Что такое емкостное сопротивление
Содержание
- 1 Определение
- 2 Принцип работы
- 3 Расчет
- 4 Характеристики элемента
- 5 Импеданс
- 6 Расчет
- 7 Применение
- 8 Измерение и проверка
- 8.1 Проверка
- 8.2 Замер
- 8.3 Измерение емкости
- 9 Заключение
- 10 Видео по теме
При проектировании электрический цепей, оборудования и электроприборов учитываются многие свойства проводников. Одним из важных свойств считается емкостное сопротивление.
В данной статье будет подробно описано — что такое емкостное сопротивление конденсатора. Так же будет приведена формула расчета такого параметра, описана работа конденсатора в цепи переменного тока и сферы применения ёмкостного сопротивления.
Определение
Сопротивлением называют физический эффект противодействия протеканию тока по любой электрической цепи. Этим свойством обладают все проводники электрического тока. Данная величина измеряется в Ом.
Емкостное электрическое сопротивление является величиной, благодаря которой можно понять, что в цепи присутствует конденсатор. Емкостные сопротивления конденсатора рассчитываются только для цепей переменного тока, без учета наличия в них резисторов.
Конденсатор обозначается на схеме буквой «С», а его ёмкостное сопротивление «Xc».
Принцип работы
Конденсатор с определенной ёмкостью работает по принципу периода, который состоит из заряда и разряда элемента. Период делится на 4 части:
- Первая часть предполагает рост напряжения. В этот момент сопротивление конденсатора минимально, а зарядный ток очень высокий.
- Во второй четверти происходит наполнение его ёмкости за счет зарядного тока.
- В третьей четверти конденсатор полностью заряжается, при этом происходит снижение тока вплоть до 0. ЭДС возрастает с эффектом смены своей направленности.
- В последней четверти происходит разряд элемента. На этом этапе ЭДС будет в пределах 0, а ток постепенно нарастать.
Все описанные процессы за один период определяют дальнейший фазный сдвиг на 90 градусов.
Природа возникновения емкостного сопротивления полностью зависит от нескольких факторов:
- Обязательно наличие конденсатора в цепи.
- По цепи должен течь только переменный ток.
- Сопротивление проводника должно быть меньше емкости конденсатора.
Все эти факторы помогают рассчитать наиболее правильное значение ёмкостных характеристик для наиболее эффективной работы электроцепи.
Расчет
Расчет электрического емкостного сопротивления цепи делается по формуле. Она состоит из следующих значений:
- «Xc» — является емкостным сопротивлением в Омах.
- «1» — период полного заряда и разряда элемента.
- «w» — круговая частота переменного тока с емкостью, рад/сек.
- «C» — емкость конденсатора, единицы измерения Фарад.
Сама формула при этом выглядит следующим образом:
При помощи этой формулы легко рассчитывается Xc. Для этого требуется просто умножить циклическую частоту переменного тока на известную величину емкости конденсатора. Далее необходимо будет один период разделить на полученное значение. Таким образом можно всегда найти сопротивление конденсатора в Ом.
Рассчитываться емкостное сопротивление может так же с помощью и другой формулы, которая приведена на рисунке ниже.
При расчетах по данной формуле прослеживаются следующие зависимости:
- Емкость конденсатора и частота тока всегда выше сопротивления.
- От величин емкости и частоты зависит скорость одного периода заряда/разряда конденсатора.
Также стоит учесть, что после подключения конденсатора в цепь постоянного тока, его сопротивление сильно увеличивается. Объясняется причина такого явления довольно просто — отсутствует частота протекания электричества.
Характеристики элемента
Для того чтобы понять, что такое емкостное сопротивление, необходимо разобраться с его основной характеристикой, которая называется емкостью. Емкостью называется накопительная способность элемента. Она заключается в накоплении определенной доли электрического тока за определённый промежуток времени. Единицей измерения этой величины является Фарад (Ф или F).
Элемент заряжается электричеством до определенного момента, после которого он начинает разряжаться и отдавать ток дальше по электроцепи. Время полного разряда напрямую зависит от величины сопротивления цепи. Чем выше это значение, тем меньше времени тратится на разрядку элемента. Для расчета ёмкостной характеристики используется следующее выражение:
Так же конденсаторы обладают рядом дополнительных характеристик. К ним относят:
- Общую удельную емкость. Является отношением массы диэлектрических пластин и емкостных параметров.
- Напряжение. Параметр определяется как рабочее напряжение, которое способен выдержать элемент.
- Температурная стойкость или стабильность. Это температурный параметр, который не влияет на изменение емкости.
- Изоляционное сопротивление. Является величиной точки утечки и саморазряда.
- Эквивалентная нагрузка. Значение, определяющее потери на выводе или контактах устройства.
- Абсорбция. Разность потенциалов в момент разряда до 0.
- Полярность. Параметр свойственен элементам, которые работают строго при подаче на обкладку потенциала определенного значения (плюс или минус).
- Индуктивность. Свойство конденсатора образовывать на контактах индуктивное сопротивление. Такое свойство может наделить элемента параметрами колебательного контура.
Все эти значения строго учитываются при проектировании цепей или схем электрического оборудования.
Импеданс
Кроме емкостного, конденсатор еще имеет общее сопротивление или импеданс. Данное значение определяется с учетом значений трех параметров: индуктивного, резистивного и емкостного сопротивления.
Для вычисления импеданса применяется следующая формула:
В данном выражении используются следующие сопротивления:
- xL — индуктивное;
- xC — емкостное;
- R — активное.
Активное сопротивление цепи появляется вследствие возникновения в ней ЭДС. Так как переменный ток по своей природе импульсный, то электромагнитный поток может довольно незначительно изменяться, а это приводит к сдвигу постоянного значения ЭДС.
Емкостные и индуктивные величины взаимосвязаны. По разнице между ними легко находят реактивную составляющую цепи.
Отсюда легко проследить, от чего зависит само реактивное сопротивление:
- Если реактивная величина больше 0, то устройство больше нагружено индуктивным значением.
- Если реактивное значение равно 0, то емкость не нагружается активным сопротивлением.
- Если реактивность меньше 0, то элемент имеет высокое емкостное сопротивление.
Активное сопротивление считается невосполнимой величиной. Она тратится на преобразование тока в иной вид энергии. Реактивная величина неизменна для актуальной цепи переменного тока.
Расчет
Узнав, по какой формуле делаются необходимые вычисления и поняв смысл емкостного сопротивления, можно заняться расчетом данной величины.
Например, сделаем расчет на основе следующих данных:
- Емкость конденсатора C=1мкФ;
- В цепи также имеется активное сопротивление R, которое равно 5 кОм;
- Индуктивное сопротивление цепи xL составляет 4.5 кОм;
- Частота переменного тока равна 50 Гц;
- Напряжение 50 вольт.
На основе этих данных необходимо будет найти сопротивление конденсатора.
Емкостное сопротивление определим следующим образом:
xC=1/(2πfC)=1/(2×3.14×50×1×10-6)=3184 Ом или округленно 3.2 кОм.
Для определения величины тока в этой цепи воспользуемся законом Ома:
I=U/xC=50/3184=0.0157 ампер или 15.7мА.
После этого определяются параметры общего сопротивления:
Z=(R²+(xL-xC)²)½=(5000²+(4500–3184)²)½=5170 Ом или 5.1 кОм.
По данным расчётам можно определить влияние емкостного элемента на электроцепь. Главное понимать, какие физические величины используются в данных формулах для выполнения правильных вычислений.
Применение
В электронных цепях очень часто конденсатор используется в качестве фильтрующего элемента. При этом инженеры учитывают способ подключения данного элемента:
- При параллельном соединении конденсатора с цепью, устройство способно задерживать ток высокой частоты. Такой фильтр работает по принципу зависимости сопротивления от частоты тока. Чем выше частота, тем ниже будет сопротивление.
- При последовательном включении фильтр уже отсеивает низкочастотные импульсы. Вторым свойством такого фильтра является возможность не пропускать постоянный ток.
Также большая доля использования таких устройств приходится на звуковые усилители. Конденсатор способен отделить переменный и постоянный ток, а значит работать в качестве усилителя низкой частоты. При этом подбираются элементы с наименьшей емкостью.
Так же устройства используются для блоков питания постоянного тока или стабилизаторов. Тут применяется свойство разделения постоянной и переменной составляющей. Например, разделение ее между потребителями с помощью отдельных выходов для постоянного и переменного тока. В таких устройствах конденсатор разряжается, если нагрузка на цепь увеличивается за счет подключения нового устройства. Тем самым общая пульсация в цепи сглаживается. При необходимости можно передать ток обоих значений по одному проводнику. Делается это следующим образом — контакты с постоянным напряжением подключают к выводу емкости для прямого контакта с переменным напряжением. Таким образом происходит фильтрация частоты, сглаживание импульсов и передача постоянного тока потребителю. Такая схема используется в антенных усилителях, которые подключаются к телевизорам.
Измерение и проверка
Измерить целостность конденсатора и его сопротивление можно при помощи мультиметра. Перед этим элемент обязательно необходимо отсоединить от цепи.
Проверка
Диагностика целостности конденсатора начинается с визуально осмотра его состояния. Любые трещины, вздутия или деформации корпуса можно считать неисправностью элемента. Если визуальный осмотр не дал никаких результатов, то элемент проверяется на пробой при помощи тестера.
Делается такая проверка следующим образом:
- Элемент необходимо выпаять из схемы, а его контактные выводы замкнуть металлическим предметом для разрядки.
- Мультиметр перемести в режим замера сопротивления.
- Измерительные щупы соединить с контактами устройства.
- Сопротивление исправного элемента будет измеряться бесконечным значением, которое будет превышать значение сопротивления утечки. Величина этой утечки при этом составляет 2 кОм.
Если показания меньше этого значения, значит элемент неисправен и пробит.
Замер
Замерить сопротивление можно так же с помощью мультиметра. Его надо будет перевести в режим измерения сопротивлений более 100 кОм. Далее необходимо соединить щупы прибора с контактами устройства. Некоторое время потребуется на полную зарядку элемента. После этого он покажет конечный результат, который не должен быть выше 100 кОм. Если этот порог преодолен, то можно сделать однозначный вывод о неисправности элемента.
Измерение емкости
Для замера емкости потребуется тестер с режимом СX. Если такого режима нет, проверить элемент будет невозможно. Далее требуется:
- Полностью разрядить конденсатор.
- На мультиметре выбирается режим СX.
- Измерительные щупы соединить с контактными выводами устройства, строго соблюдая полярность.
- Прибор должен показать величину больше 1, но при этом ее значение должно быть в пределах тех значений, которые указаны на корпусе детали. Если значение равняется 0 или находится за пределами указанных значений, то конденсатор можно признать неисправным.
Полученные мультиметром данные также можно считать ёмкостным значением, так как в момент проверки элемент проходит зарядку током.
Заключение
Емкостным сопротивлением обладают все цепи, в которых задействованы конденсаторы. Зная, какой по параметрам элемент включен в данную цепь, можно легко рассчитать его емкостное влияние на цепь, используя представленные в статье формулы для расчётов.
Видео по теме
Колебательный контур: принцип работы, виды контуров, параметры и характеристики
Не затухающие колебания.
Принцип действия колебательного контура
Заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при
протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.
Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в
обратной полярности. Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном
колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.
Важная характеристика LC-контура – добротность Q.
Добротность определяет амплитуду резонанса и показывает, во сколько раз
запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.
Собственная частота колебательного контура
Частота свободных колебаний тока и напряжения, возникающих в колебательном контуре.
T = 2*п*(L*C)1/2. T — период электромагнитных колебаний, L и C — соответственно, индуктивность катушки колебательного контура и ёмкость элементов контура, п — число
пи.
Незатухающие колебания
создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Такие устройства называются
автоколебательными системами.
Любая автоколебательная система состоит из следующих четырех частей
1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными
порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.
Генератор на транзисторе — пример автоколебательной системы. На рисунке ниже приведена упрощенная схема такого генератора, в котором роль «клапана» играет транзистор. Колебательный контур
подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой
обратной связи.
При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой
амплитуды.
Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода
периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если
катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те
моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию
контура, и колебания в контуре не затухают.
Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается,
и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю.
Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура — это фазовое условие самовозбуждения
генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре — это амплитудное условие самовозбуждения.
Частота автоколебаний равна частоте свободных колебаний в контуре
и зависит от его параметров.
Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.
Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы — напряжением источника, расстоянием
между Lсв и L, сопротивлением контура.
Колебательный контур
называется
идеальным, если он состоит из катушки
и емкости и в нем нет сопротивления
потерь.
Рассмотрим
физические процессы в следующей цепи:
1 Ключ стоит в положении 1. Конденсатор
начинает заряжаться, от источника
напряжения и в нем накапливается энергия
электрического поля,
т.е.конденсатор становится источником
электрической энергии.
2. Ключ в положении 2. Конденсатор начнет
разряжаться. Электрическая энергия,
запасенная в конденсаторе переходит в
энергию магнитного поля катушки.
Ток в цепи достигает максимального
значения(точка 1). Напряжение на обкладках
конденсатора уменьшается до нуля.
В период от точки 1 до точки 2 ток в контуре
уменьшается до нуля, но как только он
начинает уменьшатся, то уменьшается
магнитное поле катушки и в катушке
индуцируется ЭДС самоиндукции, который
противодействует уменьшению тока,
поэтому он уменьшается до нуля не
скачкообразно, а плавно. Так как возникает
ЭДС самоиндукции, то катушка становится
источником энергии. От этой ЭДС конденсатор
начинает заряжаться, но с обратной
полярностью (напряжение конденсатора
отрицательное) (в точке 2 конденсатор
вновь заряжается).
Вывод:
в цепи LC происходит
непрерывное колебание энергии между
электрическим и магнитным полями,
поэтому такая цепь называется колебательным
контуром.
Получившиеся колебания называются
свободными
илисобственными
,
поскольку они происходят без помощи
постороннего источника электрической
энергии, внесенной ранее в контур (в
электрическое поле конденсатора). Так
как емкость и индуктивность идеальны
(нет сопротивления потерь) и энергия из
цепи не уходит, амплитуда колебаний с
течением времени не меняется и колебания
будут незатухающими
.
Определим угловую частоту свободных
колебаний:
Используем равенство энергий электрического
и магнитного полей
Где ώ угловая частота свободных
колебаний.
[
ώ
]=1/с
f
0=
ώ
/2π
[Гц].
Период свободных колебаний Т0=1/f
.
Частоту свободных колебаний называют
частотой собственных колебаний контура.
Из выражения: ώ²LC=1
получимώL=1/Cώ
, следовательно, при токе в контуре с
частотой свободных колебаний индуктивное
сопротивление равно емкостному
сопротивлению.
Характеристические сопротивления.
Индуктивное или емкостное сопротивление
в колебательном контуре при частоте
свободных колебаний называется
характеристическим сопротивлением.
Характеристическое сопротивление
вычисляется по формулам:
5.2 Реальный колебательный контур
Реальный колебательный контур обладает
активным сопротивлением, поэтому при
воздействии в контуре свободных колебаний
энергия предварительно заряженного
конденсатора постепенно тратится,
преобразуясь в тепловую.
Свободные колебания в контуре являются
затухающими, так как в каждый период
энергия уменьшается и амплитуда колебаний
в каждый период будет уменьшаться.
Рисунок — реальный колебательный контур.
Угловая частота свободных колебаний в
реальном колебательном контуре:
Если R=2… , то угловая частота равна нулю,
следовательно свободные колебания в
контуре не возникнут.
Таким образом колебательным контуром
называется электрическая цепь состоящая
из индуктивности и емкости и обладающая
малым активным сопротивлением, меньшим
удвоенного характеристического
сопротивления, что обеспечивает обмен
энергией между индуктивностью и емкостью.
В реальном колебательном контуре
свободные колебания затухают тем
быстрее, чем больше активное сопротивление.
Для характеристики интенсивности
затухания свободных колебаний используется
понятие «затухание контура» — отношение
активного сопротивления к характеристическому.
На практике используют величину, обратную
затуханию – добротность контура.
Для получения незатухающих колебаний
в реальном колебательном контуре
необходимо в течение каждого периода
колебаний пополнять электрическую
энергию на активном сопротивлении
контура в такт с частотой собственных
колебаний. Это осуществляется с помощью
генератора.
Если подключить колебательный контур
к генератору переменного тока, частота
которого отличается от частоты свободных
колебаний контура, то в цепи протекает
ток с частотой равной частоте напряжения
генератора. Эти колебания называют
вынужденным.
Если частота генератора отличается от
собственной частоты контура, то такой
колебательный контур является
ненастроенным относительно частоты
внешнего воздействия, если же частоты
совпадают, то настроенным.
Задача:
Определить индуктивность, угловую частоту контура, характеристическое
сопротивление, если емкость колебательного
контура 100 пФ, частота свободных колебаний
1,59 МГц.
Решение:
Тестовые задания:
Тема занятия 8: РЕЗОНАНС НАПРЯЖЕНИЙ
Резонанс напряжений – явление возрастания
напряжений на реактивных элементах,
превышающих напряжение на зажимах цепи
при максимальном токе в цепи, которое
совпадает по фазе с входным напряжением.
Условия возникновения резонанса:
Последовательное соединение LиCс генератором переменного
тока;
Частота генератора должна быть равна
частоте собственных колебаний контура, при этом характеристические сопротивления
равны;
Сопротивление должно быть меньше, чем
2ρ, так как только в этом случае в цепи
возникнут свободные колебания,
поддерживаемые внешним источником.
Полное сопротивление цепи:
так как равны характеристические
сопротивления. Следовательно, при
резонансе цепь носит чисто активный
характер, значит, входное напряжение,
и ток в момент резонанса совпадают по
фазе. Ток принимает максимальное
значение.
При максимальном значении тока напряжение
на участках L и C будут большими и равными
между собой.
Напряжение на зажимах цепи:
Рассмотрим следующие соотношения:
,
следовательно
Q
–
добротность
контура –при резонансе напряжения
показывает, во сколько раз напряжение
на реактивных элементах больше входного
напряжения генератора, питающего цепь.
При резонансе коэффициент передачи
последовательного колебательного
контура
резонанса.
Пример:
Uc=Ul=QU
=100В,
то есть напряжение на зажимах меньше
напряжений на емкости и индуктивности.
Это явление называется резонансом
напряжений
При резонансе, коэффициент передачи
равен добротности.
Построим векторную диаграмму напряжения
Напряжение на емкости равно напряжению
на индуктивности, следовательно
напряжение на сопротивлении равно
напряжению на зажимах и совпадает по
фазе с током.
Рассмотрим энергетический процесс в
колебательном контуре:
В цепи имеется обмен энергии между
электрическим полем конденсатора и
магнитным полем катушки. К генератору
энергия катушки не возвращается. От
генератора в цепь поступает такое
количество энергии, которое тратится
на резисторе. Это необходимо для того,
чтобы в контуре наблюдались незатухающие
колебания. Мощность в цепи только
активная.
Докажем это математически:
,
полная мощность цепи, которая равна
активной мощности.
Реактивная мощность.
8.1 Резонансная частота. Расстройка.
Lώ=l/ώC
, следовательно
,
угловая резонансная частота.
Из формулы видно, что резонанс наступает,
если частота питающего генератора равна
собственным колебаниям контура.
При работе с колебательным контуром
необходимо знать, совпадает ли частота
генератора и частота собственных
колебаний контура. Если частоты совпадают,
то контур остается
настроенным в резонанс, если не совпадает
– то в контуреприсутствует
расстройка.
Настроить колебательный контур в
резонанс можно тремя способами:
1 Изменять частоту генератора, при
значениях емкости и индуктивности
const, то есть изменяя частоту генератора
мы подстраиваем эту частоту под частоту
колебательного контура
2 Изменять индуктивность катушки, при
частоте питания и емкости const;
3 Изменять емкость конденсатора, при
частоте питания и индуктивности const.
Во втором и третьем способе изменяя
частоту собственных колебаний контура,
подстраиваем ее под частоту генератора.
При ненастроенном контуре частота
генератора и контура не равны, то есть
присутствует расстройка.
Расстройка – отклонение частоты от
резонансной частоты.
Существует три вида расстройки
:
Абсолютная – разность между данной
частотой и резонансной
Обобщенная – отношение реактивного
сопротивления к активному:
Относительная – отношение абсолютной
расстройки к резонансной частоте:
При резонансе все расстройки равны
нулю
, если частота генератора меньше
частоты контура, то расстройка считается
отрицательной,
Если больше – положительной.
Таким образом добротность характеризует
качество контура, а обобщенная расстройка-
удаленность от резонансной частоты.
8.2 Построение зависимостейX
,
X
L
,
X
C
отf
.
Задачи:
Сопротивление контура 15 Ом, индуктивность
636 мкГн, Емкость 600 пФ, напряжение питающей
сети 1,8 В. Найти собственную частоту
контура, затухание контура,
характеристическое сопротивление,
ток, активную мощность, добротность,
напряжение на зажимах контура.
Решение:
Напряжение на зажимах генератора 1 В,
частота питающей сети 1 МГц, добротность
100, емкость 100 пФ. Найти: затухание,
характеристическое сопротивление,
активное сопротивление, индуктивность,
частоту контура, ток, мощность, напряжения
на емкости и индуктивности.
Решение:
Тестовые задания:
Тема занятия 9 :
Входные и передаточные
АЧХ и ФЧХ последовательного колебательного
контура.
9.1 Входные АЧХ и ФЧХ.
В последовательном колебательном
контуре:
R – активное сопротивление;
X – реактивное сопротивление.
Колебательный контур
— электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.
Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.
Конденсатор C
– реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
— Катушка индуктивности L
– реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.
Свободные электрические колебания в параллельном контуре.
Основные свойства индуктивности:
Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
— Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.
Период свободных колебаний контура LC
можно описать следующим образом:
Если конденсатор ёмкостью C
заряжен до напряжения U
, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L
, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.
Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке,
что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t
1 ,
которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t
1 = .
По истечении времени t
1 , когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, E C
будет равна E L
.
Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.
Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС,
которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора
индукционным током. Уменьшаясь от максимума до нуля в течении времени t
2 = t
1 ,
он перезарядит конденсатор от нуля до максимального отрицательного значения (-U
).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.
Описанные интервалы t
1 и t
2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление.
Магнитная энергия вновь будет накапливаться в катушке в течении времени t
3 , сменив полярность полюсов.
В течении заключительного этапа колебания (t
4),
накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U
(в случае отсутствия потерь) и процесс колебания повторится.
В реальности, при наличии потерь энергии на активном сопротивлении проводников,
фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t
1 + t
2 + t
3 + t
4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T
Частота свободных колебаний является частотой резонанса контура,
на которой реактивное сопротивление индуктивности X L =2πfL
равно реактивному сопротивлению ёмкости X C =1/(2πfC)
.
Расчёт частоты резонанса LC
-контура:
Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.
Постановка задачи: Мы уже много знаем о механических колебаниях: свободные и вынужденные колебания, автоколебания, резонанс и т.д. Приступаем к изучению электрических колебаний. Тема сегодняшнего урока: получение свободных электромагнитных колебаний.
Вспомним вначале: Каким условиям должна соответствовать колебательная система, система, в которой могут возникать свободные колебания. Ответ: в колебательной системе должна возникать возвращающая сила и происходить превращение энергии из одного вида в другой.
(Разбор нового материала по презентации с подробным пояснением всех процессов и записью в тетради первых двух четвертей периода, 3 и 4-ые четверти описать дома, по образцу).
Колебательный контур – это электрическая цепь, в которой можно получить свободные электромагнитные колебания. К.К. состоит всего из двух приборов: катушки индуктивностью L и конденсатора электроёмкостью С. Идеальный колебательный контур не имеет сопротивления.
Чтобы сообщить энергию в К.К., т.е. вывести его из положения равновесия, нужно временно разомкнуть его цепь и поставить ключ с двумя положениями. Когда ключ замкнут на источник тока, то конденсатор заряжается до максимального заряда. Этим подают в К.К. энергию в виде энергии электрического поля. Когда ключ замкнут в правое положение, то источник тока отключен, К.К. предоставлен самому себе.
Такое состояние К.К. соответствует положению математического маятника в крайнем правом положении, когда его вывели из состояния покоя. Колебательный контур выведен из положения равновесия Заряд конденсатора – максимален и энергия заряженного конденсатора – энергия электрического поля максимальна. Будем рассматривать весь процесс, который происходит в нём по четвертям периода.
В 1-ый момент конденсатор заряжен до максимального заряда (нижняя обкладка заряжена положительно), энергия в нём сосредоточена в виде энергии электрического поля. Конденсатор замкнут сам на себя, и он начинает разряжаться. Положительные заряды по закону Кулона притягиваются к отрицательным, и возникает ток разрядки, направленный против часовой стрелки. Если бы на пути тока не было бы катушки индуктивности, то всё произошло бы мгновенно: конденсатор бы просто разрядился. Накопленные заряды компенсировали бы друг друга, энергия электрическая превратилась бы в тепловую. Но в катушке возникает магнитное поле, направление которого можно определить по правилу буравчика – «вверх». Магнитное поле — растущее и возникает явление самоиндукции, которое препятствует росту тока в нём. Ток растёт не мгновенно, а постепенно, в течение всей 1-ой четверти периода. За это время ток будет расти до тех пор, пока его поддерживает конденсатор. Как только конденсатор разрядится, ток больше не растёт, он к этому моменту достигнет максимального значения. Конденсатор разрядился, заряд равен 0, значит и энергия электрического поля равна 0. Но в катушке течёт максимальный ток, вокруг катушки существует магнитное поле, значит, произошло превращение энергии электрического поля в энергию магнитного поля. К концу 1-ой четверти периода в К.К.ток максимальный, энергия сосредоточена в катушке в виде энергии магнитного поля. Это соответствует, тому положению маятника, когда он проходит положение равновесия.
В начале 2-ой четверти периода, конденсатор разряжен, а ток достиг максимального значения и он должен был бы мгновенно исчезнуть, ведь конденсатор его не поддерживает. И ток действительно начинает резко убывать, но он течёт по катушке, и в ней возникает явление самоиндукции, которое препятствует любому изменению магнитного поля, вызывающего это явление. ЭДС самоиндукции поддерживает исчезающее магнитное поле, индукционный ток имеет то же направление, что и существующий. В К.К. ток течёт против часовой стрелки – в пустой конденсатор. В конденсаторе накапливается электрический заряд — на верхней обкладке – положительный заряд. Ток течёт до тех пор, пока его поддерживает магнитное поле, до конца 2-ой четверти периода. Конденсатор зарядится до максимального заряда (если не произойдёт утечки энергии), но противоположного направления. Говорят, конденсатор перезарядился. К концу 2-ой четверти периода ток исчезает, значит, энергия магнитного поля равна 0.Конденсатор перезарядился, его заряд равен (– максимальному). Энергия сосредоточена в виде энергии электрического поля. В течение этой четверти произошло превращение энергии магнитного поля в энергию электрического поля. Состояние колебательного контура соответствует такому положению маятника, при котором он отклоняется в крайнее левое положение.
В 3-ей четверти периода происходит всё также, что и в 1-ой четверти, только противоположного направления. Конденсатор начинает разряжаться. Ток разрядки растёт постепенно, в течение всей четверти, т.к. быстрому росту его препятствует явление самоиндукции. Ток растёт до максимальной величины, пока конденсатор не разрядится. К концу 3-ей четверти энергия электрического поля превратится в энергию магнитного поля, полностью, если не будет утечки. Это соответствует такому положению маятника, когда он снова проходит положение равновесия, но в противоположном направлении.
В 4-ой четверти периода происходит всё так же, как и во 2-ой четверти, только в противоположном направлении. Ток, поддерживаемый магнитным полем, постепенно убывает, поддерживаемый ЭДС самоиндукции и перезаряжает конденсатор, т.е. возвращает его к первоначальному положению. Энергия магнитного поля превращается в энергию электрического поля. Что соответствует возвращению математического маятника в первоначальное положение.
Анализ рассмотренного материала:
1. Можно ли колебательный контур рассматривать, как колебательную систему? Ответ: 1. В колебательном контуре происходит превращение энергии электрического поля в энергию магнитного поля и наоборот. 2. Явление самоиндукции играет роль возвращающей силы. Поэтому колебательный контур рассматривать, как колебательную систему. 3. Колебания в К.К. можно считать свободными.
2. Можно ли колебания в К.К. рассматривать, как гармонические? Анализируем изменение величины и знака заряда на обкладках конденсатора и мгновенного значения тока и его направления в цепи.
На графике видно:
3. Что в колебательном контуре колеблется? Какие физические тела совершают колебательные движения? Ответ: колеблются электроны, они совершают свободные колебания.
4. Какие физические величины изменяются при работе колебательного контура? Ответ: изменяются сила тока в цепи, заряд в конденсаторе, напряжение на обкладках конденсатора, энергия электрического поля и энергия магнитного поля.
5. Период колебаний в колебательном контуре зависит только от индуктивности катушки L и ёмкости конденсатора C. Формула Томсона: Т = 2π можно сравнить и с формулами для механических колебаний.
Электрический
колебательный контур это система для
возбуждения и поддержания электромагнитных
колебаний. В простейшем виде это цепь,
состоящая из включенных последовательно
катушки индуктивностью L,
конденсатора ёмкостью С и резистора
сопротивлением R
(рис.129). Когда переключатель П установлен
в положении 1, происходит зарядка
конденсатора С до напряжения U
т
.
При этом между пластинами конденсатора
образуется электрическое поле,
максимальная энергия которого равна
При переводе
переключателя в положение 2 контур
замыкается и в нём протекают следующие
процессы. Конденсатор начинает разряжаться
и по цепи пойдёт ток i
,
величина
которого возрастает от нуля до
максимального значения
,
а затем снова уменьшается до нуля. Так
как в цепи протекает переменный по
величине ток, то в катушке индуцируется
ЭДС, которая препятствует разрядке
конденсатора. Поэтому процесс разрядки
конденсатора происходит не мгновенно,
а постепенно. В результате появления
тока в катушке возникает магнитное
поле, энергия которогодостигает максимального значения при
токе равном.
Максимальная энергия магнитного поля
будет равна
После достижения
максимального значения ток в контуре
начнёт убывать. При этом будет происходить
перезаряда конденсатора, энергия
магнитного поля в катушке будет убывать,
а энергия электрического поля в
конденсаторе возрастать. По достижении
максимального значения. Процесс начнёт
повторяться и в контуре происходят
колебания электрического и магнитного
полей. Если считать, что сопротивление
(т.е. энергия на нагревание не расходуется),
то по закону сохранения энергии полная
энергияW
остаётся постоянной
и
;
.
Контур, в котором
не происходит потерь энергии, называется
идеальным. Напряжение и ток в контуре
изменяются по гармоническому закону
;
где
— круговая (циклическая) частота колебаний
.
Круговая частота
связана с частотой колебаний
и периодам колебаний Т соотношении.
На
рис. 130 представлены графики изменения
напряженияU
и тока I
в катушке идеального колебательного
контура. Видно, что сила тока отстаёт
по фазе от напряжения на
.
;
;
— формула Томсона.
В том случае, когда
сопротивление
,
формула Томсона принимает вид
.
Основы теории Максвелла
Теорией Максвелла
называется теория единого электромагнитного
поля, создаваемого произвольной системой
зарядов и токов. В теории решается
основная задача электродинамики – по
заданному распределению зарядов и
токов отыскиваются характеристики
создаваемых ими электрического и
магнитного полей. Теория Максвелла
является обобщением важнейших законов,
описывающих электрические и
электромагнитные явления – теоремы
Остроградского-Гаусса для электрического
и магнитного полей, закона полного тока,
закона электромагнитной индукции и
теоремы о циркуляции вектора напряженности
электрического поля. Теория Максвелла
носит феноменологический характер,
т.е. в ней не рассматриваются внутренний
механизм явлений, происходящих в среде
и вызывающих появление электрического
и магнитного полей. В теории Максвелла
среда описывается с помощью трех
характеристик – диэлектрической ε
и магнитной μ проницаемостями среды и
удельной электропроводностью γ.
Резонанс токов в параллельном колебательном контуре
Рассмотрим случай параллельного соединения колебательного контура с источником тока (рис. 1) и посмотрим, каково будет сопротивление контура для токов различных частот в этом случае. Если частота тока невелика (ниже резонансной), то почти весь ток пойдет по наиболее легкому для него пути — через индуктивную ветвь; сопротивление контура при низких частотах будет небольшим по величине и индуктивным по своему характеру.
Для токов высоких частот (выше резонансной) более легким путем будет путь через емкостную ветвь, и, следовательно, сопротивление контура будет также небольшим по величине, но емкостным по характеру.
При резонансной частоте, когда емкостное сопротивление равно индуктивному, путь для тока будет одинаково трудным через обе ветви. Мы знаем, что при параллельном соединении двух равных сопротивлений общее сопротивление равняется половине любого из них. Поэтому, казалось бы, что сопротивление контура при резонансе должно равняться половине одного из реактивных сопротивлений. Однако, не следует забывать, что мы имеет дело, с сопротивлениями, хотя и одинаковыми по величине, но имеющими принципиально различный характер. Это различие проявляется в том, что токи в индуктивной и емкостной ветвях контура сдвинуты по фазе друг относительно друга на 180°. Отсюда непосредственно следует, что в неразветвленной части цепи всегда протекает не суммарный, а разностный ток (рис. 1).
Рисунок 1. Токи при параллельном резонансе. В неразвлетвленной части цепи протекает не скммарный, а разностный ток.
Поэтому при резонансе, когда токи в емкостной и индуктивной ветвях равны между собой, ток в неразветвленной части цепи будет равен нулю, какое бы напряжение мы ни прилагали к контуру. При резонансе между точками АВ цепь будет казаться разорванной, т. е. сопротивление ее между этими точками будет бесконечно велико, а отнюдь не будет равным половине одного из реактивных сопротивлений. Практически бесконечно большого сопротивления контура при резонансе не бывает, так как из-за наличия активного сопротивления в контуре (сопротивление провода катушки) сдвиг фаз токов никогда не может быть равным точно 180°.
Однако активное сопротивление катушки обычно бывает много меньше ее индуктивного сопротивления, и поэтому сопротивление колебательного контура при резонансе может достигать очень больших величин.
Сопротивление колебательного контура при параллельном резонансе равно:
где L выражено в гн, С—в ф, RL—в ом.
Полное сопротивление колебательного контура при резонансе является чисто активным в силу того обстоятельства, что индуктивное и емкостное сопротивления взаимно компенсируются.
Кривые изменения полного сопротивления колебательного контура между точками АВ при изменении частоты тока приведены на рис. 2,б.
Рисунок 2. Резонанс токов. а) — схема и обозначения; б) — график полного сопротивления.
При параллельном резонансе токи ,в ветвях контура достигают наибольшей величины; поэтому параллельный резонанс называется резонансом токов.
Явление резонанса имеет огромнейшее значение в радиотехнике. На земном шаре имеется большое количество передающих радиостанций. Передачи всех этих радиостанций распространяются в эфипе и все одновременно принимаются приемной антенной. Нетрудно представить себе, каким получилось бы нагромождение друг на друга передач, если бы мы не могли выделить из этого хаоса только одну нужную нам. Вот тут-то на помощь приходит явление резонанса. Передающие радиостанции излучают в пространство электромагнитную энергию на различных частотах, мы же, настраивая контуры нашего приемника в резонанс с той или иной частотой, тем самым выбираем нужную нам передачу.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
- Индуктивное сопротивление катушки
- Катушка индуктивности в цепи переменного тока
- Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.
- Активное сопротивление цепи переменного тока
- Полное сопротивление цепи переменного тока
- Явление резонанса
- Закон Ома для переменного тока
- Резонанс напряжений в последовательном колебательном контуре
- Пульсирующий ток
- Несинусоидальный ток
Добавить комментарий
Резонанс в линейных системах с одной степенью свободы
К этой группе можно причислить рассмотренные последовательные и параллельные электрические схемы. Механический пример – пружина с грузом, который способен перемещаться только по вертикальной прямой. Исключены порывы ветра, вибрации, другие «паразитные» внешние воздействия. В подобных условиях можно применять типовые формулы для систем линейного типа.
Отмеченная выше добротность является определяющим фактором для избирательности по частоте. Сужение ширины резонансного диапазона помогает улучшить характеристики приемных и передающих устройств. Кроме экономного расходования электроэнергии, при правильном расчете схемы существенно улучшается помехозащищенность.
Амплитуда резонанса
Чтобы найти величину амплитуды в резонансном случае, нужно подставить формулу (1) в формулу отклонения при вынужденных колебаниях.
Если
Ymax.рез | резонансная амплитуда колебаний системы, | метр |
Fmax.возм | максимальное значение возмущающей силы, | Ньютон |
m | масса колебательной системы, | кг |
ωрез | резонансная частота, при которой амплитуда максимальна, | радиан/сек |
ω0 | частота собственных незатухающих колебаний системы, | радиан/сек |
ω | частота колебаний системы с затуханием, | радиан/сек |
β | коэффициентом вязкого трения, | кг/сек |
δ | коэффициентом затухания, | радиан/сек |
то имеем
[ Y_m = frac[-2.65] { F_{max.возм} } { β sqrt[-1.25]{ ω_{0}^2 — frac[-1.2]{β^2}{4m^2} } } ]
[ Y_m = frac{F_{max.возм}}{βω} ]
[ Y_m = frac{F_{max.возм}}{2δmω} ]
Согласно формуле, разность фаз α
также зависит от частоты возмущающей силы. Параметром служит коэффициент
δ
.
Независимо от величины затухания при ω = ω0
разность фаз составляет
[ α = 90° ]
Резонанс играет большую роль в технике и в повседневной жизни. В большинстве механических устройств под действием внешних периодических сил могут возникать колебания. При резонансе происходит нарастание амплитуды колебаний, и это может привести к разрушениям («резонансная катастрофа»). В случае вращательного движения резонансную частоту называют критическим числом оборотов.
Чтобы предотвратить возникновение колебаний со слишком большой амплитудой следует: — по возможности устранять периодически действующие силы, — добиваться большой разности собственной частоты и частоты возбуждающей силы, — добиваться того, чтобы частота принимала резонансное значение лишь на время, меньшее одного периода колебаний, — применять демпфирующие элементы.
Параметры резонанса
Значение амплитудно-частотных характеристик может изменяться в очень широких пределах. В технике для осуществления беспроводной связи явление этого типа принято выражать в децибелах (дБ). Колебательные контуры также могут иметь амплитудно-частотные характеристики. Этот параметр представляет собой отношение зависимости реакционной амплитуды и входящего воздействия.
Важно! Взаимосвязь фаз колебаний с частотой принято называть фазочастотной характеристикой. Проходящий через систему электрический сигнал также может быть точно определен и зафиксирован
Прежде всего, отображаются такие характеристики, как напряжение и частота
Проходящий через систему электрический сигнал также может быть точно определен и зафиксирован. Прежде всего, отображаются такие характеристики, как напряжение и частота.
В чем заключается явление резонанса напряжений
Как известно, в сети переменного тока домашней сети разность потенциалов изменяется с частотой 50 Гц. То есть, каждую секунду производится 50 полных колебаний. Такое явление несложно замерить даже бытовым частотомером, который определить точное значение этого параметра именно по эффекту электромагнитного поля, образованного вокруг проводника с током. Катушка с металлическим сердечником, которая устанавливается в измерительный прибор, будет колебаться с частотой электромагнитного поля домашней электросети.
Таким образом, вырабатывается переменное напряжение, которое затем может быть увеличено, а его частота подсчитана микропроцессорным либо аналоговым устройством, после чего информация может быть выведена на экран.
Разобравшись, в чем заключается явление резонанса электрического напряжения, необходимо стараться всячески избегать этого явления, когда одновременные колебательные движения полей являются нежелательными. Если же в каком-либо устройстве такой эффект применяется с целью получения определенных физических явлений, то схема должна быть изготовлена с высокой добротностью, чтобы на поддержание процесса тратилось как можно меньше энергии (таким образом повышается КПД устройства).
Формула индуктивности
Расчет резонанса колебательного контура производится на основании значений емкости и индуктивности. Как правило, емкость конденсатора является постоянной величиной, за исключением случаев использования переменных устройств в перестраиваемых электроцепях. Коэффициент самоиндукции катушки зависит от многих факторов:
- Количество и расположение витков обмотки;
- Наличие или отсутствие сердечника;
- Материал сердечника.
Общей формулы для определения индуктивности катушки колебательного контура не существует. Для расчетов используют формулы, соответствующие форме катушки. К сожалению, все формулы определения качественной величины электрической цепи с подсоединённой к ней катушкой индуктивности позволяют производить только приблизительные расчеты.
Вам это будет интересно Особенности электрических мощностей
Важно! Для того, чтобы получить катушку с заданными параметрами, приходится принимать дополнительные меры, например, производить подстройку коэффициента самоиндукции путем изменения длины сердечника или корректировки расстояния между витками в однорядных катушках.
Емкость и индуктивность в цепи переменного тока
Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
Реактивное сопротивление катушки индуктивности определяется по формуле:
Векторная диаграмма:
Реактивное сопротивление конденсатора:
Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
Векторная диаграмма:
Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Резонанс и добротность
Резонанс в физике часто связан с добротностью. Что это такое? Под добротностью понимается степень отзывчивости колебательной системы, уровень интенсивности ее отклика. На все том же примере с качелями можно представить, что есть две качели, одни из них старые и ржавые, а вторые новые, недавно построенные. Чтобы раскачать старые и ржавые качели нужно приложить намного больше усилий, нежели новые, то есть добротность у старых качелей (яко колебательной системы) будет в разы ниже, чем у качелей новых.
Логично, что разные показатели добротности приводят к разным последствиям:
- При низкой степени добротности колебательная система не будет сохранять долгое время вынужденные колебания, и очень скоро возвратится к естественным колебаниям.
- В определенных ситуациях высокая добротность может быть опасной, так как сильный резонанс и многократное увеличение амплитуды колебаний приведет к разрушению физического тела.
Кварцевые резонаторы и электромеханические фильтры
Это наиболее распространённые резонаторы, включающие в себя кристаллы кварца. Кристалл вырезается в форме параллелепипеда. На полученную пластину в вакууме напыляют электроды. Способы колебаний такого элемента зависят от следующих позиций:
- вида пластины из кварца;
- конструктивного исполнения электродов;
- метода присоединения электродов.
На величину собственной частоты кварцевого резонатора влияют: форма, размеры, модуль упругости и плотность пьезоэлектрического элемента, а также особенности крепления детали.
Электромеханические фильтры (ЭМФ) выполняют ступенчатое преобразование. На первой ступени происходит превращение электрических пульсаций в колебания механической природы. Вторая ступень их фильтрует, третья – снова возвращает в электрическую форму.
Внимание! Вторая ступень – это механический резонатор, он работает как фильтр. Изготавливается из ферритов с магнитострикционными свойствами, кварца, сплавов железа с никелем, пьезокерамических элементов и иных компонентов
Применение на практике
Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.
Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.
Содержание
- Последовательный колебательный контур
- Параллельный колебательный контур
- Видео по теме: Колебательный контур
Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный.
Основная радиоэлементная база колебательного контура: Конденсатор, источник питания и катушка индуктивности.
Последовательный колебательный контур
Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / ХΣ , где ХΣ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).
Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:
Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:
В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки XL и конденсатора ХC от циклической (круговой) частоты ω, а также график зависимости от частоты ω их алгебраической суммы ХΣ. График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.
Из графика видно, что на некоторой частоте ω=ωр , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:
На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Полное сопротивление (импеданс) такой цепи определяется: Z = √(R2+XΣ2), где XΣ = ω L-1/ωC. На резонансной частоте, когда величины реактивных сопротивлений катушки XL = ωL и конденсатора ХС= 1/ωС равны по модулю, величина XΣ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R. При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение UL = UС = IXL = IXС.
На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений XL и XС.Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.
Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q. Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = ХL = ХC при ω =ωр . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C). Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) WL = (LI2)/2 и конденсатором (энергия электрического поля) WC=(CU2)/2. Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».
Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R.
Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:
где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.
Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R, где R-сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I2R. Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.
Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.
Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.
При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).
Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.
Параллельный колебательный контур
В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/ωL, конденсатора ВC = -ωC, а также суммарной проводимости ВΣ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.
Если построить зависимость реактивного сопротивления контура от частоты XΣ = 1/BΣ, эта кривая, изображённая на следующем рисунке, в точке ω = ωр будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.
Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:
где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.
Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление Rэкв = Q·ρ. На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).
В процессе работы контура, дважды за период колебаний, происходит энергетический обмен между катушкой и конденсатором (смотри рисунок). Энергия поочередно накапливается, то в виде энергии электрического поля заряженного конденсатора, то в виде энергии магнитного поля катушки индуктивности. При этом в контуре протекает собственный контурный ток Iк, превосходящий по величине ток во внешней цепи I в Q раз. В случае идеального контура (без потерь), добротность которого теоретически бесконечна, величина контурного тока также будет бесконечно большой. Но на практике, такого не бывает. В любом случае, качество элементов контура, их паразитные характеристики, электрические цепи, служащие для подвода энергии и отбора энергии из контура, не позволят контурному току расти.
Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.
Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ωр его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.
Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.
Видео по теме: Колебательный контур
Резонанс напряжений в последовательном колебательном контуре
В радиотехнике широкое применение имеют электрические цепи, составленные из катушки индуктивности и конденсатора. Такие цепи в радиотехнике называются колебательными контурами. Источник переменного тока к колебательному контуру может быть присоединен двумя способами: последовательно (рисунок 1а) и параллельно (рисунок 1б).
Рисунок 1. Схемотическое обозначение колебательного контура. а) последовательный колебательный контур; б) параллельный колебательный контур.
Рассмотрим поведение колебательного контура в цепи переменного тока при последовательном соединении контура и источника тока (рис 1а).
Мы знаем, что такая цепь оказывает переменному току реактивное сопротивление, равное:
где RL— активное сопротивление катушки индуктивности в ом;
ωL,-индуктивное сопротивление катушки индуктивности в ом;
1/ωC-емкостное сопротивление конденсатора в ом.
Активное сопротивление катушки RL практически очень мало изменяется при изменении частоты (если пренебречь поверхностным эффектом). Индуктивное и емкостное сопротивления в очень сильной степени зависят от частоты, а именно: индуктивное сопротивление ωL увеличивается прямо пропорционально частоте тока, а емкостное сопротивление 1/ωC уменьшается при повышении частоты тока, т. е. оно связано с частотой тока обратно пропорциональной зависимостью.
Отсюда непосредственно следует, что реактивное сопротивление последовательного колебательного контура также зависит от частоты, и колебательный контур будет оказывать токам разных частот неодинаковое сопротивление.
Если мы будем измерять реактивное сопротивление колебательного контура при различных частотах, то обнаружим, что в области низких частот сопротивление последовательного контура очень велико; при увеличении частоты оно уменьшается до некоторого предела, а затем начинает снова возрастать.
Объясняется это тем, что в области низких частот ток испытывает большое сопротивление со стороны конденсатора, при увеличении же частоты начинает действовать индуктивное сопротивление, компенсирующее действие емкостного сопротивления.
При некоторой частоте индуктивное сопротивление становится равным емкостному, т. е.
Они будут взаимно компенсировать друг друга и общее реактивное сопротивление контура станет равным нулю:
При этом реактивное сопротивление последовательного колебательного контура будет равно только его активному сопротивлению, так как
При дальнейшем повышении частоты ток будет испытывать все большее и большее сопротивление со стороны индуктивности катушки, при одновременном уменьшении компенсирующего действия емкостного сопротивления. Поэтому реактивное сопротивление контура начнет снова возрастать.
На рисунке 2а приведена кривая, показывающая изменение реактивного сопротивления последовательного колебательного контура при изменении частоты тока.
Рисунок 2. Резонанс напряжений. а) зависимость изменения полного сопротивления от частоты; б) зависимость реактивного сопротивления от активного сопротивления контура; в) кривые резонанаса.
Частота тока, при которой сопротивление колебательного контура делается наименьшим, называется частотой резонанса или резонансной частотой колебательного контура.
При резонансной частоте имеет место равенство:
пользуясь которым, нетрудно определить частоту резонанса:
(1)
Единицами в этих формулах служат герцы, генри и фарады.
Из формулы (1) видно, что чем меньше величины емкости и самоиндукции колебательного контура, тем больше будет его резонансная частота.
Величина активного сопротивления RL не влияет на резонансную частоту, однако от нее зависит характер изменения Z. На рисунке 2б приведен ряд графиков изменения реактивного сопротивления колебательного контура при одних и тех же величинах L и С, но при разных RL. Из этого рисунка видно, что чем больше активное сопротивление последовательного колебательного контура, тем тупее становится кривая изменения реактивного сопротивления.
Теперь рассмотрим, как будет изменяться сила тока в колебательном контуре, если мы будем изменять частоту тока. При этом мы будем считать, что напряжение, развиваемое источником переменного тока, остается все время одним и тем же.
Так как источник тока включен последовательно с L и С контура, то сила тока, протекающего через катушку и конденсатор, будет тем больше, чем меньше реактивное сопротивление колебательного контура в целом, так как
Отсюда непосредственно следует, что при резонансе сила тока в колебательном контуре будет наибольшей. Величина тока при резонансе будет зависеть от напряжения источника переменного тока и от активного сопротивления контура:
На рисунке 2г изображен ряд графиков изменения силы тока в последовательном колебательном контуре при изменении частоты тока так называемых кривых резонанса. Из этого рисунка видно, что чем больше активное сопротивление контура, тем тупее кривая резонанса.
При резонансе сила тока может достигать огромных значений при сравнительно малой внешней ЭДС. Поэтому падения напряжения на индуктивном и емкостном сопротивлениях контура, т. е. на катушке и на конденсаторе, могут достигать очень больших величии и далеко превосходить величину внешнего напряжения.
Последнее утверждение на первый взгляд может показаться несколько странным, однако нужно помнить, что фазы напряжений на емкостном и индуктивном сопротивлениях сдвинуты друг относительно друга на 180°, т. е. мгновенные значения напряжений на катушке и конденсаторе направлены всегда в противоположные стороны. Вследствие этого большие напряжения, существующие при резонансе внутри контура на его катушке и конденсаторе, ничем не обнаруживают себя вне контура, взаимно компенсируя друг друга.
Разобранный нами случай последовательного резонанса называется резонансом напряжений, так как в этом случае в момент резонанса имеет место резкое увеличение напряжения на L и С колебательного контура.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы: