Как найти длину нити маятника по графику

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,662
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,985
  • разное
    16,906

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Вопросы #Учеба и наука #Физика #Определение амплитуды. длины нити по графику…

определить по графику колебаний математического маятника его период, частоту колебания, амплитуду и длину нити маятника.

http://www.liveexpert.ru/public/scripts/elfinder/files/u403633/1.jpg

Дмитрий

30.11.12

Учеба и наука / Физика

1 ответ

Лучший ответ по мнению автора

Михаил Александров


4.9

596 отзывов

Рейтинг:
3683 733

Эксперт месяца

T = 1 c

ню = 1/Т = 1(Гц)

А = 5 см

T = 2*П*sqrt(L/g)

sqrt(L/g) = T/(2*П)

L/g = (T/(2*П))^2

L = g*(T/(2*П))^2

L = 9,8*(1/(2*3,14))^2 = 0,25(м) = 25(см)

30.11.12
Лучший ответ по мнению автора

Михаил Александров


4.9

596 отзывов

Рейтинг:
3683 733

Эксперт месяца

Читать ответы

Андрей Андреевич


4.9

834 отзыва

Рейтинг:
482 107

2-й в Учебе и науке

Читать ответы

Владимир


4.9

167 отзывов

Рейтинг:
42 439

9-й в Учебе и науке

Читать ответы

Посмотреть всех экспертов из раздела Учеба и наука > Физика

Похожие вопросы

Здравствуйте При поднятии груза весом 260 Ньютон с помощью подвижного блока, на веревку действовал с силой 136 Ньютон. Какой вес блока?

1 ответ

18.05.14

max

Учеба и наука > Физика

Решено

Термопара с сопротивлением r1 = 6 Ом

1 ответ

16.11.13

Бэлла

Учеба и наука > Физика

Решено

Дано уравнение гармонических колебаний: x=0…

2 ответа

24.06.13

Евгений

Учеба и наука > Физика

закон Ома

1 ответ

27.09.12

Сергей

Учеба и наука > Физика

Решено

автомобиль массой 1 т трогаясь с места достигает скорости 30

1 ответ

16.11.11

Юля

Учеба и наука > Физика

Задания

Версия для печати и копирования в MS Word

Тип 12 № 311544

i

Период колебания математического маятника T  (в секундах) приближенно можно вычислить по формуле T=2 корень из: начало аргумента: l конец аргумента , где   l  — длина нити (в метрах). Пользуясь данной формулой, найдите длину нити маятника, период колебаний которого составляет 7 с.

Спрятать решение

Решение.

Выразим длину маятника:

l= левая круглая скобка дробь: числитель: T, знаменатель: 2 конец дроби правая круглая скобка в квадрате .

Подставляя, получаем:

l= левая круглая скобка дробь: числитель: 7, знаменатель: 2 конец дроби правая круглая скобка в квадрате =12,25.

Ответ: 12,25.

Аналоги к заданию № 46: 311544 337952 338064 … Все

Источник: ГИА-2012. Ма­те­ма­ти­ка. Кон­троль­ная ра­бо­та.(1 вар)

Спрятать решение

·

Прототип задания

·

Помощь

Колебательное движение. Математический маятник

  1. Механические колебания
  2. Математический маятник
  3. Параметры колебаний математического маятника
  4. Задачи
  5. Лабораторная работа №4. Исследование колебаний математического маятника

п.1. Механические колебания

Кроме прямолинейного и криволинейного движения, с которыми мы уже познакомились, существует еще один вид механического движения – колебательный.

Механические колебания — это движения тел, которые в той или иной степени повторяются через определенные промежутки времени.

Примеры колебательных движений:

  • движение маятника в часах;
  • колебание автомобиля на рессорах;
  • покачивание деревьев на ветру;
  • раскачивание качели;
  • сокращения сердца и легких;
  • движение крыльев насекомых и птиц.

п.2. Математический маятник

Математическим маятником называют тело, подвешенное на длинной нерастяжимой нити, размеры которого значительно меньше длины нити.
Нить считается нерастяжимой и невесомой, а тело – материальной точкой на этой нити.

Математический маятник В положении равновесия тело (шарик) находится внизу.
Отклонение от положения равновесия называют смещением тела, обозначают буквой x и измеряют в метрах (в СИ).
Наибольшее смещение маятника от положения равновесия называют амплитудой колебаний, обозначают буквой A.
В проекции на горизонтальную ось OX смещение изменяется в интервале (-Aleq xleq A).
В положении равновесия x=0.
Если маятник после смещения в положение 1, прошел положение равновесия 2, отклонился в положение 3, опять прошел положение 2, и вернулся в положение 1, говорят, что маятник совершил полное колебание.

