Как найти экстремумы функции лагранжа

Условный экстремум. Метод множителей Лагранжа. Первая часть.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=psi(x)$, то подставив $y=psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=fleft(x,psi(x)right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+lambdavarphi(x,y)$ (параметр $lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

$$
left { begin{aligned}
& frac{partial F}{partial x}=0;\
& frac{partial F}{partial y}=0;\
& varphi (x,y)=0.
end{aligned} right.
$$

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_{xx}^{»}dx^2+2F_{xy}^{»}dxdy+F_{yy}^{»}dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F < 0$, то условный максимум.

Есть и другой способ для определения характера экстремума. Из уравнения связи получаем: $varphi_{x}^{‘}dx+varphi_{y}^{‘}dy=0$, $dy=-frac{varphi_{x}^{‘}}{varphi_{y}^{‘}}dx$, поэтому в любой стационарной точке имеем:

$$d^2 F=F_{xx}^{»}dx^2+2F_{xy}^{»}dxdy+F_{yy}^{»}dy^2=F_{xx}^{»}dx^2+2F_{xy}^{»}dxleft( -frac{varphi_{x}^{‘}}{varphi_{y}^{‘}}dxright)+F_{yy}^{»}left( -frac{varphi_{x}^{‘}}{varphi_{y}^{‘}}dxright)^2=\
=-frac{dx^2}{left(varphi_{y}^{‘} right)^2}cdotleft( -(varphi_{y}^{‘})^2 F_{xx}^{»}+2varphi_{x}^{‘}varphi_{y}^{‘}F_{xy}^{»}-(varphi_{x}^{‘})^2 F_{yy}^{»} right)$$

Второй сомножитель (расположенный в скобке) можно представить в такой форме:

$$
H=left| begin{array} {ccc}
0 & varphi_{x}^{‘} & varphi_{y}^{‘}\
varphi_{x}^{‘} & normred{F_{xx}^{»}} & normred{F_{xy}^{»}} \
varphi_{y}^{‘} & normred{F_{xy}^{»}} & normred{F_{yy}^{»}} end{array} right|
$$

Красным цветом выделены элементы определителя $left| begin{array} {cc} F_{xx}^{»} & F_{xy}^{»} \ F_{xy}^{»} & F_{yy}^{»} end{array} right|$, который является гессианом функции Лагранжа. Если $H > 0$, то $d^2F < 0$, что указывает на условный максимум. Аналогично, при $H < 0$ имеем $d^2F > 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показатьскрыть

Алгоритм исследования функции двух переменных на условный экстремум

  1. Составить функцию Лагранжа $F(x,y)=f(x,y)+lambdavarphi(x,y)$
  2. Решить систему $
    left { begin{aligned}
    & frac{partial F}{partial x}=0;\
    & frac{partial F}{partial y}=0;\
    & varphi (x,y)=0.
    end{aligned} right.$
  3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить любой из указанных способов:
    • Составить определитель $H$ и выяснить его знак
    • С учетом уравнения связи вычислить знак $d^2F$

Метод множителей Лагранжа для функций n переменных

Допустим, мы имеем функцию $n$ переменных $z=f(x_1,x_2,ldots,x_n)$ и $m$ уравнений связи ($n > m$):

$$varphi_1(x_1,x_2,ldots,x_n)=0; ; varphi_2(x_1,x_2,ldots,x_n)=0,ldots,varphi_m(x_1,x_2,ldots,x_n)=0.$$

Обозначив множители Лагранжа как $lambda_1,lambda_2,ldots,lambda_m$, составим функцию Лагранжа:

$$F(x_1,x_2,ldots,x_n,lambda_1,lambda_2,ldots,lambda_m)=f+lambda_1varphi_1+lambda_2varphi_2+ldots+lambda_mvarphi_m$$

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

$$left{begin{aligned}
& frac{partial F}{partial x_i}=0; (i=overline{1,n})\
& varphi_j=0; (j=overline{1,m})
end{aligned} right.$$

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F < 0$, – то условный максимум. Можно пойти иным путем, рассмотрев следующую матрицу:

Матрица

Определитель матрицы

$$left| begin{array} {ccccc} frac{partial^2F}{partial x_{1}^{2}} & frac{partial^2F}{partial x_{1}partial x_{2}} & frac{partial^2F}{partial x_{1}partial x_{3}} &ldots & frac{partial^2F}{partial x_{1}partial x_{n}}\
frac{partial^2F}{partial x_{2}partial x_1} & frac{partial^2F}{partial x_{2}^{2}} & frac{partial^2F}{partial x_{2}partial x_{3}} &ldots & frac{partial^2F}{partial x_{2}partial x_{n}}\
frac{partial^2F}{partial x_{3} partial x_{1}} & frac{partial^2F}{partial x_{3}partial x_{2}} & frac{partial^2F}{partial x_{3}^{2}} &ldots & frac{partial^2F}{partial x_{3}partial x_{n}}\
ldots & ldots & ldots &ldots & ldots\
frac{partial^2F}{partial x_{n}partial x_{1}} & frac{partial^2F}{partial x_{n}partial x_{2}} & frac{partial^2F}{partial x_{n}partial x_{3}} &ldots & frac{partial^2F}{partial x_{n}^{2}}\
end{array} right|,$$

выделенной в матрице $L$ красным цветом, есть гессиан функции Лагранжа. Используем следующее правило:

  • Если знаки угловых миноров $H_{2m+1},; H_{2m+2},ldots,H_{m+n}$ матрицы $L$ совпадают с знаком $(-1)^m$, то исследуемая стационарная точка является точкой условного минимума функции $z=f(x_1,x_2,x_3,ldots,x_n)$.
  • Если знаки угловых миноров $H_{2m+1},; H_{2m+2},ldots,H_{m+n}$ чередуются, причём знак минора $H_{2m+1}$ совпадает с знаком числа $(-1)^{m+1}$, то исследуемая стационарная точка является точкой условного максимума функции $z=f(x_1,x_2,x_3,ldots,x_n)$.

Пример №1

Найти условный экстремум функции $z(x,y)=x+3y$ при условии $x^2+y^2=10$.

Решение

Геометрическая интерпретация данной задачи такова: требуется найти наибольшее и наименьшее значение аппликаты плоскости $z=x+3y$ для точек ее пересечения с цилиндром $x^2+y^2=10$.

Выразить одну переменную через другую из уравнения связи и подставить ее в функцию $z(x,y)=x+3y$ несколько затруднительно, поэтому будем использовать метод Лагранжа.

Обозначив $varphi(x,y)=x^2+y^2-10$, составим функцию Лагранжа:

$$
F(x,y)=z(x,y)+lambda varphi(x,y)=x+3y+lambda(x^2+y^2-10);\
frac{partial F}{partial x}=1+2lambda x; frac{partial F}{partial y}=3+2lambda y.
$$

Запишем систему уравнений для определения стационарных точек функции Лагранжа:

$$
left { begin{aligned}
& 1+2lambda x=0;\
& 3+2lambda y=0;\
& x^2+y^2-10=0.
end{aligned} right.
$$

Если предположить $lambda=0$, то первое уравнение станет таким: $1=0$. Полученное противоречие говорит о том, что $lambdaneq 0$. При условии $lambdaneq 0$ из первого и второго уравнений имеем: $x=-frac{1}{2lambda}$, $y=-frac{3}{2lambda}$. Подставляя полученные значения в третье уравнение, получим:

$$

left( -frac{1}{2lambda} right)^2+left( -frac{3}{2lambda} right)^2-10=0;\
frac{1}{4lambda^2}+frac{9}{4lambda^2}=10; lambda^2=frac{1}{4}; left[ begin{aligned} & lambda_1=-frac{1}{2};\ & lambda_2=frac{1}{2}. end{aligned} right.\
begin{aligned}
& lambda_1=-frac{1}{2}; ; x_1=-frac{1}{2lambda_1}=1; ; y_1=-frac{3}{2lambda_1}=3;\
& lambda_2=frac{1}{2}; ; x_2=-frac{1}{2lambda_2}=-1; ; y_2=-frac{3}{2lambda_2}=-3.end{aligned}
$$

Итак, система имеет два решения: $x_1=1;; y_1=3;; lambda_1=-frac{1}{2}$ и $x_2=-1;; y_2=-3;; lambda_2=frac{1}{2}$. Выясним характер экстремума в каждой стационарной точке: $M_1(1;3)$ и $M_2(-1;-3)$. Для этого вычислим определитель $H$ в каждой из точек.

$$
varphi_{x}^{‘}=2x;; varphi_{y}^{‘}=2y;; F_{xx}^{»}=2lambda;; F_{xy}^{»}=0;; F_{yy}^{»}=2lambda.\

H=left| begin{array} {ccc} 0 & varphi_{x}^{‘} & varphi_{y}^{‘}\ varphi_{x}^{‘} & F_{xx}^{»} & F_{xy}^{»} \ varphi_{y}^{‘} & F_{xy}^{»} & F_{yy}^{»} end{array} right|=
left| begin{array} {ccc} 0 & 2x & 2y\ 2x & 2lambda & 0 \ 2y & 0 & 2lambda end{array} right|=
8cdotleft| begin{array} {ccc} 0 & x & y\ x & lambda & 0 \ y & 0 & lambda end{array} right|
$$

В точке $M_1(1;3)$ получим:

$$H=8cdotleft| begin{array} {ccc} 0 & x & y\ x & lambda & 0 \ y & 0 & lambda end{array} right|=
8cdotleft| begin{array} {ccc} 0 & 1 & 3\ 1 & -1/2 & 0 \ 3 & 0 & -1/2 end{array} right|=40 > 0.$$

Следовательно, в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_{max}=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем:

$$H=8cdotleft| begin{array} {ccc} 0 & x & y\ x & lambda & 0 \ y & 0 & lambda end{array} right|=
8cdotleft| begin{array} {ccc} 0 & -1 & -3\ -1 & 1/2 & 0 \ -3 & 0 & 1/2 end{array} right|=-40$$

Так как $H < 0$, то в точке $M_2(-1;-3)$ имеем условный минимум функции $z(x,y)=x+3y$, а именно: $z_{min}=z(-1;-3)=-10$.

Отмечу, что вместо вычисления значения определителя $H$ в каждой точке, гораздо удобнее раскрыть его в общем виде. Дабы не загромождать текст подробностями, этот способ скрою под примечание.

Запись определителя $H$ в общем виде. показатьскрыть

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

$$
d^2 F=F_{xx}^{»}dx^2+2F_{xy}^{»}dxdy+F_{yy}^{»}dy^2=2lambda left( dx^2+dy^2right)
$$

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $left( dx right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $lambda_1=-frac{1}{2}$ получим $d^2F < 0$. Следовательно, функция имеет в точке $M_1(1;3)$ условный максимум. Аналогично, в точке $M_2(-1;-3)$ получим условный минимум функции $z(x,y)=x+3y$. Отметим, что для определения знака $d^2F$ не пришлось учитывать связь между $dx$ и $dy$, ибо знак $d^2F$ очевиден без дополнительных преобразований. В следующем примере для определения знака $d^2F$ уже будет необходимо учесть связь между $dx$ и $dy$.

Ответ: в точке $(-1;-3)$ функция имеет условный минимум, $z_{min}=-10$. В точке $(1;3)$ функция имеет условный максимум, $z_{max}=10$.

Пример №2

Найти условный экстремум функции $z(x,y)=3y^3+4x^2-xy$ при условии $x+y=0$.

Решение

Первый способ (метод множителей Лагранжа)

Обозначив $varphi(x,y)=x+y$ составим функцию Лагранжа:

$$F(x,y)=z(x,y)+lambda varphi(x,y)=3y^3+4x^2-xy+lambda(x+y).$$

$$
frac{partial F}{partial x}=8x-y+lambda; ; frac{partial F}{partial y}=9y^2-x+lambda.\

left { begin{aligned} & 8x-y+lambda=0;\ & 9y^2-x+lambda=0; \ & x+y=0. end{aligned} right.

$$

Решив систему, получим: $x_1=0$, $y_1=0$, $lambda_1=0$ и $x_2=frac{10}{9}$, $y_2=-frac{10}{9}$, $lambda_2=-10$. Имеем две стационарные точки: $M_1(0;0)$ и $M_2 left(frac{10}{9};-frac{10}{9} right)$. Выясним характер экстремума в каждой стационарной точке с использованием определителя $H$.

$$
H=left| begin{array} {ccc} 0 & varphi_{x}^{‘} & varphi_{y}^{‘}\ varphi_{x}^{‘} & F_{xx}^{»} & F_{xy}^{»} \ varphi_{y}^{‘} & F_{xy}^{»} & F_{yy}^{»} end{array} right|=
left| begin{array} {ccc} 0 & 1 & 1\ 1 & 8 & -1 \ 1 & -1 & 18y end{array} right|=-10-18y
$$

В точке $M_1(0;0)$ $H=-10-18cdot 0=-10 < 0$, поэтому $M_1(0;0)$ есть точка условного минимума функции $z(x,y)=3y^3+4x^2-xy$, $z_{min}=0$. В точке $M_2left(frac{10}{9};-frac{10}{9}right)$ $H=10 > 0$, посему в данной точке функция имеет условный максимум, $z_{max}=frac{500}{243}$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

$$
d^2 F=F_{xx}^{»}dx^2+2F_{xy}^{»}dxdy+F_{yy}^{»}dy^2=8dx^2-2dxdy+18ydy^2
$$

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

$$
d^2 F=8dx^2-2dxdy+18ydy^2=8dx^2-2dx(-dx)+18y(-dx)^2=(10+18y)dx^2
$$

Так как $ d^2F Bigr|_{M_1}=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F Bigr|_{M_2}=-10 dx^2 < 0$, т.е. $M_2left(frac{10}{9}; -frac{10}{9} right)$ – точка условного максимума.

Второй способ

Из уравнения связи $x+y=0$ получим: $y=-x$. Подставив $y=-x$ в функцию $z(x,y)=3y^3+4x^2-xy$, получим некоторую функцию переменной $x$. Обозначим эту функцию как $u(x)$:

$$
u(x)=z(x,-x)=3cdot(-x)^3+4x^2-xcdot(-x)=-3x^3+5x^2.
$$

Таким образом задачу о нахождении условного экстремума функции двух переменных мы свели к задаче определения экстремума функции одной переменной.

$$
u_{x}^{‘}=-9x^2+10x;\
-9x^2+10x=0; ; xcdot(-9x+10)=0;\
x_1=0; ; y_1=-x_1=0;\
x_2=frac{10}{9}; ; y_2=-x_2=-frac{10}{9}.
$$

Получили точки $M_1(0;0)$ и $M_2left(frac{10}{9}; -frac{10}{9}right)$. Дальнейшее исследование известно из курса дифференциального исчисления функций одной переменой. Исследуя знак $u_{xx}^{»}$ в каждой стационарной точке или проверяя смену знака $u_{x}^{‘}$ в найденных точках, получим те же выводы, что и при решении первым способом. Например, проверим знак $u_{xx}^{»}$:

$$u_{xx}^{»}=-18x+10;\
u_{xx}^{»}(M_1)=10;;u_{xx}^{»}(M_2)=-10.$$

Так как $u_{xx}^{»}(M_1)>0$, то $M_1$ – точка минимума функции $u(x)$, при этом $u_{min}=u(0)=0$. Так как $u_{xx}^{»}(M_2)<0$, то $M_2$ – точка максимума функции $u(x)$, причём $u_{max}=uleft(frac{10}{9}right)=frac{500}{243}$.

Значения функции $u(x)$ при заданном условии связи совпадают с значениями функции $z(x,y)$, т.е. найденные экстремумы функции $u(x)$ и есть искомые условные экстремумы функции $z(x,y)$.

Ответ: в точке $(0;0)$ функция имеет условный минимум, $z_{min}=0$. В точке $left(frac{10}{9}; -frac{10}{9} right)$ функция имеет условный максимум, $z_{max}=frac{500}{243}$.

Рассмотрим еще один пример, в котором характер экстремума выясним посредством определения знака $d^2F$.

Пример №3

Найти наибольшее и наименьшее значения функции $z=5xy-4$, если переменные $x$ и $y$ положительны и удовлетворяют уравнению связи $frac{x^2}{8}+frac{y^2}{2}-1=0$.

Решение

Составим функцию Лагранжа: $F=5xy-4+lambda left( frac{x^2}{8}+frac{y^2}{2}-1 right)$. Найдем стационарные точки функции Лагранжа:

$$
F_{x}^{‘}=5y+frac{lambda x}{4}; ; F_{y}^{‘}=5x+lambda y.\

left { begin{aligned}
& 5y+frac{lambda x}{4}=0;\
& 5x+lambda y=0;\
& frac{x^2}{8}+frac{y^2}{2}-1=0;\
& x > 0; ; y > 0.
end{aligned} right.
$$

Все дальнейшие преобразования осуществляются с учетом $x > 0; ; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $lambda=-frac{5x}{y}$ и подставим найденное значение в первое уравнение: $5y-frac{5x}{y}cdot frac{x}{4}=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $frac{4y^2}{8}+frac{y^2}{2}-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

$$
F_{xx}^{»}=frac{lambda}{4}; ; F_{xy}^{»}=5; ; F_{yy}^{»}=lambda.
$$

Так как $frac{x^2}{8}+frac{y^2}{2}-1=0$, то:

$$
dleft( frac{x^2}{8}+frac{y^2}{2}-1right)=0; ; dleft( frac{x^2}{8} right)+dleft( frac{y^2}{2} right)=0; ; frac{x}{4}dx+ydy=0; ; dy=-frac{xdx}{4y}.
$$

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $lambda=-10$, получив при этом:

$$
F_{xx}^{»}=frac{-5}{2}; ; F_{xy}^{»}=-10; ; dy=-frac{dx}{2}.\

d^2 F=F_{xx}^{»}dx^2+2F_{xy}^{»}dxdy+F_{yy}^{»}dy^2=-frac{5}{2}dx^2+10dxcdot left(-frac{dx}{2} right)-10cdot left(-frac{dx}{2} right)^2=\
=-frac{5}{2}dx^2-5dx^2-frac{5}{2}dx^2=-10dx^2.

$$

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

$$
d^2 F=F_{xx}^{»}dx^2+2F_{xy}^{»}dxdy+F_{yy}^{»}dy^2=frac{lambda}{4}dx^2+10cdot dxcdot frac{-xdx}{4y} +lambdacdot left(-frac{xdx}{4y} right)^2=\
=frac{lambda}{4}dx^2-frac{5x}{2y}dx^2+lambda cdot frac{x^2dx^2}{16y^2}=left( frac{lambda}{4}-frac{5x}{2y}+frac{lambda cdot x^2}{16y^2} right)cdot dx^2
$$

Подставляя $x=2$, $y=1$, $lambda=-10$, получим:

$$
d^2 F=left( frac{-10}{4}-frac{10}{2}-frac{10 cdot 4}{16} right)cdot dx^2=-10dx^2.
$$

Так как $d^2F=-10cdot dx^2 < 0$, то точка $(2;1)$ есть точкой условного максимума функции $z=5xy-4$, причём $z_{max}=10-4=6$.

Ответ: в точке $(2;1)$ функция имеет условный максимум, $z_{max}=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.

Условный экстремум

4 раздела

от теории до практики

2 примера

Примеры решения задач

видео

Примеры решения задач

  1. Понятие условного экстремума.

    Начать изучение

  2. Прямой метод отыскания точек условного экстремума.

    Начать изучение

  3. Метод множителей Лагранжа.

    Начать изучение

  4. Несколько замечаний о методе множителей Лагранжа.

    Начать изучение

Понятие условного экстремума.

Пусть на открытом множестве (G subset boldsymbol{R}^{n}) заданы функции (f_{0}(x)), (f_{1}(x), ldots, f_{m}(x)), причем (m < n), и пусть (E) — множество точек множества (G), удовлетворяющих системе уравнений
$$
f_{1}(x) = 0, ldots, f_{m}(x) = 0.label{ref1}
$$
Уравнения eqref{ref1} будем называть уравнениями связей (или просто связями).

Определение 1.

Точка (x^{0} = (x_{1}^{0}, ldots, x_{n}^{0}) in G) называется точкой условного минимума функции (f_{0}(x)) при наличии связей eqref{ref1}, если найдется такая окрестность (S_{delta}(x^{0})), что для всех (x in G cap S_{delta}(x^{0})) выполнено неравенство (f_{0}(x) geq f_{0}(x^{0})).

Определение 2.

Точка (x^{0} in G) называется точкой строгого условного минимума функции (f_{0}(x)) при наличии связей eqref{ref1}, если найдется такая окрестность (S_{delta}(x^{0})), что для всех (x in dot{S}_{delta}(x^{0}) cap G) выполнено неравенство (f_{0}(x) geq f_{0}(x^{0})).

Аналогично определяются точки условного максимума. Точки условного максимума и минимума называются точками условного экстремума.


Прямой метод отыскания точек условного экстремума.

Предположим, что из системы уравнений eqref{ref1} можно выразить какие-либо (m) переменных (x_{i}) через остальные переменные. Тогда, подставив вместо соответствующих переменных (x_{i}) их выражения через остальные (n-m) переменных в функцию (f_{0}(x)), получим функцию (F) от (n-m) переменных.

Задача о нахождении точек экстремума функции (f_{0}(x)) при наличии связей eqref{ref1} сведется к задаче нахождения обычного (безусловного) экстремума функции (F), зависящей от (n-m) переменных.

Пример 1.

Найти точки условного экстремума функции (z = 1-x^{2}-y^{2}), если (x+y = 1).

Решение.

(vartriangle) Уравнение связи (x+y = 1) легко разрешается относительно переменной (y), а именно (y = 1-x). Подставив это выражение для (y) в функцию (z = 1-x^{2}-y^{2}), получаем, что (z = 1-x^{2}-(1-x)^{2} = 2x-2x^{2}). Функция (2x-2x^{2}) имеет максимум при (x = frac{1}{2}). Точка ((frac{1}{2}, frac{1}{2})) является точкой условного максимума функции (z(x, y)) при наличии связи (x+y = 1), причем (z_{max} = displaystylefrac{1}{2}). (blacktriangle)

Замечание 1.

Прямой метод нахождения условного экстремума редко бывает эффективным ввиду трудности разрешения уравнений связей относительно какой-либо группы переменных.


Метод множителей Лагранжа.

Определение 3.

Рассмотрим функцию (n+m) переменных
$$
L(x, lambda) = f_{0}(x)+lambda_{1}f_{1}(x)+ldots+lambda_{m}f_{m}(x),nonumber
$$
где (x in G), а (lambda = (lambda_{1}, ldots, lambda_{m}) in boldsymbol{R}^{m}). Числа (lambda_{1}, ldots, lambda_{m}) называются множителями Лагранжа, а функция (L(x, lambda)) называется функцией Лагранжа.

Будем говорить, что ((x^{0}, lambda^{0})) есть стационарная точка функции Лагранжа, если
$$
begin{array}{cc}
&  displaystylefrac{partial L}{partial x_{1}} (x^{0}, lambda^{0}) = 0, ldots, frac{partial L}{partial x_{n}} (x^{0}, lambda^{0}) = 0\
&\
& displaystylefrac{partial L}{partial lambda_{1}} (x^{0}, lambda^{0}) = f_{1}(x^{0}) = 0, ldots, frac{partial L}{partial lambda_{m}} (x^{0}, lambda^{0}) = f_{m}(x^{0}) = 0.
end{array}label{ref2}
$$

Теорема 1.

(Теорема Лагранжа).

Пусть (x^{0}) — точка условного экстремума функции (f_{0}(x)) при наличии связей eqref{ref1}, и пусть функции (f_{i}(x)), (i = overline{0, m}), непрерывно дифференцируемы в окрестности точки (x^{0}), причем в точке (x^{0}) ранг матрицы Якоби
$$
A = begin{pmatrix}displaystylefrac{partial f_{1}}{partial x_{1}}(x)&ldots&displaystylefrac{partial f_{1}}{partial x_{n}}(x)\………&…..&…….\displaystylefrac{partial f_{m}}{partial x_{1}}(x)&ldots&displaystylefrac{partial f_{m}}{partial x_{n}}(x)end{pmatrix}label{ref3}
$$
равен (m).

Тогда найдутся такие множители Лагранжа (lambda_{1}^{0}, ldots, lambda_{m}^{0}), что ((x^0, lambda^0)) будет стационарной точкой функции Лагранжа.

Доказательство.

(circ) Так как (m < n), а ранг матрицы Якоби в точке (x^{0}) равен (m), то хотя бы один из миноров этой матрицы порядка (m) отличен от нуля.

Без ограничения общности можно считать, что
$$
begin{vmatrix}displaystylefrac{partial f_{1}}{partial x_{1}}(x^{0})&ldots&displaystylefrac{partial f_{1}}{partial x_{m}}(x^{0})\………&…..&…….\displaystylefrac{partial f_{m}}{partial x_{1}}(x^{0})&ldots&displaystylefrac{partial f_{m}}{partial x_{m}}(x^{0})end{vmatrix} neq 0,label{ref4}
$$
так как выполнения условия eqref{ref4} всегда можно добиться, перенумеровывая переменные и уравнения связей в нужном порядке.

Пусть (x^{0}) есть точка условного минимума функции (f_{0}(x)). Тогда существует окрестность (K'(x^{0}) = K’_{1}(x_{1}^{0}, ldots, x_{m}^{0}) times K’_{2}(x_{m+1}^{0}, ldots, x_{n}^{0})) такая, что
$$
f_{0}(x)-f_{0}(x^{0}) geq 0 mbox{при всех} x in E cap K’ (x^{0}).label{ref5}
$$

В силу непрерывности частных производных и выполнения условия eqref{ref4} можно применить теорему о неявных функциях. В силу этой теоремы найдется такая окрестность
$$
K(x^{0}) = K_{1}(x_{1}^{0}, ldots, x_{m}^{0}) times K_{2}(x_{m+1}^{0}, ldots, x_{n}^{0}) subset K'(x^{0}),nonumber
$$
в которой система уравнений связей eqref{ref1} определяет переменные (x_{1}, ldots, x_{m}) как неявные функции переменных (x_{m+1}, ldots, x_{m}). Это означает, что найдется единственный набор непрерывно дифференцируемых в окрестности (K’_{2}(x_{m+1}^{0}, ldots, x_{n}^{0})) функций (varphi_{i}(x_{m+1}, ldots, x_{n})), (i = overline{1, m}), таких, что
$$
varphi_{i}(x_{m+1}^{0}, ldots, x_{m}^{0}) = x_{i}^{0}, i = overline{1, m};label{ref6}
$$
$$
f_{i}(varphi_{1}(x_{m+1}, ldots, x_{n}), ldots, varphi_{m}(x_{m+1}, ldots, x_{n}), x_{m+1}, ldots, x_{n}) equiv 0,label{ref7}
$$
$$
(varphi_{1}(x_{m+1}, ldots, x_{n}), ldots, varphi_{m}(x_{m+1}, ldots, x_{n})) in K_{1}(x_{1}^{0}, ldots, x_{m}^{0})nonumber
$$
при ((x_{m+1}, ldots, x_{n}) in K_{2}(x_{1}^{0}, ldots, x_{m}^{0})), (i = overline{1, m}).

Другими словами, множество (E cap K(x^{0})) можно задать следующим образом:
$$
begin{array}{cc}
&  E cap K(x^{0}) = {x: x = (x_{1}, ldots, x_{n}), (x_{m+1}, ldots, x_{n}) in K_{2}(x_{m+1}^{0}, ldots, x_{n}^{0}),\
& \
& x_{i} = varphi_{i}(x_{m+1}, ldots, x_{n}), i = overline{1, m}}.
end{array}label{ref8}
$$

Так как (K(x^{0}) subset K'(x^{0})), то из неравенства eqref{ref5} следует, что функция (f_{0}(x)) принимает на множестве (E cap K(x^{0})) наименьшее значение в точке (x^{0}). Если взять представление множества (E cap K(x^{0})) в виде eqref{ref8}, то сложная функция
$$
F(x_{m+1}, ldots, x_{n}) = f_{0}(varphi_{1}(x_{m+1}, ldots, x_{n}), ldots, varphi_{m}(x_{m+1}, ldots, x_{n}), x_{m+1}, ldots, x_{n})label{ref9}
$$
определена в окрестности (K_{2}(x_{m+1}^{0}, ldots, x_{n}^{0})) и принимает в этой окрестности наименьшее значение в точке ((x_{m+1}^{0}, ldots, x_{n}^{0})). Следовательно, в силу необходимых условий экстремума должно выполняться равенство (dF(x_{m+1}^{0}, ldots, x_{n}^{0}) = 0). Воспользовавшись инвариантностью формы первого дифференциала и равенством eqref{ref9}, получаем, что
$$
sum_{k=1}^{n} frac{partial f_{0}(x^{0})}{partial x_{k}} dx_{k} = 0.label{ref10}
$$

В равенстве eqref{ref10} (dx_{m+1}, ldots, dx_{n}) есть дифференциалы независимых переменных, a (dx_{1}, ldots, dx_{n}) — дифференциалы функций (varphi_{i}, ldots, varphi_{m}),    зависящих от (x_{m+1}, ldots, x_{n}). Для краткости будем говорить о независимых и зависимых дифференциалах.

Найдем связи между зависимыми и независимыми дифференциалами. Дифференцируя тождества eqref{ref7} в точке ((x_{m+1}^{0}, ldots, x_{n}^{0})) и пользуясь инвариантностью формы первого дифференциала, получаем
$$
sum_{k=1}^{n} frac{partial f_{i}(x^{0})}{partial x_{k}} dx_{k} = 0, i = overline{1, m}.label{ref11}
$$

Умножая равенства eqref{ref11} на множители (lambda_{i}) и складывая полученные равенства с равенством eqref{ref10}, находим
$$
0 = sum_{k=1}^{n} left(frac{partial f_{0}}{partial x_{k}}+sum_{i=1}^{m} frac{partial f_{i}}{partial x_{k}} lambda_{i}right)_{x = x^{0}}  dx_{k} = sum_{k=1}^{n} frac{partial L(x^{0}, lambda)}{partial x_{k}} dx_{k},label{ref12}
$$
где (L(x^{0}, lambda)) есть функция Лагранжа.

Подберем множители (lambda_{1}^{0}, ldots, lambda_{m}^{0}) так, чтобы коэффициенты при зависимых дифференциалах в равенстве eqref{ref12} обратились в нуль, то есть
$$
frac{partial L(x^{0}, lambda)}{partial x_{k}} = frac{partial f_{0}(x^{0})}{partial x_{k}}+sum_{i=1}^{m} lambda_{i}^{0} frac{partial f_{i}(x^0)}{partial x_{k}} = 0, k = overline{1, m}.label{ref13}
$$
Система уравнений eqref{ref13} единственным образом определяет множители (lambda_{1}^{0}, ldots, lambda_{m}^{0}), так как ее определитель eqref{ref4} отличен от нуля.

При выполнении условий eqref{ref13} уравнение eqref{ref12} примет вид
$$
sum_{k=m+1}^{n} frac{partial L(x^{0}, lambda^{0})}{partial x_{k}} dx_{k} = 0.label{ref14}
$$

Так как дифференциалы независимых переменных (dx_{m+1}, ldots, dx_{n}), могут принимать любые значения, то из eqref{ref14} следует, что
$$
frac{partial L(x^{0}, lambda^{0})}{partial x_{k}} = 0, k = m+1, ldots, n.label{ref15}
$$

Объединяя равенства eqref{ref13} и eqref{ref15}, получаем
$$
frac{partial L(x^{0}, lambda^{0})}{partial x_{k}} = 0, k = overline{1, n}.nonumber
$$

Так как точка (x^{0} in E) и, следовательно, удовлетворяет уравнениям связей, то
$$
frac{partial L(x^{0}, lambda^{0})}{partial lambda_{j}} = f_{i}(x^{0}) = 0, j = overline{1, m}.nonumber
$$
Таким образом, ((x^{0}, lambda^{0})) есть стационарная точка функции Лагранжа (L(x, lambda)). (bullet)

Второй дифференциал функции Лагранжа, вычисленный при фиксированных (lambda_{1}^{0}, ldots, lambda_{m}^{0}) по переменным ((x_{1}, ldots, x_{n})) в точке ((x_{1}^{0}, ldots, x_{n}^{0})), будем обозначать через (d_{xx}^{2}L(x^{0}, lambda^{0})).

Таким образом,
$$
d_{xx}^{2}L(x^{0}, lambda^{0}) = sum_{k=1}^{n} sum_{j=1}^{n} frac{partial^{2} L(x^{0}, lambda^{0})}{partial x_{k} partial x_{j}} dx_{k} dx_{j}.label{ref16}
$$
Иногда вместо (d_{xx}^{2}L(x^{0}, lambda^{0})) будем писать (d^{2}L(x^{0}, lambda^{0})).

Обозначим через (E_{T}) следующее линейное многообразие в (boldsymbol{R}^{n}):
$$
E_{T} = left{xi = (xi_{1}, ldots, xi_{n}) in boldsymbol{R}^{n}: sum_{k=1}^{n} frac{partial f_{i}(x^{0})}{partial x_{k}} xi_{k} = 0, i = overline{1, m}right}.label{ref17}
$$
Равенства eqref{ref11} означают, что (dx = (dx_{1}, ldots, dx_{n}) in E_{T}).

Теорема 2.

Пусть (x^{0}) есть точка условного минимума функции (f_{0}(x)) при наличии связей eqref{ref1}, и пусть функции (f_{i}(x)), (i = overline{1, m}), имеют непрерывные частные производные второго порядка в окрестности точки (x^{0}), причем в точке (x^{0}) ранг функциональной матрицы eqref{ref3} равен (m).

Тогда найдутся множители Лагранжа (lambda_{1}^{0}, ldots, lambda_{m}^{0}) такие, что ((x^{0}, lambda^{0})) есть стационарная точка функции Лагранжа, a (d^{2}L(x^{0}, lambda^{0}) geq 0) при ((dx_{1}, ldots, dx_{n}) in E_{T}).

Доказательство.

(circ) Так как выполнены все условия теоремы 1, то найдутся множители Лагранжа (lambda_{1}^{0}, ldots, lambda_{m}^{0}) такие, что ((x^{0}, lambda^{0})) будет стационарной точкой функции Лагранжа, то есть выполняются условия eqref{ref2}. Повторяя рассуждения теоремы 1, рассмотрим сложную функцию eqref{ref9}, имеющую безусловный экстремум в точке ((x_{m+1}^{0}, ldots, x_{n}^{0})). Так как эта функция имеет непрерывные частные производные второго порядка, то, в силу теоремы о необходимом условии минимума должно быть выполнено условие (d^{2}F(x_{m+1}^{0}, ldots, x_{n}^{0}) geq 0).

Воспользовавшись правилом нахождения второго дифференциала сложной функции и формулой eqref{ref9}, находим, что
$$
sum_{k=1}^{n} sum_{j=1}^{n} frac{partial^{2} f_{0}(x^{0})}{partial x_{k} partial x_{j}} dx_{k} dx_{j}+sum_{k=1}^{n} frac{partial^{2} f_{0}}{partial x_{k}}(x^{0}) d^{2}x_{k} geq 0.label{ref18}
$$

Дифференцируя два раза в точке (x_{m+1}^{0}, ldots, x_{n}^{0}) тождества eqref{ref7}, получаем равенства
$$
sum_{k=1}^{n} sum_{j=1}^{n} frac{partial^{2} f_{i}(x^{0})}{partial x_{k} partial x_{j}} dx_{k} dx_{j}+sum_{k=1}^{n} frac{partial^{2} f_{i}}{partial x_{k}}(x^{0}) d^{2}x_{k} = 0.label{ref19}
$$

Если умножить каждое из равенств eqref{ref19} на соответствующий множитель Лагранжа (lambda_{i}^{0}) и сложить с неравенством eqref{ref18}, то получаем неравенство
$$
d_{xx}^{2}L(x^{0}, lambda^{0})+sum_{k=1}^{n} frac{partial L(x^{0}, lambda^{0})}{partial x_{k}} d^{2}x_{k} geq 0.label{ref20}
$$
Последняя сумма в неравенстве eqref{ref20} равна нулю, так как ((x^{0}, lambda^{0})) есть стационарная точка функции Лагранжа и в ней выполняются условия eqref{ref2}. Таким образом, (d_{xx}^{2}L(x^{0}, lambda^{0}) geq 0) при ((dx_{1}, ldots, dx_{n}) in E_{T}). (bullet)

Теорема 3.

(Достаточные условия условного экстремума).

Пусть функции (f_{i}(x)), (i = overline{0, m}), имеют непрерывные частные производные второго порядка в окрестности точки (x^{0} in boldsymbol{R}^{n}), причем в точке (x^{0}) ранг функциональной матрицы (3) равен (m), и пусть ((x^{0}, lambda^{0})) есть стационарная точка функции Лагранжа (L(x, lambda)).

Тогда если (d_{xx}L(x^{0}, lambda^{0})) есть положительно определенная квадратичная форма при (dx in E_{T}), то (x^{0}) является точкой условного строгого минимума функции (f_{0}(x)) при наличии связей eqref{ref1}. Если (d_{xx}L(x^{0}, lambda^{0})) есть отрицательно определенная квадратичная форма при (dx in E_{T}), то (x^{0}) — точка условного строгого максимума. Если (d_{xx}L(x^{0}, lambda^{0})) есть неопределенная квадратичная форма при (dx in E_{T}), то (x^{0}) не есть точна условного экстремума функции (f_{0}(x)) при наличии связей eqref{ref1}.

Доказательство.

(circ) Пусть
$$
E = {x: f_{i}(x) = 0, i = overline{1, m}}.label{ref21}
$$
По условию теоремы функции (f_{i}(x)), (i = overline{0, m}), имеют непрерывные частные производные второго порядка, а ранг функциональной матрицы eqref{ref3} равен (m). Повторяя рассуждения теоремы 1, можем без ограничения общности считать, что выполнено условие eqref{ref4} и что найдется такая окрестность (K(x^{0}) = K_{1}(x_{1}^{0}, ldots, x_{m}^{0}) times K_{2}(x_{m+1}^{0}, ldots, x_{n}^{0})), что множество (E cap K(x^{0})) можно задать формулой eqref{ref8}. На (E cap K(x^{0})) функция (f_{0}(x)) становится функцией (n-m) переменных (F(x_{m+1}^{0}, ldots, x_{n}^{0})), определенной формулой eqref{ref9} и имеющей непрерывные частные производные второго порядка.

По условию теоремы ((x^{0}, lambda^{0})) есть стационарная точка функции Лагранжа, то есть
$$
begin{array}{cc}
&  displaystylefrac{partial L}{partial x_{k}} (x^{0}, lambda^{0}) = 0, k = overline{1, n};\
&\
& displaystylefrac{partial L}{partial lambda_{i}} (x^{0}, lambda^{0}) = f_{i}(x^{0}) = 0, i = overline{1, m}.
end{array}label{ref22}
$$

Из формул eqref{ref22} следует, что (x^{0} in E) и что
$$
d_{x}L(x^{0}, lambda^{0}) = sum_{k=1}^{n} frac{partial L(x^{0}, lambda^{0})}{partial x_{k}} d^{2}x_{k} = 0.label{ref23}
$$

Рассмотрим функцию (L(x, lambda^{0})) на множестве (E cap K(x^{0})). Очевидно, что
$$
L(x, lambda^{0}) = f_{0}(x) = F(x_{m+1}, ldots, x_{n}) mbox{при} x in E cap K(x^{0}).label{ref24}
$$
В силу инвариантности формы первого дифференциала из формулы eqref{ref24} следует, что
$$
dF(x_{m+1}^{0}, ldots, x_{n}^{0}) = d_{x}L(x^{0}, lambda^{0}) = 0.label{ref25}
$$

Находя второй дифференциал от обеих частей равенства eqref{ref24} и используя равенства eqref{ref22}, получаем
$$
d^{2}F(x_{m+1}^{0}, ldots, x_{n}^{0}) = sum_{k=1}^{n} sum_{j=1}^{n} frac{partial^{2} L(x^{0}, lambda^{0})}{partial x_{j} partial x_{k}} dx_{j} dx_{k}+sum_{k=1}^{n} frac{partial L(x^{0}, lambda^{0})}{partial x_{k}} d^{2}x_{k} = d_{xx}^{2}L(x^{0}, lambda^{0}).label{ref26}
$$

Пусть (d_{xx}^{2}L(x^{0}, lambda^{0}) > 0) при (dx in E_{T}), (dx neq 0). Так как множество (E cap K(x^{0})) можно задать в форме eqref{ref8}, то, выбирая (dx_{m+1}, ldots, dx_{n}) произвольным образом, получим, что дифференциалы (dx_{1},…, dx_{m}) зависят от ((dx_{m+1}, ldots, dx_{n})). Дифференцируя тождества eqref{ref7} в точке (x^{0}), получаем соотношения eqref{ref11}, которые означают, что (dx in E_{T}).

Из формулы eqref{ref26} тогда следует, что
$$
d^{2}F(x_{m+1}^{0}, ldots, x_{n}^{0}) > 0 mbox{при} dx_{m+1}^{2}+ldots+dx_{n}^{2} > 0.label{ref27}
$$

Из eqref{ref25} и eqref{ref27} получаем, что ((x_{m+1}^{0}, ldots, x_{n}^{0})) есть точка строгого минимума функции (F(x_{m+1}, ldots, x_{n})), то есть (x^{0}) есть точка строгого минимума функции (f_{0}(x)) на множестве (E cap K(x^{0})). Таким образом, (x^{0}) есть точка строгого условного минимума функции (f_{0}(x)) при наличии связей eqref{ref1}.

Аналогично рассматривается случай, когда (d_{xx}^{2}L(x^{0}, lambda^{0}) < 0), (dx in E_{T}), (dx neq 0). Если же (d_{xx}^{2}L(x^{0}, lambda^{0})) при (dx in E_{T}) есть неопределенная квадратичная форма, то не выполняется условие (d_{xx}^{2}L(x^{0}, lambda^{0}) geq 0) при (dx in E_{T}), являющееся, в силу теоремы 2, необходимым условием минимума. Поэтому (x^{0}) не есть точка условного минимума функции (f_{0}(x)) при связях eqref{ref1}. Аналогично доказывается, что (x^{0}) не может быть точкой условного минимума функции (-f_{0}(x)), а следовательно, и точкой условного максимума функции (f_{0}(x)) при связях eqref{ref1}. (bullet)

Замечание.

Если окажется, что (d_{xx}^{2}L(x^{0}, lambda^{0})) есть положительно определенная квадратичная форма на всем пространстве (boldsymbol{R}^{n}), то (d_{xx}^{2}L(x^{0}, lambda^{0}) > 0) при (dx in E_{T}), (dx neq 0). Поэтому в этом случае в квадратичной форме (d_{xx}^{2}L(x^{0}, lambda^{0})) не нужно исключать зависимые дифференциалы.

Пример 1.

Найти экстремумы функции (x-2y+2z = u) и на сфере (x^{2}+y^{2}+z^{2} = 1).

Решение.

(vartriangle) Строим функцию Лагранжа
$$
L(x, y, z, lambda) = x-2y+2z+lambda(x^{2}+y^{2}+x^{2}-1)nonumber
$$
Стационарные точки функции Лагранжа находим, решая систему уравнений
$$
frac{partial L}{partial x} = 1+2lambda x = 0,quad frac{partial L}{partial y} = -2+2lambda y = 0,quad frac{partial L}{partial z} = 2+2lambda z = 0,nonumber
$$
$$
frac{partial L}{partial lambda} = x^{2}+y^{2}+z^{2}-1 = 0.nonumber
$$
Исключая из этой системы (x, y, z), получаем (displaystyleleft(frac{1}{2lambda}right)^{2}+left(frac{1}{lambda}right)^{2}+left(frac{1}{lambda}right)^{2}-1 = 0), откуда (lambda_{1} = displaystylefrac{3}{2}), (lambda_{2} = -displaystylefrac{3}{2}).

У функции Лагранжа есть две стационарные точки,
$$
M_{1} = left(-frac{1}{3}, frac{2}{3}, -frac{2}{3}, frac{3}{2}right)quad mbox{и}quad M_{2} = left(frac{1}{3}, -frac{2}{3}, frac{2}{3}, -frac{3}{2}right).nonumber
$$

Так как (d^{2}L(M_{1}) = 3(dx^{2}+dy^{2}+dz^{2}) > 0), a (d^{2}L(M_{2}) = -3(dx^{2}+dy^{2}+dz^{2}) < 0) при (dx^{2}+dy^{2}+dz^{2} > 0), тo (displaystyleleft(-frac{1}{3}, frac{2}{3}, -frac{2}{3}, frac{3}{2}right)) — точка условного минимума, a (displaystyleleft(frac{1}{3}, -frac{2}{3}, frac{2}{3}, -frac{3}{2}right)) — точка условного максимума функции (u = x-2y+2x) при наличии ограничения (x^{2}+y^{2}+z^{2}-1 = 0), Причем (u_{min} = -3), (u_{max} = 3). (blacktriangle)

Пример 2.

Найти условные экстремумы функции (f_{0}(x, y) = e^{axy}), (a neq 0), при наличии ограничения (f_{i}(x, y) = x^{3}+y^{3}+x+y-4 = 0).

Решение.

(vartriangle) Построим функцию Лагранжа:
$$
L(x, y) = e^{axy}+lambda(x^{3}+y^{3}+x+y-4).nonumber
$$
Стационарные точки функции Лагранжа определяются из системы уравнений
$$
begin{array}{cc}
&  displaystylefrac{partial L}{partial x} = aye^{axy}+lambda(3x^{2}+1) = 0,\
&\
& displaystylefrac{partial L}{partial y} = axe^{axy}+lambda(3y^{2}+1) = 0,\
&\
& displaystylefrac{partial L}{partial lambda} = x^{3}+y^{3}+x+y-4 = 0.
end{array}label{ref28}
$$

Умножая первое уравнение на (x), а второе на (y) и вычитая, получаем
$$
lambda(3x^{3}-3y^{3}+x-y) = lambda(x-y)(3x^{2}+3xy+3y^{2}+1) = 0.label{ref29}
$$

Если (lambda = 0), то из первых двух уравнений eqref{ref28} получаем (x = y = 0). Но (x = y = 0) не удовлетворяет уравнению связи. Итак, (lambda neq 0), поэтому из eqref{ref29} следует, что (x = y) (второй сомножитель всегда положителен: (3(x^{2}+xy+y^{2})+1 > 0)). Подставляя (x = y) в уравнение связи, получаем (x^{3}+x = 2), (x = y = 1). Первое из уравнений eqref{ref28} дает при (x = y = 1) значение (lambda = -displaystylefrac{a}{4} e^{a}).

Итак, ((1, 1, -displaystylefrac{a}{4} e^{a})) есть единственная стационарная точка функции Лагранжа.

Так как
$$
d(e^{axy}) = a(x dy+y dx) e^{axy},nonumber
$$
$$
d^{2}(e^{axy}) = a^{2}(x dy+y dx)^{2} e^{axy}+2a dx dy e^{axy},nonumber
$$
$$
d^{2}(x^{3}+y^{3}+x+y-4) = 6x dx^{2}+6y dy^{2},nonumber
$$
то для второго дифференциала функции Лагранжа при (lambda_{0} = -displaystylefrac{a}{4} e^{a}) и (x = y = 1) получается следующее выражение:
$$
d^{2}L(1, 1, lambda_{0}) = ae^{a}left[a(dx+dy)^{2}+2 dx dy-frac{3}{2}(dx^{2}+dy^{2})right].label{ref30}
$$
Дифференцируя уравнение связи при (x = y = 1), получаем, что (dy+dx = 0). Подставляя (dy = -dx) в уравнение eqref{ref30}, получаем равенство
$$
d^{2}L(1, 1, lambda_{0}) = -5ae^{a}dx^{2}.label{ref31}
$$

Поэтому при (a < 0) в точке (1,1) будет условный минимум, а при (a > 0) — условный максимум функции (f_{0}(x, y)) при наличии связи (x^{3}+y^{3}+x+y = 4), причем экстремальное значение функции равно (e^{a}). (blacktriangle)

Замечание.

Уравнение связи (x^{3}+y^{3}+x+y = 4) было бы затруднительно разрешить относительно одной из переменных. Метод Лагранжа для примера 2 более эффективен, чем прямой метод исключения зависимых переменных.


Несколько замечаний о методе множителей Лагранжа.

Задачи об отыскании экстремумов функций (как числовых, так и функций более общей природы) при наличии ограничений являются весьма распространенными. Теория экстремальных задач интенсивно развивается и находит широкий круг приложений. Здесь были рассмотрены ограничения типа равенств, задаваемые достаточно гладкими функциями (гладкие связи). Метод множителей Лагранжа имеет глубокие обобщения и на более общий случай, когда ограничения задаются системой равенств и неравенств при помощи недифференцируемых в обычном смысле функций.

В конкретных прикладных вопросах множители Лагранжа имеют содержательную интерпретацию. Так, в механике множители Лагранжа задают реакции связей, а в математической экономике — цены на продукты производства. Широко развиты приближенные методы решения экстремальных задач, использующие современную вычислительную технику.

Определение условного экстремума

Первый
метод нахождения условного экстремума.

Второй
метод нахождения условного экстремума
(метод Лагранжа)

Геометрическая
интерпретация необходимых условий
условного экстремума

Окаймленный
гессиан

Последовательность
действий при отыскании условных
экстремумов функции двух переменных

Определение
условного экстремума

Определение.
Условным экстремумом функции

называется максимум или минимум функции,
достигнутый при условии, что ее аргументы
связаны некоторым уравнением

:

В дальнейшем экстремумы, не являющиеся
условными, будем называть безусловными.

П
ри
нахождении условных экстремумов функции

аргументы

и

уже нельзя рассматривать как независимые
переменные. Они связаны между собой
соотношением

,
которое называется уравнением связи.

Для пояснения различия между локальным
(безусловным) и условным экстремумом
рассмотрим функцию


.

Она описывает так называемый параболоид
вращения и имеет безусловный минимум
в точке, указанной темной стрелкой (рис.
7.7). Добавим уравнение связи (ограничение
в виде равенства)


,

описывающее плоскость. Задача теперь
формулируется так: найти экстремум
функции

,
рас­смат­ри­вая среди всех значений

только те, которые в совокупности
образуют плоскость

.
Другими словами, экстремум следует
искать среди точек, принадлежащих
одновременно обеим поверхностям,
изображенным на рис. 7.7. Эти точки образуют
красную линию. Минимальное значение
(условный минимум) достигается в точке,
указанной белой стрелкой.

З
амечание.
Условный экстремум может существовать
не в одной точке. В частном случае это
может быть линия, как представлено на
рис. 7.8. Здесь стрелкой указан дос­тигаемый
на отрезке прямой условный минимум
функции

при дополнительном условии связи

.
Ло­каль­ный минимум функции

также существует. Он находится в точке
с координатами

.

Опишем два метода поиска условного
экстремума.

Первый метод
нахождения условного экстремума

Пусть уравнение связи

может быть разрешено относительно
зависимой переменной:

.
Подставим функцию

в исследуемую на экстремум функцию

.
Получим функцию одного аргумента


,

в которой учтено условие связи. Далее
надо исследовать функцию

на локальный экстремум, который будет
являться для функции

условным экстремумом.

ПРИМЕР 1. Исследовать
на условный экстремум функцию

при условии

.

Решение. Из уравнения
связи найдем

и подставим в исследуемую функцию



.

Исследуем ее на
экстремум:


.

Критическая точка

.
Вторая производная

.
Поэтому в точке

существует минимум функции

,
соответственно в точке с координатами

,

— условный минимум функции

.
Его значение

.
На рис. 7.9 представлены описываемые
обеими функциями пересекающиеся
поверхности. На точку условного минимума
указывает стрелка.

ПРИМЕР 2. Исследовать
на условный максимум функцию

при условии

.

Решение. Подставим
в исследуемую функцию величину

из уравнения связи. Получим

.

1. Если

,
то

.

2
.
Если

,
то

,
причем значение

больше либо равно значению

в любой точке

при условии

.
Следовательно, 1 будет макси­мальным
значением функции

,
аргу­менты которой связаны урав­не­нием

,
т.е.

.
Условный минимум равен нулю при
.
Поверхность

и плоскость

представлены на рис. 7.10. Линии их
пересечения, где функция

достигает максималь­ного значения,
выделены белым цветом.

Непосредственная
подстановка используется в простейших
случаях. Часто подобная подстановка
приводит к громоздким выражениям для
исследуемой функции, или бывает
невозможно решить уравнение связи
относительно зависимой переменной. В
этих случаях используется эффективный
метод, предложенный французским
математиком Жозефом Луи Лагранжем
(1736-1813).

Замечание. Рассмотренная нами в
последнем примере функция является
обобщением двухфакторной (зависящей
от двух переменных) производственной
функции Леонтьева, которая имеет вид:


.

Здесь переменные

полагаются неотрицательными и обозначают
соответственно затраты капитала и
затраты труда, параметры

являются положительными и отвечают
соответственно за фондоемкость продукции
и трудоемкость продукции.

Второй метод
нахождения условного экстремума (метод
Лагранжа)

Идея метода состоит в замене функции

,
исследуемой на условный экстремум, на
функцию, которая может быть исследована
на локальный экстремум. Эта функция

,
называемая функцией Лагранжа, составлена
из функции
,
функции ограничения

и некоторого коэффициента
,
их соединяющего (множителя Лагранжа)

Варьируя величину
,
можно добиться совпадения условного
экстремума функции

со стационарной точкой функции Лагранжа.

Д
ля
иллюстрации сказанного рассмотрим
задачу,

На рис. 7.11. изображены функции Лагранжа

при различных значениях коэффициента

(
).
Это параболоиды враще­ния. Кроме того,
изображено множество точек

в виде плоскости, а также функция

(частный случай функции Лагранжа при

).
Меняя
,
находим ту из функций
,
локальный экстремум которой совпадает
с условным экстремумом функции
.

Как видно из рисунка, это достигается
при
.
Для лучшего обзора картины на рисунке
вырезаны части параболоидов.

Перейдем к обоснованию метода. Уравнение
связи

определяет величину

как функцию

от переменной

.
При подстановке

в исследуемую функцию

получим функцию одной переменной

,
производная которой в точке возможного
условного экстремума

равна
нулю, или, что равносильно этому, должен
быть равен нулю дифференциал функции:


, (2)

причем

отличны от нуля.

Из уравнения связи

соотношение между дифференциалами
аргумента и функции в любой точке, а
следовательно, и в точке

,
определяется равенством


. (3)

Умножим равенство (3) на некоторое число

(множитель Лагранжа), которое определим
позже, и сложим с равенством (2)


. (4)

Слева в равенстве (4) стоит дифференциал

функции

,
которую называют функцией Лагранжа.
Равенство

при изучении нами локального экстремума
получалось исходя из того, что

.
Это давало необходимые условия локального
экстремума. В рамках логической цепочки
рассуждений о локальном экстремуме
функции

,
потребуем выполнения условий

в точке

.
С этой целью выберем множитель

так, чтобы было выполнено равенство


. (5)

Тогда из соотношения

получим


. (6)

Теперь можно сказать, что равенства (5)
и (6) выражают необходимые условия
локального экстремума в точке

функции Лагранжа

.
Иногда говорят, что система

определяет условия первого порядка при
нахождении условного экстремума.

Геометрическая
интерпретация необходимых условий
локального экстремума

Интересна геометрическая интерпретация
решений системы. Введем векторы


и

.

Из системы легко получить равенство


,

откуда следует коллинеарность векторов

и

.
Построим фрагмент карты линий уровня
функции

(рис. 7.12). Пунктиром обозначен график
функции

.
Градиенты

и

перпендикулярны линиям уровня в точках

и

соответственно. Векторы

и

перпендикулярны к линии

также в точках

и

.
При движении справа налево вдоль кривой

пересекаются линии уровня функции

,
причем каждое следующее пересечение
происходит с линией более низкого
уровня. Градиенты

и

в каждой точке направлены под разными
углами, как это имеет место, например,
в точке

.
Коллинеарность векторов

и

возникает в точке

.
Следовательно, в этой точке выполнены
необходимые условия локального экстремума
функции Лагранжа. При дальнейшем движении
вдоль кривой уравнения связи

пересекаются линии более высокого
уровня. Можно заключить, что в точке

имеется минимум. Если бы кривая уравнения
связи, выйдя из точки

,
продолжала пересекать линии все более
низкого уровня, точка

оказалась бы седловой (или точкой
минимакса).

Окаймленный гессиан

Для функции Лагранжа

получены необходимые условия локального
экстремума. Теорема о достаточных
условиях локального экстремума функции

подобна ранее сформулированной теореме
о достаточных условиях локального
экстремума для функции

,
но между ними существуют отличия.

Замечание. Следует учитывать, что
условный минимум функции

может и не соответствовать безусловному
минимуму функции Лагранжа в той же
точке. Условному экстремуму с ограничением
типа равенства соответствует лишь
стационарность функции Лагранжа.

(об исследовании на экстремум по
окаймленному гессиану)

Пусть всюду в окрестности точки

:

1. определена функция

;

2. обе частные производные первого
порядка

непрерывны, причем

;

3. все частные производные второго
порядка

непрерывны;

4. дифференциалы

и

связаны между собой соотношением

,
причем

;

5. второй дифференциал

в точке

является знакоопределенной квадратичной
формой.

Тогда функция

имеет в точке

локальный экстремум, а функция

условный экстремум:

а) при

локальный минимум,

б) при

локальный максимум.

◄ Доказательство теоремы заключается
в обосновании использования в данной
теореме выводов ранее рассмотренной
теоремы о достаточных условиях для
функции

при исследовании на локальный экстремум.

Уравнение связи

приводит к существованию зависимости
между дифференциалами

и

.
Как известно, второй дифференциал не
обладает инвариантностью формы. Поэтому
выражение для

требует уточнения. Найдем дифференциал
от дифференциала

в точке

,
считая

зависимой переменной:


.

Здесь

в силу непрерывности вторых производных,

в стационарной точке

.
Поэтому второй дифференциал функции
Лагранжа в точке

будет совпадать со вторым дифференциалом
функции Лагранжа двух независимых
переменных


.

Следовательно, можно воспользоваться
выводами о знакоопределенности

и соответственно знаке

по знакам угловых миноров матрицы Гессе:

1. если

,
функция

имеет в точке

минимум;

2. если

,
функция

имеет в точке

максимум.

Если сделать вывод о наличии экстремума
невозможно при произвольных

и

,
найдем

из равенства

и подставим в

:


.

Вынесем за скобки множитель

:


.

Эта формула может быть приведена к
удобному для использования виду. Второй
сомножитель в произведении вычисляется
как определитель матрицы в точке


.

Матрица

называется
окаймленной матрицей Гессе, а определитель

— окаймленным гессианом. Если гессиан

,
то

,
что указывает на безусловный максимум
функции

и условный максимум функции

.
Если

,
то

.
Это соответствует безусловному минимуму
функции

и условному минимуму функции

.
Обоснование закончено. ►

Замечание 1. Если

,
метод не работает. Поскольку точка

является стационарной для функции
Лагранжа, в этой точке возможен уcловный
экстремум функции
.

Замечание 2. Метод Лагранжа не указывает
условий, при которых условный экстремум
отсутствует.

Замечание 3. При составлении функции
Лагранжа можно брать неопределенный
множитель с любым знаком. Выбор
определяется соображениями удобства.

З
амечание
4. Вычисляемый неопреде­лен­ный
множитель

может оказаться любым действительным
числом, включая иррацио­нальное число.
В частном случае при

условный экстремум исследуемой функции
совпадает с ее локальным экстре­мумом,
если таковой существует. На рис. 7.13
представлено графическое решение задачи
на условный экстремум функции

с уравнением связи

.
Линия пересечения изображена красным
цветом. Стрелкой указан условный
экстремум функции

,
совпадающий с ее локальным максимумом.
Вычисленное значение множителя

.

Последовательность
действий при отыскании условных
экстремумов функции двух переменных

Задача. Найти условный экстремум функции

при наличии уравнения связи

.
Краткая формулировка:


(7)

Решение.

1) Составляем функцию Лагранжа

.

2) Находим производные функции

и приравниваем их нулю. Присоединяем
уравнение связи, получая систему из
трех уравнений для определения координат
возможных точек экстремума

и множителя Лагранжа

.

3) Строим окаймленную матрицу Гессе,
вычисляем окаймленный гессиан в точке

и делаем вывод о наличии условного
экстремума. Находим значение функции

в точке условного экстремума.

ПРИМЕР. Провести
исследование на условный экстремум

Решение. Составим
функцию Лагранжа

и запишем систему
уравнений из первых производных и
уравнения связи:


(8)

Из первых двух
уравнений получаем


(9)

Очевидно, что точка
с координатами

является решением системы (9), но не
удовлетворяет последнему уравнению
системы (8). Полагая теперь

,
разделим первое уравнение системы (9)
на второе

и решим полученное
уравнение. Корни уравнения

.
Подставив

в первое или второе уравнения системы
(8), найдем связь между переменными

и

:

.
Подстановка выражения

в третье уравнение системы (7) дает

.
Соответственно

.
Для

получим

.
Итак, получены четыре стационарные
точки

,

:


,


,


,


.

Найдем все вторые
производные функции Лагранжа:


.

Составим матрицу
Гессе из вторых производных


.

Подстановка любого
значения множителя из

приводит к равенству нулю минора

.
Поэтому обратимся к окаймленной матрице
Гессе


.

Рассмотрим
последовательно четыре стационарные
точки.

1)

.

.

В точке

достигается условный минимум

.

2)

.

.

Здесь условный
минимум

.

3)

.

.

В точке

достигается условный максимум

.

4)

.

.

Здесь условный
максимум

.

Н
а
рисунках 7.14 и 7.15 представлено графическое
решение задачи на условный экстремум.

Пересечения
поверхностей изображены с двух точек
обзора, отличающихся приблизительно
на

.
Стрелками показан один из минимумов
(рис. 7.14) и один из максимумов (рис. 7.15).

Для случая трех переменных исследование
функции на условный экстремум при одном
уравнении связи

методом Лагранжа приводит к окаймленной
матрице Гессе 4-го порядка

В стационарной точке

рассматриваются окаймленные гессианы
3-го

и 4-го

порядков, где

и
.

Условия
,

являются достаточными для достижения
в данной точке условного минимума.

Условия
,

являются достаточными для достижения
в данной точке условного максимума.

Условие

является достаточным для утверждения
об отсутствии в данной точке экстремума.

Условный экстремум может существовать
при наличии нескольких уравнений связи.
Задача нахождения условного экстремума
функции 3-х переменных с 2-мя уравнений
связи формулируется следующим образом

Если решение системы из уравнений связи
с последующей подстановкой результатов
в исследуемую функцию затруднено,
строится функция Лагранжа в виде

Необходимые условия содержат 5 уравнений
c 5-ю переменными

Решив систему уравнений и найдя
стационарные точки, исследуем окаймленный
гессиан


.

Если

в рассматриваемой стационарной точке,
то достигается минимум, если
,
то максимум.

Условный экстремум
функции n
переменных с m
уравнениями связи

Найдем экстремум скалярной функции
векторного аргумента
,
аргумент которой удовлетворяет уравнению
связи
,
представляющему собой равенство нулю
векторной функции векторного аргумента.
Здесь


,

,
причем

Задача на условный экстремум формулируется
так

Будем полагать, что производные
,

непрерывно дифференцируемы по вектору

,
градиенты функции

линейно независимы

при

одновременно, где

Составим функцию Лагранжа


.

где
,

скалярное произведение вектор-множителя
Лагранжа на вектор-функцию ограничений.

Рассмотрим векторную систему

которая состоит из двух векторных
равенств с двумя векторными переменными

и

и содержит в координатах
векторов

равенств с

переменными. Из первых n
равенств с

переменными выберем m
соотношений (например, первые m
равенств) и подберем для них m
координат вектора

так, чтобы правые части равенств
обратились в нуль.

Подобрать соответствующие m
значений

можно, используя правило Крамера

Определитель

в силу линейной независимости столбцов
определителя (независимости градиентов
функции
).

Значения

подставим в следующие

соотношений 1-го векторного равенства
и потребуем обращения их в нуль. Эти
равенства составят

уравнений для переменных

Добавим m уравнений
связи. Получится система из n
уравнений с n переменными
для нахождения координат вектора

Подобный алгоритм нахождения

позволяет утверждать, что в формуле
разложения функции Лагранжа в ряд
Тейлора в окрестности точки

1-й дифференциал функции Лагранжа

обращается в нуль. Действительно,

Поведение приращения функции Лагранжа

будет определяться вторым дифференциалом

.
Следовательно, в точке

разыскивается локальный экстремум
функции Лагранжа, а значит, условный
экстремум функции
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Составить предложение по схеме как сущ
  • Как составить уравнение диссоциации фосфорной кислоты
  • Как найти энергия связи для лития
  • Как исправить асимметрию лица макияжем
  • Как найти угол трапеции описанной окружностью

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии