Параллелепипед — это частный случай призмы, в основании которой лежит прямоугольник с длиной a и шириной b. Двигаясь по вертикальной или наклонной оси на определенную высоту c, данный прямоугольник создает объемное тело, именуемое параллелепипедом.
Параллелепипед по определению может быть наклонным или прямым, то есть угол между высотой и прямоугольником в основании варьируется от 0 до 90 градусов. Прямой параллелепипед имеет в качестве граней исключительно прямоугольники, и даже иногда квадрат (в основании), поэтому решение задач с его участием значительно облегчено. В случае с наклонным параллелепипедом в формулах необходимо учитывать, что боковой гранью является параллелограмм, строение которого зависит также от угла его наклона.
Помимо трех вышеуказанных параметров параллелепипеда — длины, ширины высоты, являющихся его ребрами, в данном теле можно также провести еще несколько отрезков, соединяющих его вершины. Как и в геометрических фигурах на плоскости, линии, проходящие внутри основного каркаса через вершины, называются диагоналями. Диагонали боковых граней прямоугольного параллелепипеда идентичны диагоналям прямоугольников, которыми представлены грани — их, соответственно, можно вычислить, используя подходящий онлайн калькулятор для прямоугольников.
Другое дело — диагональ, проходящая не по внешней поверхности прямоугольного параллелепипеда, а сквозь него, соединяя противоположные вершины верхнего и нижнего оснований. При этом, какая именно пара противоположных вершин соединена, не имеет значения для расчетов, так как если рассмотреть сечения, можно увидеть, что обе диагонали параллелепипеда идентичны и найти их можно одним и тем же способом.
Итак, для того чтобы вывести формулу диагонали через длину, ширину и высоту, необходимо заключить диагональ в плоскую геометрическую фигуру, свойства которой можно будет использовать. Для этого в любом основании — верхнем или нижнем, проводится диагональ, которая образует с диагональю параллелепипеда и боковым ребром (высотой) прямоугольный треугольник. Применив одну лишь теорему Пифагора, можно найти диагональ основания через ширину и длину,а затем диагональ прямоугольного параллелепипеда, добавив в расчеты высоту.
Используя последнюю и предпоследнюю формулу, можно также успешно найти длину, ширину или высоту прямоугольного параллелепипеда, имея в заданных условиях три параметра из четырех, включая диагональ параллелепипеда.
Например:
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»
Смотрите также
Ответ или решение 2
1) Сначала запишем формулу нахождения объёма прямоугольного параллелепипеда:
V = a × b × h, где а — длина, b — ширина, h — высота.
2) Из формулы нахождения объёма парвллелепипеда выразим формулу нахождения длины:
Объём параллелепипеда 40 м.куб. Высота равна 4 м, ширина 2 м. Найдите длину параллелепипеда.
40 : 4 : 2 = 5 (м) — длина параллелепипеда.
Прямоугольный параллелепипед — пространственная фигура с шестью гранями, каждая из которых является прямоугольником. Противолежащие грани параллелепипеда равны.
По условию задан прямоугольный параллелепипед со следующими параметрами:
Объём прямоугольного параллелепипеда
Объём прямоугольного параллелепипеда V вычисляется как произведение площади основания многогранника и его высоты.
Площадь основания, которая представляет собой прямоугольник, выражается как произведение его длины и ширины, то есть
S (основания) = а * b.
Соответственно, V (прямоугольного параллелепипеда) = S (основания) * h = а * b * h.
Объём прямоугольного параллелепипеда равен произведению всех его параметров: высоты, ширины и длины.
Длина прямоугольного параллелепипеда
Таким образом, из приведенной выше зависимости можно выразить длину прямоугольного параллелепипеда:
Итак, длина прямоугольного параллелепипеда равна отношению его объема к произведению ширины и высоты.
Ответ
Проверено экспертом
Ответ:
Объем = длина * ширина * высота
длина = объем : (ширина * высота)
Пошаговое объяснение:
- Комментарии (2)
- Отметить нарушение
Ответ
Чтобы найти объем прямоугольного параллелепипеда, нужно умножить длину, ширину и высоту. Пример: Длина прямоугольного параллелепипеда равна 5 см, ширина — 10 см, а высота — 4 см, то объем такого прямоугольного параллелепипеда будет равен 4*5*10=200 см куб.
Объем прямоугольного параллелепипеда, формула.
Параллелепипедом является призма, основание у которой – это параллелограмм. У параллелепипеда
6 граней, а они, в свою очередь, являются параллелограммами.
Параллелепипед, у которого 4 боковые грани — это прямоугольники, является прямым
Прямой параллелепипед, у которого все 6 граней прямоугольники, является прямоугольным.
Другими словами, прямоугольный параллелепипед — это объемная фигура, у которой есть 6 граней, и
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
где, H — высота параллелепипеда,
a – длина параллелепипеда,
b – ширина параллелепипеда,
h — высота прямоугольного параллелепипеда,
Примеры прямоугольного параллелепипеда: спортивный зал, кирпич, картонная коробка или столешница
Длины 3 рёбер прямоугольного параллелепипеда, которые имеют общий конец, называются измерениями
прямоугольного параллелепипеда.
Прямоугольный параллелепипед с одинаковыми измерениями является кубом. Все 6 граней куба — это
Квадрат длины диагонали прямоугольного параллелепипеда = сумме квадратов 3 его измерений.
Объем прямого параллелепипеда, формула.
Как найти объем параллелепипеда?
Площадь боковой поверхности параллелепипеда, формула:
где Ро — периметр основания,
Площадь полной поверхности, формула
где Sо — площадь основания
Формула объёма прямого параллелепипеда:
Объем произвольного параллелепипеда.
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры.
Чему равен объём параллелепипеда? Объем параллелепипеда равен абсолютной величине смешанного
произведения трёх векторов, которые определяются 3-мя сторонами параллелепипеда, которые исходят
из одной вершины.
Соотношение длина сторон параллелепипеда – угол между ними даёт утверждение, что определитель
Грама указанных 3х векторов равен квадрату их смешанного произведения.
Как найти длину диагонали прямоугольного параллелепипеда ? По какой формуле найти диагональ параллелепипеда ?Диагональ прямоугольного параллелепипеда — это отрезок, соединяющий его противоположные вершины . Итак, у нас есть прямоугольный параллелепипед с диагональю d и со сторонами a, b, c . Одно из свойств параллелепипеда гласит, что квадрат длины диагонали d равен сумме квадратов трёх его измерений a, b, c. Отсюда вывод, что длина диагонали может быть легко рассчитана по следующей формуле : Также :Как найти высоту параллелепипеда?модератор выбрал этот ответ лучшим Nonsense 7 лет назад Прямоугольным параллелепипедом (ПП) является ни что иное, как призма, основанием у которой прямоугольник. У ПП все диагонали равны, значит любая его диагональ рассчитывается по формуле: где
Можно дать и другое определение, рассматривая декартову прямоугольную систему координат: Диагональ ПП это радиус-вектор любой точки пространства, заданной координатами x, y и z в декартовой системе координат. Этот радиус вектор к точке проводится из начала координат. А координатами точки будут проекции радиус-вектора (диагонали ПП) на координатные оси. Проекции совпадают с вершинами данного параллелепипеда. Zolotynka 8 лет назад Если у прямоугольного параллелепипеда известны длина, высота и ширина (a,b,c) то формула для расчета диагонали будет выглядеть таким образом: Обычно учителя не предлагают своим ученикам «голую» формулу, а прилагают усилия, чтобы те могли самостоятельно ее вывести, задавая наводящие вопросы:
Обычно после ответа на поставленные вопросы, ученики без труда самостоятельно выводят данную формулу. Лолочка611 8 лет назад Прямоугольный параллелепипед это один из так званных многогранников, который состоит из 6 граней, каждая из которых является прямоугольником. А диагональ — это отрезок, который соединяет противоположные вершины параллелограмма. Если длину, ширину и высоту прямоугольного параллелепипеда принять за a, b, c соответственно, то формула его диагонали ( D ) будет выглядеть следующим образом: D^2=a^2+b^2+c^2. дольфаника 8 лет назад Нашлась в интернете неплохая схема-таблица с полным перечислением всего, что есть в параллепипеде. Есть формула, чтобы найти диагональ, которая обозначается d. Есть изображение грани, вершины и других важных для параллепипеде вещей. Багира999 8 лет назад Прямоугольный параллелепипед — это разновидность многогранника, состоящая из 6 граней, в основании которого — прямоугольник. Диагональ — это отрезок, который соединяет противоположные вершины параллелограмма. Формула нахождения длины диагонали — квадрат диагонали равен сумме квадратов трех измерений параллелограмма. Koluchiy 8 лет назад Диагонали прямоугольного параллелепипеда равны. Также как и диагонали его противоположных граней. Длину диагонали можно вычислить, зная длину рёбер параллелограмма, исходящих из одной вершины. Эта длина равна корню квадратному из суммы квадратов длин его рёбер. ДРЕССИРОВЩИК 9 лет назад Квадрат диагонали, квадратного параллилепипеда (смотрите свойства квадратного параллепипеда) равна сумме квадратов трёх его разных сторон (ширине, высоте, толщине), а соответственно диагонали квадратного параллепипеда равна корню из этой суммы. haleron 8 лет назад Насколько мне известно еще со школьной программы, класс 9 если не ошибаюсь, и если не изменяет память , то диагональ прямоугольного параллелепипеда ровна корню квадратному суммы квадратов его всех трех сторон. [пользователь заблокирован] 8 лет назад квадрат диагонали равен, сумме квадратов ширины , высоты и длинны , исходя с этой формулы получаем ответ , диагональ равно корню квадратному с суммы его трех разных измерений , буквами они позначаюnсz abc Космос111 7 лет назад Вспоминаю школьную программу по геометрии, можно сказать так: диагональ параллелепипеда равняется корню квадратному полученному из суммы его всех трех сторон (обозначаются они маленькими буквами a, b, c). Николай Л 10 лет назад Длина диагонали прямоугольного параллепипеда равна корню квадратному из суммы квадратов его сторон. Знаете ответ? |
Как найти длины рёбер параллелепипеда по диагонали
Параллелепипед – многогранная геометрическая фигура, обладающая несколькими интересными свойствами. Знание этих свойств помогает в решении задач. Существует, например, определенная связь между его линейными и диагональными измерениями, с помощью которой можно найти длины ребер параллелепипеда по диагонали.
Инструкция
Параллелепипед имеет одну особенность, не свойственную другим фигурам. Его грани попарно параллельны и имеют равные измерения и числовые характеристики, такие как площадь и периметр. Любую пару таких граней можно принять за основания, тогда оставшиеся будут составлять его боковую поверхность.
Можно найти длины рёбер параллелепипеда по диагонали, однако одной этой величины мало. Во-первых, обратите внимание на то, какая разновидность этой пространственной фигуры вам дана. Это может быть правильный параллелепипед, обладающий прямыми углами и равными измерениями, т.е. куб. В этом случае будет достаточно знать длину одной диагонали. Во всех остальных случаях должен быть, как минимум, еще один известный параметр.
Диагонали и длины сторон в параллелепипеде связаны определенным соотношением. Эта формула вытекает из теоремы косинусов и представляет собой равенство суммы квадратов диагоналей и суммы квадратов ребер:
d1² + d2² + d3² + d4² = 4•а² + 4•b² + 4•c², где а – длина, b – ширина и c — высота.
Для куба формула упрощается:
4•d² = 12•а²
а = d/√3.
Пример: найти длину стороны куба, если его диагональ равна 5 см.
Решение.
25 = 3•а²
а = 5/√3.
Рассмотрим прямой параллелепипед, у которого боковые ребра перпендикулярны основаниям, а сами основания являются параллелограммами. Его диагонали попарно равны и связаны с длинами ребер по следующему принципу:
d1² = а² + b² + c² + 2•а•b•cos α;
d2² = а² + b² +c² – 2•а•b•cos α, где α – острый угол между сторонами основания.
Этой формулой можно воспользоваться, если известны, к примеру, одна из сторон и угол или эти величины могут быть найдены по другим условиям задачи. Решение упрощается, когда все углы в основании прямые, тогда:
d1² + d2² = 2•а² + 2•b² + 2•c².
Пример: найдите ширину и высоту прямоугольного параллелепипеда, если ширина b больше длины а на 1 см, высота c – в 2 раза больше, а диагональ d – в 3.
Решение.
Запишите основную формулу квадрата диагонали (в прямоугольном параллелепипеде они равны):
d² = а² + b² + c².
Выразите все измерения через заданную длину а:
b = а + 1;
c = а•2;
d = а•3.
Подставьте в формулу:
9•а² = а² + (а + 1)² + 4•а²
Решите квадратное уравнение:
3•а² – 2•а – 1 = 0
Найдите длины всех ребер:
а = 1; b = 2; c = 2.
Источники:
- формула суммы длин всех рёбер параллелепипеда
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Прямоугольный параллелепипед. Формулы и свойства прямоугольного параллелепипеда
Определение.
Прямоугольный параллелепипед — это многогранная объемная фигура ограничена шестью прямоугольниками.
Куб является частным случаем прямоугольного параллелепипеда.
Рис.1 |
Основные свойства правильного прямоугольного параллелепипеда
Противоположные грани прямоугольного параллелепипеда параллельны и равны.
Ребра прямоугольного параллелепипеда, которые сходятся в одной вершине взаимно перпендикулярны.
Не параллельные грани прямоугольного параллелепипеда пересекаются под прямым углом.
У прямоугольного параллелепипеда четыре диагонали.
Диагонали прямоугольного параллелепипеда равны между собой и пересекаются в одной точке.
Объем прямоугольного параллелепипеда
Формула. Объем прямоугольного параллелепипеда равна произведению длин его сторон:
V = a · b · c
Площадь поверхности прямоугольного параллелепипеда
Определение. Поверхность прямоугольного параллелепипеда состоит из суммы площадей прямоугольников, ограничивающие его.
Формула. Площадь поверхности прямоугольного параллелепипеда через длины его сторон:
S = 2a·b + 2a·c + 2b·c
Диагональ прямоугольного параллелепипеда
Определение. Диагональ прямоугольного параллелепипеда — это отрезок, соединяющий две не соседние вершины, лежащие на разных гранях.
Формула. Длина диагонали прямоугольного параллелепипеда через длины его сторон:
d = √a2 + b2 + c2