п.3. Параметры колебаний математического маятника

Период колебаний математического маятника – это время, за которое маятник совершает одно полное колебание. Период колебаний равен: $$ T=2pisqrt{frac Lg} $$ где (L) – длина маятника, (g) – ускорение свободного падения.
На поверхности Земли (gapprox 9,8 м/с^2)

Частота колебаний математического маятника – это количество полных колебаний, которые маятник совершает за единицу времени: $$ f=frac 1T=frac{1}{2pi}sqrt{frac gL} $$

Период и частота колебаний – взаимно обратные величины
Период в СИ измеряют в секундах, частоту – в герцах: 1 Гц=1 c-1
Формула для периода колебаний справедлива для небольших отклонений маятника (на угол порядка 15-20° от положения равновесия).

п.4. Задачи

Задача 1. Маятник совершил 3 полных колебания за 9 с. Найдите период и частоту его колебаний. Чему равна длина нити, на которой подвешен маятник (ответ дайте в см, с округлением до целых)?

Дано:
(N=3)
(t=9 c)
__________________
(T, f, L-?)
Период колебаний: (T=frac tN)
Частота колебаний: (f=frac 1T=frac Nt)
Длина нити: $$ T=2pisqrt{frac Lg}Rightarrow sqrt{frac Lg}=frac{T}{2pi}Rightarrow frac Lg=left(frac{T}{2pi}right)^2Rightarrow L=gleft(frac{T}{2pi}right)^2 $$ Подставляем: begin{gather*} T=frac 93=3 (c)\ f=frac 13 (Гц)\ L=9,8cdotleft(frac{3}{2pi}right)^2approx 2,234 (м)approx 223 (см) end{gather*} Ответ: 3 с; 1/3 Гц; 223 см

Задача 2. Математический маятник колеблется с частотой 20?тиы кГц. Найдите период колебаний и число колебаний в минуту.

Дано:
(f=20 кГц=2cdot 10^4 Гц)
(t=1 мин=60 с)
__________________
(T, N-?)
Период колебаний: (T=frac 1f)
Частота колебаний за время (t: N=ft)
Подставляем: begin{gather*} T=frac{1}{2cdot 10^4}=0,5cdot 10^{-4} (c)=50cdot 10^{-6} (c)=50 (мкс)\ N=2cdot 10^4cdot 60=1,2cdot 10^6 end{gather*} Ответ: 50 мкс; 1,2·106

Задача 3. Расстояние от улья до цветочного поля 600 м. Пчела летит за нектаром со скоростью 8 м/с и машет крылышками с частотой 440 Гц. Возвращаясь в улей с нектаром, пчела летит со скоростью 5 м/с и машет крылышками с частотой 320 Гц. Найдите разность в количестве взмахов крылышками на пути туда и обратно.

Дано:
(s=600 м )
(v_1=8 м/с)
(f_1=440 Гц)
(v_2=5 м/с)
(f_2=320 Гц)
__________________
(triangle N-?)

Время полета из улья за нектаром (t_1=frac{s}{v_1})
Количество взмахов крылышками (N_1=f_1 t_1=f_1frac{s}{v_1})
Аналогично количество взмахов на пути назад (N_2=f_2frac{s}{v_2})
Найдем каждое из (N): begin{gather*} N_1=440cdotfrac{600}{8}=33000\ N_2=320cdotfrac{600}{5}=38400 end{gather*} На пути обратно пчела с грузом делает больше взмахов. Искомая разность: $$ triangle N=N_2-N_1=38400-33000=5400 $$ Ответ: 5400

Задача 4. Определите длину математического маятника с периодом колебаний 1с, если он находится: а) на Луне ((g_л=1,6 м/с^2)); б) на Марсе ((g_м=3,6 м/с^2)). Ответ запишите в см, с точностью до десятых.

Дано:
(T=1 с )
(g_л=1,6 м/с^2 )
(g_м=3,6 м/с^2)
__________________
(L_л, L_м-?)

Длина нити: begin{gather*} T=2pisqrt{frac Lg}Rightarrowsqrt{frac Lg} =frac{T}{2pi}Rightarrowfrac Lg=left( frac{T}{2pi}right)^2Rightarrow L = gleft(frac{T}{2pi}right)^2 end{gather*} На Луне: $$ L_л=1,6cdotleft(frac{1}{2pi}right)^2approx 0,0405 (м)approx 4,1 (см) $$ На Марсе: $$ L_м=3,6cdotleft(frac{1}{2pi}right)^2approx 0,0912 (м)approx 9,1 (см) $$ Ответ: 4,1 см; 9,1 см

п.5. Лабораторная работа №4. Исследование колебаний математического маятника

Цель работы
Исследовать, от каких величин зависит период колебаний математического маятника.

Теоретические сведения
При малых отклонениях (порядка 15-20° от вертикали) период колебаний математического маятника определяется формулой: $$ T=2pisqrt{frac Lg} $$ где (L) – длина маятника, (g) – ускорение свободного падения.
Для работы принять (gapprox 9,80665 м/с^2).
При заданном периоде колебаний для длины маятника получаем: $$ L=gleft(frac{T}{2pi}right)^2 $$

Приборы и материалы
Два лабораторных грузика по 100 г, крепкая нить (1,5-2 м), линейка (30-50 см), штатив, секундомер.

Ход работы
1. Рассчитайте длину нитей, необходимых для создания маятников с периодами колебаний (T_1=1 с; T_2=2 с).
2. Закрепите один грузик на нити и подвесьте его на штативе так, чтобы длина подвеса была равна расчетной длине (L_1).
3. Отклоните грузик на небольшой угол, отпустите его и с помощью секундомера измерьте время, за которое маятник совершит 10 полных колебаний. Повторите опыт 5 раз. Проведите расчеты для определения периода колебаний (T_{1 эксп}) по методике, изложенной в лабораторной работе №2 (см. §4 данного справочника).
4. Теперь подвесьте грузик так, чтобы длина подвеса была равна расчетной длине (L_2). Повторите серию из 5 экспериментов и определите (T_{2 эксп}).
5. При длине подвеса (L_2) подвесьте к первому грузику второй. Повторите серию из 5 экспериментов и определите (T ‘). Сравните (T ‘) и (T_{2 эксп}).
6. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

Расчет длины нитей begin{gather*} L=gleft(frac{T}{2pi}right)^2\ T_1=1 c, L_1=9,80665cdotleft(frac{1}{2pi}right)^2approx 0,248 (м)=24,8 (см)\ T_2=2 c, L_1=9,80665cdotleft(frac{2}{2pi}right)^2approx 0,9994 (м)=99,4 (см) end{gather*}

Определение (T_{1 эксп})
Инструментальная погрешность секундомера (d=frac{triangle}{2}=0,1 c)
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
(t, c) 9,7 10,2 9,8 9,9 10,3 50
(triangle c) 0,3 0,2 0,2 0,1 0,3 1

begin{gather*} t_{cp}=frac{50}{5}=10\ triangle_{cp}=frac 15=0,2 end{gather*} Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,2right}=0,2 text{c} $$ Результат измерения времени 10 колебаний: begin{gather*} t=t_0pmtriangle t, t=(10,0pm 0,2) c end{gather*} Период колебаний в 10 раз меньше: $$ T_{1 эксп}=frac{1}{10}(t_0pmtriangle t), T_{1 эксп}=(1,00pm 0,02) c $$ Относительная погрешность измерений: $$ delta_T=frac{triangle T}{T_{1 эксп}}cdot 100text{%}=frac{0,02}{1}cdot 100text{%}=2,0text{%} $$

Определение (T_{2 эксп})
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
(t, c) 19,7 20,1 19,8 20,2 19,7 99,5
(triangle c) 0,2 0,2 0,1 0,3 0,2 1

begin{gather*} t_{cp}=frac{99,5}{5}=19,9\ triangle_{cp}=frac 15=0,2 end{gather*} Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,2right}=0,2 text{c} $$ Результат измерения времени 10 колебаний: begin{gather*} t=t_0pmtriangle t, t=(19,9pm 0,2) c end{gather*} Период колебаний в 10 раз меньше: $$ T_{2 эксп}=frac{1}{10}(t_0pmtriangle t), T_{2 эксп}=(1,99pm 0,02) c $$ Относительная погрешность измерений: $$ delta_T=frac{triangle T}{T_{2 эксп}}cdot 100text{%}=frac{0,02}{1,99}cdot 100text{%}approx 1,0text{%} $$

Определение (T ‘) (с двумя грузиками)
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
(t, c) 20,2 19,7 19,6 20,0 20,3 99,8
(triangle c) 0,24 0,26 0,36 0,04 0,34 1,24

begin{gather*} t_{cp}=frac{99,8}{5}=19,96\ triangle_{cp}=frac{1,24}{5}approx 0,25 end{gather*} Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,25right}=0,25 text{c} $$ Результат измерения времени 10 колебаний: begin{gather*} t=t_0pmtriangle t, t=(19,96pm 0,25) c end{gather*} Период колебаний в 10 раз меньше: $$ T’=frac{1}{10}(t_0pmtriangle t), T’=(1,996pm 0,025) c $$ Относительная погрешность измерений: $$ delta_T=frac{triangle T}{T’}cdot 100text{%}=frac{0,025}{1,996}cdot 100text{%}approx 1,3text{%} $$

Полученные на опыте интервалы для (T_{2 эксп}) и (T’) (одинаковая длина нити (L_2) и разные массы грузиков – 100 г и 200 г соответственно): begin{gather*} 1,97leq T_{2 эксп}leq 2,01\ 1,971leq T’leq 2,021 end{gather*} Таким образом, (T_{2 эксп}approx T’), т.е. период колебаний математического маятника не зависит от массы груза.

Выводы
На основании проделанной работы можно сделать следующие выводы.

В работе с помощью расчетной формулы были определены длины нитей подвеса для маятников с периодами колебаний (T_1=1 с; T_2=2 с).
Полученный на опыте период колебаний для подвеса с (L_1=24,8 см) с грузиком 100 г равен $$ T_{1 эксп}=(1,00pm 0,02) c, delta=2,0text{%} $$ Полученный на опыте период колебаний для подвеса с (L_2=99,4 см) с грузиком 100 г равен $$ T_{2 эксп}=(1,99pm 0,02) c, delta=1,0text{%} $$ Полученный на опыте период колебаний для подвеса с (L_2=99,4 см) с грузиком 200 г равен $$ T’=(1,996pm 0,025) c, delta=1,3text{%} $$ Формула (T=2pisqrt{frac Lg}) данными экспериментами подтверждена.
Период колебаний математического маятника зависит от длины подвеса и не зависит от массы грузика на подвесе.

Задачи на Механические колебания с решениями

Формулы, используемые на уроках «Задачи на Механические колебания».

Название величины

Обозначение

Единица измерения

Формула

Амплитуда колебаний

A

м

Период колебаний

T

с

T = 1 / v ;

T = t / N

Частота колебаний

v

Гц

v = 1 / T ;

v = N / t

Число колебаний за какое-то время

N

N = t /T ;

N = vt

Время

t

с

t = NT ;

t = N / v

Циклическая частота колебаний

 ω

Гц

Период колебаний пружинного маятника

T

c

Период колебаний математического маятника

T

c

Уравнение гармонических колебаний

x(t) = Asin(ωt+φ0)


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 Шарик на нити совершил 60 колебаний за 2 мин. Определите период и частоту колебаний шарика.


Задача № 2.
 На рисунке изображен график зависимости координаты от времени колеблющегося тела.

По графику определите: 1) амплитуду колебаний; 2) период колебаний; 3) частоту колебаний; 4) запишите уравнение координаты.


Задача № 3.
 Амплитуда незатухающих колебаний точки струны 2 мм, частота колебаний 1 кГц. Какой путь пройдет точка струны за 0,4 с? Какое перемещение совершит эта точка за один период колебаний?


Задача № 4.
 Пользуясь графиком изменения координаты колеблющегося тела от времени, определить амплитуду, период и частоту колебаний. Записать уравнение зависимости x(t) и найти координату тела через 0,1 и 0,2 с после начала отсчета времени.


Задача № 5.
 Какова длина математического маятника, совершающего гармонические колебания с частотой 0,5 Гц на поверхности Луны? Ускорение свободного падения на поверхности Луны 1,6 м/с2.


Задача № 6.
 Груз массой 400 г совершает колебания на пружине с жесткостью 250 Н/м. Амплитуда колебаний 15 см. Найти полную механическую энергию колебаний и наибольшую скорость движения груза.


Задача № 7.
 Частота колебаний крыльев вороны в полете равна в среднем 3 Гц. Сколько взмахов крыльями сделает ворона, пролетев путь 650 м со скоростью 13 м/с?


Задача № 8.
 Гармоническое колебание описывается уравнением 
 Чему равны циклическая частота колебаний, линейная частота колебаний, начальная фаза колебаний?


Задача № 9.
 Математический маятник длиной 0,99 м совершает 50 полных колебаний за 1 мин 40 с. Чему равно ускорение свободного падения в данном месте на поверхности Земли? (Можно принять π2 = 9,87.)


Задача № 10.
  ОГЭ
 Как и во сколько раз изменится период колебаний пружинного маятника, если шарик на пружине заменить другим шариком, радиус которого вдвое меньше, а плотность — в два раза больше?


Задача № 11.
   ЕГЭ
 Два математических маятника за одно и то же время совершают — первый N1 = 30, а второй — N2 = 40 колебаний. Какова длина каждого из них, если разность их длин Δl = 7 см?


Краткая теория для решения Задачи на Механические колебания.

ЗАДАЧИ на Механические колебания


Это конспект по теме «ЗАДАЧИ на Механические колебания». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на 
  • Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как правильно составить отчет по налогу на прибыль
  • Татарские тексты как найти
  • Уши на разном уровне как исправить
  • Как найти работу для женщины 55 лет
  • Как выполнить задание найдите наставление геншин

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии