одной дроби н вторую существует правило, по которому вторую дробь нужно перевернуть и знак будет умножить…
После этого, смотрим, что можно сократить
Сокращаются квадратный корень из 3.
Сторона «а».
6 и 3, сокращаются только на 3. Сверху остается 2.
И вообще… из всех только и остается 2.
Т.е. вот мы и доказали, что :
Радиус вписанной окружности равностороннего треугольника больше в два раза, радиуса описанной окружности