Определение ЭДС аккумуляторов
ЭДС покоя Eо свинцового аккумулятора с достаточной для практики точностью определяют по формуле
(1.3)
1,05 1,1 1,15 1,2 1,25 1,3 J, г/см3
Рис. 1. Изменение равновесной ЭДС и электродных потенциалов свинцового аккумулятора в зависимости от плотности электролита:
1- ЭДС; 2 — потенциал положительного электрода; 3 — потенциал отрицательного электрода
При рабочих плотностях электролита 1,07-1,30 г/см3 ЭДС не дает точного представления о степени разряженности аккумулятора, так как ЭДС разряженного аккумулятора с электролитом большей плотности будет выше. ЭДС не зависит от количества заложенных в аккумулятор активных материалов и от геометрических размеров электродов. ЭДС аккумуляторной батареи увеличивается пропорционально числу последовательно включенных аккумуляторов m:
Еаб=mЕ. (1.3.1.)
Но величину ЭДС с достаточной точностью можно определить и вольтметром без нагрузки, так как
(1.4)
где | Uв | – показания вольтметра; |
Iв | – сила тока потребляемая вольтметром; | |
RА | – внутреннее сопротивление аккумулятора. |
Так как величины Iв и RА малы, то практически величина Iв·RА близка к нулю и вольтметр показывает величину Eо, т.е. Uв = Eо. Сравнивая величины ЭДС, подсчитанной и измеренной, судят о наличии неисправностей батареи.
Если Uв равно Eо, то степень разряженности, подсчитанная по плотности, соответствует действительной.
Если Uв значительно меньше Eо (Uв = 0,5…1,5 В), в аккумуляторе имеется частичное замыкание электродов. Если Uв больше Eо, в аккумуляторе сульфатированы электроды или отстоялся электролит.
Если Uв равно нулю, то в аккумуляторе имеет место полное короткое замыкание электродов или обрыв в цепи. Для уточнения неисправности необходимо замерить общее напряжение неисправного и соседнего с ним аккумулятора. Если и в этом случае не будет показаний вольтметра, значит в неисправном аккумуляторе имеется обрыв штыря баретки от мостика пластин или от межэлементного соединения. Если вольтметр покажет напряжение только одного соседнего аккумулятора, то в неисправном аккумуляторе имеется короткое замыкание.
У аккумуляторных батарей со скрытыми межэлементными соединениями замеряется ЭДС всей батареи, а ЭДС по плотности подсчитывается как сумма Eо всех аккумуляторов. Если при измерении напряжение батареи равно нулю, то в цепи одного или нескольких аккумуляторов имеется обрыв. Если при измерении напряжение батареи равно 10 В, то в одном аккумуляторе полное или в нескольких – частичное короткое замыкание.
Для измерения ЭДС у аккумуляторных батарей с внешними межэлементными соединениями используют аккумуляторный пробник Э108 или нагрузочную вилку ЛЭ-2, у аккумуляторных батарей со скрытыми межэлементными соединениями – аккумуляторный пробник Э107. Измерения проводят при выключенном нагрузочном сопротивлении. На сильно окисленных выводах необходимо сделать царапины ножками прибора для создания надежного электрического контакта.
С помощью измерения и подсчета ЭДС невозможно выявить наличие таких неисправностей, как уплотнение активного вещества и разрушение электродов. Определить эти неисправности, а также выявить общую пригодность аккумуляторных батарей к эксплуатации позволяет измерение напряжения под нагрузкой.
Неэлектростатический характер ЭДС
Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектростатической природы, преодолевающей силу электрического отталкивания
Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электростатической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектростатической природы (центробежная сила, сила Лоренца, силы химической природы, сила со стороны вихревого электрического поля) которая бы преодолевала силу со стороны электростатического поля. Диссипативные силы, хотя и противодействуют электростатическому полю, не могут заставить ток течь в противоположном направлении, поэтому они не входят в состав сторонних сил, работа которых используется в определении ЭДС.
Советуем изучить — Краткий конспект на тему «припои и флюсы, применяемые при пайке»
От электростатики к электрокинетике
Между концом XVIII и началом XIX века работы таких учёных, как Кулон, Лагранж и Пуассон, заложили математические основы определения электростатических величин. Прогресс в понимании электричества на этом историческом этапе очевиден. Франклин уже ввёл понятие «количество электрической субстанции», но пока ещё и он, ни его преемники не смогли его измерить.
Следуя за экспериментами Гальвани, Вольта пытался найти подтверждения того, что «гальванические жидкости» животного были одной природы со статическим электричеством. В поисках истины он обнаружил, что когда два электрода из разных металлов контактируют через электролит, оба заряжаются и остаются заряженными несмотря на замыкание контура нагрузкой. Это явление не соответствовало существующим представлениям об электричестве потому, что электростатические заряды в подобном случае должны были рекомбинировать.
Вольта ввёл новое определение силы, действующей в направлении разделения зарядов и поддержании их в таком состоянии. Он назвал её электродвижущей. Подобное объяснение описания работы батареи не вписывалось в теоретические основы физики того времени. В Кулоновской парадигме первой трети XIX века э. д. с. Вольта определялась способностью одних тел вырабатывать электричество в других.
Советуем изучить — Билет №10
Важнейший вклад в объяснение работы электрических цепей внёс Ом. Результаты ряда экспериментов привели его к построению теории электропроводности. Он ввёл величину «напряжение» и определил её как разность потенциалов на контактах. Подобно Фурье, который в своей теории различал количество тепла и температуру в теплопередаче, Ом создал модель по аналогии, связывающую количество перемещаемого заряда, напряжение и электропроводность. Закон Ома не противоречил накопленным знаниям об электростатическом электричестве.
Затем, благодаря Максвеллу и Фарадею, пояснительные модели тока получили новую теорию поля. Это позволило разработать связанную с полем концепцию энергии как для статических потенциалов, так и для электродвижущей силы. Основные даты эволюции понятия ЭДС:
- 1800 г. — создание Вольтой гальванической батареи;
- 1826 г. — Ом формулирует свой закон для полной цепи;
- 1831 г. — обнаружение электромагнитной индукции Фарадеем.
Электрические цепи. Электродвижущая сила
Электрическая цепь
состоит из источника тока, потребителей электроэнергии, соединительных проводов и ключа, служащего для размыкания и замыкания цепи и других элементов (рис. 1).
Рис. 1
Рисунки, на которых изображены способы соединения электрических приборов в цепь, называются электрическими схемами
. Приборы на схемах обозначаются условными знаками.
Как отмечалось, для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ
A —
φ
B. Пусть в начальный момент времени
φ
A >
φ
B, тогда перенос положительного заряда
q
из точки
А
в точку
В
приведет к уменьшению разности потенциалов между ними. Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд из
B
в
A
. Если в направлении
А
→
В
заряды движутся под действием сил электростатического поля, то в направлении
В
→
А
перемещение зарядов происходит против сил электростатического поля, т.е. под действием сил неэлектростатической природы, так называемых сторонних сил. Это условие выполняется в источнике тока, который поддерживает движение электрических зарядов. В большинстве источников тока движутся только электроны, в гальванических элементах — ионы обоих знаков.
Рис. 2
Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил
. Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.
Любой источник тока характеризуют электродвижущей силой — ЭДС.
Электродвижущей силой
ε
источника тока называют физическую скалярную величину, равную работе сторонних сил по перемещению единич ного положительного заряда вдоль замкнутой цепи
(~varepsilon = frac{A_{stor}}{q} .)
Единицей электродвижущей силы в СИ является вольт (В).
ЭДС является энергетической характеристикой источника тока.
В источнике тока в процессе работы по разделению заряженных частиц происходит превращение механической, световой, внутренней и т.п. энергии в электрическую. Разделенные частицы накапливаются на полюсах источника тока (места, к которым с помощью клемм или зажимов подсоединяют потребители). Один полюс источника тока заряжается положительно, другой — отрицательно. Между полюсами источника тока создается электростатическое поле. Если полюса источника тока соединить проводником, то в такой электрической цепи возникает электрический ток. При этом характер поля меняется, оно перестает быть электростатическим.
Рис. 3
На рисунке 3 схематично в виде сферического проводника изображена отрицательная клемма источника тока и сечение присоединенного к ней конца металлического провода. Пунктиром показаны некоторые линии напряженности поля клеммы до внесения в него провода, а стрелками — силы, действующие на свободные электроны провода, находящиеся в точках, помеченных цифрами. Электроны в различных точках поперечного сечения провода под действием кулоновских сил поля клеммы приобретают движение не только вдоль оси провода. Например, электрон, находящийся в точке 1
, оказывается вовлеченным в «токовое» движение. Но вблизи точек
2, 3, 4, 5
электроны имеют возможность скапливаться на поверхности провода. Причем поверхностное распределение электронов по длине провода не будет равномерным. Следовательно, подключение провода к клемме источника тока приведет к тому, что некоторые электроны начнут двигаться вдоль провода, а часть электронов будет скапливаться на поверхности. Неравномерное распределение электронов на его поверхности обеспечивает неэквипотенциальность этой поверхности, наличие составляющих напряженности электрического поля, направленных вдоль поверхности проводника. Это поле перераспределенных электронов самого проводника и обеспечивает упорядоченное движение других электронов. Если распределение электронов по поверхности проводника с течением времени не изменяется, то такое поле называют
стационарным электрическим полем
. Таким образом, главную роль в создании стационарного электрического поля играют заряды, находящиеся на полюсах источника тока. При замыкании электрической цепи взаимодействие именно этих зарядов со свободными зарядами проводника приводит к появлению на всей поверхности проводника нескомпенсированных поверхностных зарядов. Именно эти заряды создают стационарное электрическое поле внутри проводника по всей его длине. Это поле внутри проводника однородное, и линии напряженности направлены вдоль оси проводника (рис. 4). Процесс установления электрического поля вдоль проводника происходит со скоростью
c
≈ 3·108 м/с.
Рис. 4
Как и электростатическое поле, оно потенциально. Но между этими полями имеются существенные отличия:
- электростатическое поле — поле неподвижных зарядов. Источником стационарного электрического поля являются движущиеся заряды, причем общее число зарядов и картина их распределения в данном пространстве с течением времени не изменяются;
- электростатическое поле существует вне проводника. Напряженность электростатического поля всегда равна 0 внутри объема проводника, а в каждой точке внешней поверхности проводника направлена перпендикулярно к этой поверхности. Стационарное электрическое поле существует и вне и внутри проводника. Напряженность стационарного электрического поля не равна нулю внутри объема проводника, а на поверхности и внутри объема имеются составляющие напряженности, не перпендикулярные к поверхности проводника;
- потенциалы разных точек проводника, по которому проходит постоянный ток, разные (поверхность и объем проводника не эквипотенциальны). Потенциалы всех точек поверхности проводника, находящегося в электростатическом поле, одинаковы (поверхность и объем проводника эквипотенциальны);
- электростатическое поле не сопровождается появлением магнитного поля, а стационарное электрическое поле сопровождается его появлением и неразрывно с ним связано.
Взаимоиндукция
Если собрать модуль из двух катушек, в определенных условиях можно наблюдать явление взаимной индукции. Элементарное измерение покажет, что по мере увеличения расстояния между элементами уменьшается магнитный поток. Обратное явление наблюдается по мере уменьшения зазора.
Советуем изучить — Подземные трансформаторные подстанции и их оборудование общие сведения
Чтобы находить подходящие компоненты при создании электрических схем, необходимо изучить тематические вычисления:
- можно взять для примера катушки с разным количеством витков (n1 и n2);
- взаимоиндукция (M2) при прохождении по первому контуру тока I1 будет вычислена следующим образом:
M2 = (n2 * F)/ I1
после преобразования этого выражения определяют значение магнитного потока:
F = (M2/ n2) *I1
для расчета эдс электромагнитной индукции формула подойдет из описания базовых принципов:
E2 = – n2 * ΔF/ Δt = M 2 * ΔI1/ Δt
При необходимости можно найти по аналогичному алгоритму соотношение для первой катушки:
E1 = – n1 * ΔF/ Δt = M 1 * ΔI2/ Δt.
Следует обратить внимание, что в этом случае значение имеет сила (I2) во втором рабочем контуре. Совместное влияние (взаимоиндукцию – М) рассчитывают по формуле:
Совместное влияние (взаимоиндукцию – М) рассчитывают по формуле:
M = K * √(L1 * l2).
Специальным коэффициентом (K) учитывают действительную силу связи между катушками.
- Подробности
- Категория: Оборудование
Страница 2 из 26
1.3. Основные электрические характеристики аккумуляторных батарей
Электродвижущая сила и напряжение. Электродвижущей силой (ЭДС) называется разность потенциалов положительного и отрицательного электродов аккумулятора при разомкнутой внешней цепи.
Величина ЭДС зависит, главным образом, от электродных потенциалов, т. е. от физических и химических свойств веществ, из которых изготовлены пластины и электролит, но не зависит от размеров пластин аккумулятора.
ЭДС кислотного аккумулятора зависит также от плотности электролита. Теоретически и практически установлено, что ЭДС аккумулятора с достаточной для практики точностью можно определить по формуле
Е=0,85 + g,
где g– плотность электролита при 15°С, г/см3.
Для кислотных стартерных аккумуляторов, в которых плотность электролита колеблется в пределах от 1,12 до 1,29 г/см3, ЭДС изменяется соответственно от 1,97 до 2,14 В.
Измерить ЭДС с абсолютной точностью почти невозможно. Однако для практических целей ЭДС приблизительно и достаточно точно можно измерить вольтметром, имеющим высокое внутреннее сопротивление (не менее 1000 Ом на 1 В). При этом через вольтметр будет проходить ток незначительной величины.
Напряжением аккумулятора называется разность потенциалов положительных и отрицательных пластин при замкнутой внешней цепи, в которую включен какой-либо потребитель тока, т. е. при прохождении тока через аккумулятор. При этом показания вольтметра при измерении напряжения всегда будут меньше, чем при замере ЭДС, и эта разность будет тем больше, чем больший ток проходит через аккумулятор.
ЭДС и напряжение зависят от ряда факторов. ЭДС изменяется от плотности и температуры электролита. Напряжение в свою очередь зависит от ЭДС, величины разрядного тока (нагрузки) и внутреннего сопротивления аккумулятора.
Зависимость ЭДС аккумулятора от плотности электролита (концентрации раствора Н2SО4) приведена ниже:
Плотность электролита при 25°С,
г/см3……………………………… 1,05 1,10 1,15 1,20 1,25 1,28 1,30
Н2SО4, %……………………….. 7,44 14,72 21,68 27,68 33,8 37,4 39,7
ЭДС аккумулятора, в………. 1,906 1,960 2,005 2,048 2,095 2,125 2,144
Из этой зависимости видно, что с увеличением концентрации серной кислоты ЭДС также увеличивается. Отсюда, однако, не следует, что для получения большей ЭДС можно чрезмерно увеличивать плотность электролита. Установлено, что стартерные аккумуляторные батареи достаточно хорошо работают тогда, когда плотность электролита в них составляет 1,27 – 1,29 г/см3.Кроме того, электролит плотностью 1,29 г/см3имеет самую низкую точку замерзания.
При изменении температуры электролита ЭДС аккумулятора также меняется. Так, с изменением температуры электролита от +20°С до -40°С ЭДС аккумулятора снижается с 2,12 до 2,096 в. В значительно большей степени с изменением температуры электролита меняется напряжение, так как оно зависит не только от ЭДС, но и от внутреннего сопротивления аккумулятора, которое с понижением температуры значительно возрастает.
Между ЭДС, напряжением, внутренним сопротивлением и величиной разрядного тока существует следующая зависимость:
U=Е-Ir,
где U – напряжение;
Е – э. д. с. аккумулятора;
I – величина разрядного тока;
r – внутреннее сопротивление аккумулятора.
Из этой формулы видно, что при постоянном значении ЭДС, измеряемой при разомкнутой цепи, напряжение аккумулятора падает по мере увеличения отдаваемого в процессе разряда тока.
Внутреннее сопротивление. Внутреннее сопротивление аккумулятора сравнительно мало, но в тех случаях, когда аккумуляторная батарея разряжается силой тока большой величины, например, при пуске двигателя стартером, внутреннее сопротивление каждого аккумулятора имеет очень существенное значение.
Внутреннее сопротивление складывается из сопротивления электролита, сепараторов и пластин. Главной составляющей является сопротивление электролита, которое изменяется с изменением температуры и концентрации серной кислоты.
Зависимость удельного сопротивления электролита плотностью 1,30 г/см3 от температуры показана ниже:
Температура, °С Удельное сопротивление электролита Ом·см
+ 40 0,89
+ 25 1,28
+ 18 1,46
0 1,92
– 18 2,39
Как видно из приведенных данных, с понижением температуры электролита от +40°С до -18°С удельное сопротивление возрастает в 2,7 раза. Наименьшее значение удельного сопротивления имеет электролит плотностью 1,223 г/см3при 15°С (30%-ный раствор Н2SО4 по весу).
Вторым составляющим сопротивления в аккумуляторе является сопротивление сепараторов. Оно зависит в основном от их пористости. Сепараторы изготавливают из электроизолирующего материала, поры которого заполнены электролитом, что и обусловливает электропроводимость сепаратора.
В связи с этим можно было бы предположить, что с изменением температуры сопротивление сепаратора будет изменяться в той же пропорции, что и сопротивление электролита, но это не совсем так. Некоторые виды сепараторов, например, сепараторы из микропористого эбонита (мипора) не чувствительны к изменению температуры.
Третьим фактором, входящим в общую сумму внутреннего сопротивления элемента, служит активная масса и решетки положительных и отрицательных пластин.
Сопротивление губчатого свинца отрицательной пластины незначительно отличается от сопротивления материала решетки, в то время как сопротивление перекиси свинца положительной пластины превышает сопротивление решетки в 10000 раз. В отличие от сопротивления электролита сопротивление решетки уменьшается с понижением температуры. Но ввиду того, что сопротивление электролита во много раз больше сопротивления пластин, то уменьшение их сопротивления с понижением температуры весьма незначительно компенсирует общее снижение сопротивления электролита.
На сопротивление пластин влияет степень заряженноcти аккумуляторной батареи. В процессе разряда сопротивление пластин возрастает, так как сернокислый свинец, образующийся на положительных и отрицательных пластинах, почти не проводит электрический ток.
По сравнению с другими типами аккумуляторов кислотные аккумуляторы имеют сравнительно малое внутреннее сопротивление, что и определяет их широкое применение в качестве стартерных батарей на автомобильном транспорте.
Емкость. Емкостью аккумулятора называется количество электричества, которое может отдать полностью заряженный аккумулятор при заданном режиме разряда, температуре и конечном напряжении. Емкость измеряют в ампер-часах и определяют по формуле
C=Iptp,
где С – емкость, а·ч;
Ip – сила разрядного тока, а;
tp – время разряда, ч.
Величина емкости аккумуляторной батареи в основном определяется следующими факторами: режимом разряда (величиной разрядного тока), концентрацией электролита и температурой. Аккумуляторы при форсированных режимах разряда отдают емкость меньше, чем при разряде более длительными режимами (небольшой величиной тока).
Снижение емкости при форсированных режимах разряда происходит по следующим причинам.
В процессе разряда превращение активной массы пластин сернокислый свинец происходит не только на поверхности пластин, но и внутри них. Если разряд осуществляют током небольшой силы и медленно, то электролит успевает проникать в глубокие слои активной массы, а вода, образующаяся в результате реакции в порах, успевает смешаться с основной массой электролита. При форсированных режимах разряда концентрация серной кислоты в электролите внутри пластин значительно снижается, свежий электролит не успевает проникнуть в глубь активной массы, реакция идет в основном на поверхности пластин, так как поры закупориваются и внутрилежащие слои активной массы почти не принимают участия в реакции. При этом в результате значительного увеличения внутреннего сопротивления аккумулятора напряжение на его зажимах резко падает.
Однако после того как аккумулятор будет разряжен при форсированном режиме, после небольшого перерыва его снова можно разряжать. Это служит наглядным подтверждением того, что снижение емкости в аккумуляторе при разряде большой величиной силы тока происходит в результате неполного использования активной массы пластин.
Кроме величины разрядного тока, на емкость аккумулятора значительно влияет концентрация электролита, которая определяет потенциал пластин, электрическое сопротивление электролита и его вязкость, влияющую в свою очередь на способность проникания электролита в глубокие слои активной массы пластин.
В процессе разряда плотность электролита уменьшается и в конце разряда к активной массе пластин поступает недостаточное количество кислоты, в результате чего напряжение аккумулятора падает и дальнейший его разряд становится невозможным. Чем больше разница между концентрациями электролита, находящегося вне пластин, и электролита, находящегося в порах активной массы, тем интенсивнее происходит процесс проникновения кислоты в поры пластин. В этом отношении применение электролита с большей плотностью, казалось бы, должно увеличить емкость. Но в действительности чрезмерно большая плотность не ведет к увеличению емкости, так как увеличение плотности электролита неизбежно приводит к повышению вязкости электролита, в результате чего процесс проникновения электролита в глубину активной массы пластин ухудшается, и напряжение на зажимах аккумулятора падает.
Установлено, что наибольшую емкость имеет аккумуляторная батарея с плотностью электролита 1,27 – 1,29 г/см3.
Емкость аккумуляторной батареи зависит также от температуры. С понижением температуры емкость снижается, а с повышением увеличивается. Это объясняется тем, что с понижением температуры увеличивается вязкость электролита, в результате чего он поступает к пластинам в недостаточном количестве.
Значения вязкости электролита плотностью 1,223 г/см3 в зависимости от температуры приведены ниже:
Температура, °С………… +30 +25 +20 +10 0 – 10 – 20 – 30
Абсолютная вязкость,
пз(пуаз)………………….. 1,596 1,784 2,006 2,600 3,520 4,950 7,490 12,200
Емкость положительных и отрицательных пластин с изменением температур изменяется не в одинаковой степени. Если при обычной температуре емкость элемента лимитируется положительными пластинами, то при низких температурах – отрицательными, так как при понижении температуры емкость отрицательной пластины уменьшается в значительно большей степени, чем положительной.
В последнее время емкость аккумуляторных батарей при низких температурах удалось значительно повысить за счет применения более тонких синтетических сепараторов с высокой пористостью (до 80%) и присадок, так называемых расширителей, к активной массе отрицательных пластин, которые придают ей большую пористость.
Помимо режима разряда, концентрации электролита и температуры емкость аккумуляторной батареи зависит от срока ее службы, от срока хранения, в течение которого батарея бездействовала, от наличия вредных примесей и т. д. Емкость новой аккумуляторной батареи, поступающей в эксплуатацию, первое время (в течение гарантийного срока службы) повышается, так как происходит формирование пластин, после чего на протяжении определенного периода остается постоянной и затем начинает постепенно падать. Потеря емкости аккумуляторной батареей в конце срока службы объясняется уменьшением пористости отрицательных пластин и выпадением активной массы положительных пластин.
Если заряженная батарея продолжительное время бездействовала, то при ее разряде отданная емкость будет значительно меньше. Это объясняется естественным явлением саморазряда при бездействии батареи.
Еще по теме:
На чтение 9 мин Просмотров 2.1к. Опубликовано 11.09.2022 Обновлено 11.09.2022
Содержание
- Понятие ЭДС и единица измерения
- Где и как образуется электродвижущая сила
- Виды ЭДС
- Законы и формулы
- ЭДС аккумуляторной батареи
- ЭДС индукции
- Внутреннее сопротивление источника ЭДС
- Закон Ома для полной цепи
- Как найти мощность ЭДС
Чтобы в какой-либо среде (металле, растворе, ионизированном газе и т.п.) протекал электрический ток в течение продолжительного времени, недостаточно наличия свободных носителей заряда и электрического поля. Еще потребуется сила, которая будет разделять заряды в направлении, противоположном направлению электрического поля.
Понятие ЭДС и единица измерения
Если имеется заряженный предмет и соединить его с электрически нейтральным (или противоположно заряженным предметом), некоторое время в цепи будет существовать ток. Как только все свободные электроны перейдут от одного тела к другому, и заряды уравняются, ток прекратится.
Это можно увидеть на примере школьного опыта с двумя электроскопами. Один из них заряжен (например, положительно), а другой заряда не имеет. Если их соединить металлическим стержнем, то заряды перейдут от одного прибора к другому. Количество зарядов уравновесится, потенциалы электроскопов станут равными, электрическое поле прекратит действие на электроны, и ток перестанет течь.
Чтобы ток продолжался, надо носители зарядов из второго электроскопа перенести обратно в первый. Для этого нужна сторонняя сила, действующая против направления электрического поля. Такая сила называется ЭДС. Расшифровка этого сокращения – электродвижущая сила.
Можно провести аналогию с водой. Если есть два бассейна, один из которых находится выше другого, то вода может перетекать из верхнего водоема в нижний. Но как только запас воды закончится, переток прекратится. Чтобы он продолжался, надо воду из нижнего бассейна перекачивать обратно в верхний (например, с помощью насоса).
ЭДС обозначается греческой буквой ε (эпсилон), а иногда E. Измеряется ЭДС, как и напряжение, в вольтах (1 В). Понятие электродвижущей силы является не очень удачным – сила не измеряется в вольтах. Но этот термин укоренился и широко применяется.
Из-за сходства единиц измерения часто происходит путаница ЭДС и напряжения. Эти термины регулярно подменяются друг с другом. В некоторых случаях действительно принципиальной разницы нет, но в целом эти понятия различны.
В видео простыми словами объясняется чем отличаются ЭДС и напряжение
Где и как образуется электродвижущая сила
Электродвижущая сила образуется в источнике питания. Это необходимое условие существования разности потенциалов на выходных клеммах такого источника. Образовываться ЭДС может по-разному, в зависимости от устройства источника.
Виды ЭДС
Электродвижущая сила может быть различной природы (но всегда неэлектрической). В зависимости от типа источника питания ЭДС может быть:
- фотоэлектрического характера – возникает в полупроводниковых переходах при облучении видимым светом или ультрафиолетом (на этом эффекте основана работа солнечных батарей);
- электрохимической природы – всем известные гальванические элементы и аккумуляторы;
- термоэлектрической ЭДС – возникает при разности температур между холодным и горячим спаем металлов (термопары для генерации электроэнергии и измерения температуры);
- пьезоэлектрической природы (возникает при деформации некоторых материалов) – применяется в пьезозажигалках;
- ЭДС электромагнитного характера – генераторы электростанций, автомобилей и т.п.
В технике встречаются и некоторые другие виды ЭДС, но реже.
Законы и формулы
Электродвижущая сила совершает работу по переносу заряда, а движущийся заряд представляет собой электрический ток/ Этот ток равен I=qt, где q – заряд, перенесенный полем за время t. За это время поле совершает работу A=ε*q= ε*I*t.
Можно определить ЭДС, как отношение работы по переносу заряда к величине этого заряда:
ε=A/q=A/(I*t)
ЭДС аккумуляторной батареи
ЭДС аккумуляторной батареи определяется типом электрохимических реакций, протекающих внутри элемента. Для различных технологий батарей наибольшая электродвижущая сила составит:
- Свинцово-кислотные элементы – 2,17 вольта.
- Никель-кадмиевые батареи – 1,37 вольта.
- Никель-металлогидридные элементы – 1,37 вольта.
- Щелочные аккумуляторы – 1,45 вольта.
- Литий-ионные элементы – 4,2 вольта.
Электродвижущая сила химических источников тока не зависит от размеров и площади пластин. Чтобы повысить выходное напряжение, единичные аккумуляторы соединяют в батареи последовательно.
ЭДС индукции
Основной источник получения электроэнергии на Земле – генераторы постоянного и переменного тока. Их принцип действия основан на создании ЭДС индукции.
Если замкнутый контур находится в магнитном поле, и его пронизывает магнитный поток Ф, и этот поток изменяется во времени (по направлению или по величине), то в контуре возникает ЭДС. Ее величина равна:
ε=∆Ф/∆t, где Ф – магнитный поток, а t – время его изменения.
В свою очередь магнитный поток зависит от величины магнитной индукции и площади поверхности, охватываемой контуром. Следовательно, чтобы увеличить ЭДС, надо усиливать магнитное поле (повышением тока возбуждения), или увеличивать площадь витка (при разработке или изготовлении генератора), или заставить магнитный поток изменяться быстрее (например, увеличивая скорость вращения ротора генератора). Каждый путь имеет определенные технические ограничения, поэтому в генераторах делают большое количество витков, соединяя их последовательно. При этом электродвижущие силы всех контуров складываются.
Внутреннее сопротивление источника ЭДС
Пусть имеется источник тока — например, аккумулятор — с напряжением на разомкнутых клеммах (в отсутствие нагрузки) 12 вольт. Если его нагрузить на сопротивление в 5 Ом, напряжение на клеммах упадет (например, до 11,5 вольт). Если нагрузить аккумулятор на сопротивление 1 Ом, на его выходных терминалах напряжение снизится до 9,86 вольт.
Это явление легко объяснить, если ввести понятие внутреннего сопротивления источника питания. При разделении зарядов они движутся к соответствующим полюсам, но при этом взаимодействуют с кристаллической решеткой вещества, с ионами электролитов и отдают часть своей энергии. Движение носителей заряда замедляется, ток уменьшается, его ограничивает внутреннее сопротивление источника.
Это сопротивление включается последовательно с нагрузкой, и часть выходного напряжения падает на нем. Чем меньше сопротивление нагрузки, тем больше ток, тем больше потеря напряжения на внутреннем сопротивлении источника.
Внутреннее сопротивление определяется его конструкцией и типом ЭДС. Например, в аккумуляторе внутреннее сопротивление зависит от электрохимических реакций, протекающих в источнике тока.
Для анализа электрических цепей внутреннее сопротивление рисуется на схеме в виде резистора, подключенного внутри источника параллельно его выходным клеммам. На самом деле, конечно, никакого резистора там нет, но это удобно для рассмотрения процессов, протекающих в цепи.
Для наглядности рекомендуем видео-урок.
Закон Ома для полной цепи
Один из фундаментальных законов электротехники – закон Ома для участка цепи. Согласно ему, ток на участке цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению.
Ток в полной цепи, в которую кроме нагрузки входит еще и источник, определяется величиной ЭДС, приложенной к внутреннему сопротивлению r и сопротивлению внешней нагрузки R, включенными последовательно. Общее значение сопротивления равно r+R. Следовательно, ток определяется соотношением I=ε/(R+r).
Как найти мощность ЭДС
Идеальный источник имеет нулевое внутреннее сопротивление. В нем напряжение под нагрузкой не уменьшается и всегда равно ЭДС. На практике таких источников не бывает.
Согласно закону Ома для полной цепи, формула ЭДС источника выглядит, как ε=I*R+I*r (в таком виде формулируется второй закон Кирхгофа). В этом выражении:
- I*R=Uвнеш – напряжение на внешней нагрузке;
- i*r=Uвнутр – падение напряжения на внутреннем сопротивлении источника.
Если источник идеален, то r=0 и вся ЭДС прикладывается к нагрузке. Чем выше r и выше ток, тем меньше напряжения достается потребителю, тем меньшая мощность выделяется на нем. Отсюда очевидно, что с ростом внутреннего сопротивления r, при равном токе, снижается напряжение на внешней нагрузке.
Внутреннее сопротивление источника можно рассчитать по результатам измерений напряжения на терминалах источника ЭДС по итогам двух замеров. Для этого надо воспользоваться законом Ома для полной цепи. Так, в рассмотренном примере, в первом случае падение напряжения на резисторе в 5 Ом составляет 11,5 вольт. Тогда можно найти ток в цепи по формуле:
I=U/R=11,5/5=2,3 А.
Выражение для ЭДС примет вид:
ε= 2,3*5+2,3*r=11,5+2,3*r.
Для второго замера на сопротивлении 1 Ом ток составит:
I=U/R=9,86/1=9,86 ампер
Следовательно,
ε= 9,86 *1+9,86 *r=9,86 +9,86 *r.
Левые части уравнений равны, тогда можно приравнять правые:
11,5+2,3*r=9,86 +9,86 *r
Путем несложных вычислений получается, что r=0,217 Ом. Если источник имеет меньшее внутреннее сопротивление, то при подключении той же нагрузки на ней будет большее напряжение. Напряжение на разомкнутых клеммах (на холостом ходу) в отсутствие ток будет примерно равно значению величины ЭДС. Таким образом, чем меньше внутреннее сопротивление, тем большее напряжение способен выдавать источник в нагрузку и тем больше мощность ЭДС.
Если же идеальный источник тока замкнуть накоротко, ток короткого замыкания будет бесконечным, так как R=r=0. На самом деле этого не происходит – в реальном источнике ток КЗ при R=0 ограничивается внутренним сопротивлением r.
Электродвижущая сила является одним из основополагающих понятий в физике. Ее суть и значение надо четко осознавать, в противном случае дальнейшее освоение электротехники будет затруднено.
Условие задачи:
Определить ЭДС аккумулятора, если при нагрузке в 5 А он отдает во внешнюю цепь 10 Вт, а при сопротивлении внешней цепи 0,25 Ом – 16 Вт.
Задача №7.4.43 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
(I_1=5) А, (P_1=10) Вт, (R_2=0,25) Ом, (P_2=16) Вт, (rm E-?)
Решение задачи:
Известно, что мощность, выделяющуюся во внешней цепи, можно определить то такой формуле:
[P = {I^2}R;;;;(1)]
Воспользуемся этой формулой, чтобы найти сопротивление внешней цепи (R_1), при котором течет ток (I_1):
[{P_1} = I_1^2{R_1} Rightarrow {R_1} = frac{{{P_1}}}{{I_1^2}}]
Решать задачу в общем виде не будем, сразу посчитаем значение сопротивления (R_1):
[{R_1} = frac{{10}}{{{5^2}}} = 0,4;Ом]
Продолжим свои рассуждения, запишем закон Ома для полной цепи:
[I = frac{{rm E}}{{R + r}}]
Тогда формула (1) примет такой вид:
[P = frac{{{{rm E}^2}R}}{{{{left( {R + r} right)}^2}}}]
Отлично, тогда запишем эту формулу для двух случаев, говорящихся в условии этой задачи:
[left{ begin{gathered}
{P_1} = frac{{{{rm E}^2}{R_1}}}{{{{left( {{R_1} + r} right)}^2}}} hfill \
{P_2} = frac{{{{rm E}^2}{R_2}}}{{{{left( {{R_2} + r} right)}^2}}} hfill \
end{gathered} right.]
Разделим верхнее равенство на нижнее:
[frac{{{P_1}}}{{{P_2}}} = frac{{{R_1}{{left( {{R_2} + r} right)}^2}}}{{{R_2}{{left( {{R_1} + r} right)}^2}}}]
Решим это уравнение с одной неизвестной (r), для чего подставим численные значения входящих величин:
[frac{{10}}{{16}} = frac{{0,4 cdot {{left( {0,25 + r} right)}^2}}}{{0,25 cdot {{left( {0,4 + r} right)}^2}}}]
Перемножим “крест-накрест”:
[2,5{left( {0,4 + r} right)^2} = 6,4{left( {0,25 + r} right)^2}]
Раскроем скобки в обеих частях уравнения:
[0,4 + 2r + 2,5{r^2} = 0,4 + 3,2r + 6,4{r^2}]
[2r + 2,5{r^2} = 3,2r + 6,4{r^2}]
[3,9{r^2} + 1,2r = 0]
[rleft( {3,9r + 1,2} right) = 0]
[left[ begin{gathered}
r = 0 hfill \
r = – frac{{12}}{{39}} hfill \
end{gathered} right.]
Понятно, что внутреннее сопротивление отрицательным быть не может, значит оно все-таки равно нулю. Тогда ЭДС (rm E) можно найти по одной из этих формул (мы же воспользуемся первой):
[left[ begin{gathered}
{rm E} = {I_1}{R_1} hfill \
{rm E} = sqrt {{P_2}{R_2}} hfill \
end{gathered} right.]
[{rm E} = 5 cdot 0,4 = 2;В]
Ответ: 2 В.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
7.4.42 К источнику тока подключен реостат. При сопротивлении реостата 4 Ом и 9 Ом получается
7.4.44 На резисторе внешней цепи аккумулятора выделяется тепловая мощность 10 Вт
7.4.45 При подключении к источнику тока ЭДС 15 В сопротивления 15 Ом КПД источника равен 75%
На основании измеренной и приведенной
к температуре 25 С
плотности электролита 25
вычисляют степень разряженности Cр
аккумуляторов по формуле
(1.0)
где |
з |
плотность электролита полностью |
р |
плотность электролита полностью |
Разность между плотностью электролита
полностью заряженного и полностью
разряженного аккумулятора з
– р составляет
0,16 г/см3 и не зависит от плотности
электролита полностью заряженного
аккумулятора.
Степень разряженности аккумуляторной
батареи определяется по степени
разряженности аккумулятора, имеющего
самую низкую плотность электролита.
Батареи, разряженные более, чем на 25 %
зимой и на 50 % летом, допускаются
к дальнейшей эксплуатации только после
заряда.
Необходимо учитывать, что снижение
плотности электролита в аккумуляторах
может происходить не только в результате
разряда, но и в результате неисправностей
(сульфатация, замыкание электродов).
Для того чтобы определить эти неисправности
и подтвердить подсчитанную степень
разряженности, необходимо измерить
электродвижущую силу (ЭДС) и напряжение
аккумулятора под нагрузкой.
1.3.4.Определение эдс аккумуляторов
ЭДС покоя Eо свинцового
аккумулятора с достаточной для практики
точностью определяют по формуле
(1.0)
1,05 1,1 1,15 1,2 1,25 1,3
J,
г/см3
Рис. 1. Изменение
равновесной ЭДС и электродных
потенциалов свинцового аккумулятора
в зависимости от плотности электролита:
1- ЭДС; 2 — потенциал
положительного электрода; 3 — потенциал
отрицательного электрода
При рабочих
плотностях электролита 1,07-1,30 г/см3
ЭДС не дает точного представления о
степени разряженности аккумулятора,
так как ЭДС разряженного аккумулятора
с электролитом большей плотности будет
выше. ЭДС не зависит от количества
заложенных в аккумулятор активных
материалов и от геометрических
размеров электродов. ЭДС аккумуляторной
батареи увеличивается пропорционально
числу последовательно включенных
аккумуляторов m:
Еаб=mЕ.
(1.3.1.)
Но величину ЭДС с достаточной точностью
можно определить и вольтметром без
нагрузки, так как
(1.0)
где |
Uв |
– показания вольтметра; |
Iв |
– сила тока потребляемая вольтметром; |
|
RА |
– внутреннее сопротивление аккумулятора. |
Так как величины Iв
и RА малы, то
практически величина Iв·RА
близка к нулю и вольтметр показывает
величину Eо, т.е. Uв
= Eо. Сравнивая
величины ЭДС, подсчитанной и измеренной,
судят о наличии неисправностей
батареи.
Если Uв равно Eо,
то степень разряженности, подсчитанная
по плотности, соответствует
действительной.
Если Uв значительно
меньше Eо (Uв
= 0,5…1,5 В), в аккумуляторе имеется
частичное замыкание электродов. Если
Uв больше Eо,
в аккумуляторе сульфатированы
электроды или отстоялся электролит.
Если Uв равно нулю,
то в аккумуляторе имеет место полное
короткое замыкание электродов или
обрыв в цепи. Для уточнения неисправности
необходимо замерить общее напряжение
неисправного и соседнего с ним
аккумулятора. Если и в этом случае
не будет показаний вольтметра, значит
в неисправном аккумуляторе имеется
обрыв штыря баретки от мостика пластин
или от межэлементного соединения. Если
вольтметр покажет напряжение только
одного соседнего аккумулятора, то в
неисправном аккумуляторе имеется
короткое замыкание.
У аккумуляторных батарей со скрытыми
межэлементными соединениями замеряется
ЭДС всей батареи, а ЭДС по плотности
подсчитывается как сумма Eо
всех аккумуляторов. Если при измерении
напряжение батареи равно нулю, то в цепи
одного или нескольких аккумуляторов
имеется обрыв. Если при измерении
напряжение батареи равно 10 В, то в одном
аккумуляторе полное или в нескольких
– частичное короткое замыкание.
Для измерения ЭДС у аккумуляторных
батарей с внешними межэлементными
соединениями используют аккумуляторный
пробник Э108 или нагрузочную вилку
ЛЭ-2, у аккумуляторных батарей со скрытыми
межэлементными соединениями –
аккумуляторный пробник Э107. Измерения
проводят при выключенном нагрузочном
сопротивлении. На сильно окисленных
выводах необходимо сделать царапины
ножками прибора для создания надежного
электрического контакта.
С помощью измерения и подсчета ЭДС
невозможно выявить наличие таких
неисправностей, как уплотнение активного
вещества и разрушение электродов.
Определить эти неисправности, а также
выявить общую пригодность аккумуляторных
батарей к эксплуатации позволяет
измерение напряжения под нагрузкой.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #