Как найти стороны прямоугольного треугольника
Онлайн калькулятор
Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- для гипотенузы (с):
- длины катетов a и b
- длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
- для катета:
- длину гипотенузы (с) и длину одного из катетов
- длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
- длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
- длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)
Введите их в соответствующие поля и получите результат.
Найти гипотенузу (c)
Найти гипотенузу по двум катетам
Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?
Формула
следовательно: c = √ a² + b²
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:
c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см
Найти гипотенузу по катету и прилежащему к нему острому углу
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:
c = 2 / cos(60) = 2 / 0.5 = 4 см
Найти гипотенузу по катету и противолежащему к нему острому углу
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:
c = 2 / sin(30) = 2 / 0.5 = 4 см
Найти гипотенузу по двум углам
Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.
Найти катет
Найти катет по гипотенузе и катету
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:
a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см
Найти катет по гипотенузе и прилежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?
Формула
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:
b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см
Найти катет по гипотенузе и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:
a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см
Найти катет по второму катету и прилежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?
Формула
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:
b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см
Найти катет по второму катету и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:
Сторона треугольника через угол
Катет прямоугольного треугольника через угол и второй катет
Треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние.
Прямоугольный треугольник — это треугольник у которого один из углов прямой (равен 90°). Стороны треугольника образующие прямой угол называются катетами треугольника. Сторона противоположная прямому углу называется гиппотенузой.
Радиан — это угол, соответствующий дуге, длина которой равна её радиусу. Своё название данная едииница измерения получила от слова радиус. Имеет обозначение: рад, международное: rad.
Радианы являются основной единицей используемой в вичислениях.
Градус — общепринятая единица измерения плоского угла, которая равняется dfrac<1> <90>части прямого угла или dfrac<1> <360>часть окружности. В отличии от радиан, градусы являются чисто символическими единицами измерения, так сказать «взятые с потолка» и не имеют в своём значении ни какого математического основания.
Причина выбора градуса в качестве единицы измерения углов неизвестна. В быту измерение углов в градусах выглядит удобнее и понятнее, но что касается математических вычислений, то здесь основными единицами являются радианы.
Формула нахождения стороны через угол
Посчитать длину одного из катетов треугольника можно через второй катет и угол противолежащий искомой стороне:
Свойства перпендикуляра и наклонной
Свойства перпендикуляра и наклонной вытекают из теоремы Пифагора и признаков равенства прямоугольных треугольников.
1) Любая наклонная больше перпендикуляра.
Дано: A∉a, AB — перпендикуляр,
Так как AB — перпендикуляр к прямой a, то треугольник ABC — прямоугольный.
По теореме Пифагора AC²=AB²+BC².
Так как BC>0, то и BC²>0.
Следовательно, AB²+BC²>AB². Отсюда, AC²>AB². Поскольку AC>0 и AB>0, то AC>AB.
Что и требовалось доказать.
2) Равные наклонные имеют равные проекции.
Дано: A∉a, AB — перпендикуляр,
AC и AD — наклонные,
BC и BD — их проекции,
Так как AB — перпендикуляр к прямой a, то треугольники ABC и ABD — прямоугольные.
1) AC=AD (по условию);
2) AB — общая сторона.
Следовательно, треугольники ABC и ABD равны (по катету и гипотенузе).
Из равенства треугольников следует равенство соответствующих сторон. Значит, BC=BD.
Что и требовалось доказать.
И обратно: если проекции наклонных равны, то и наклонные тоже равны.
Кроме того, из этого доказательства следует, что равные наклонные образуют равные углы с прямой a; углы между равными наклонными и перпендикуляром также равны.
3) Из двух наклонных больше та, у которой проекция больше.
Дано: A∉a, AB — перпендикуляр,
AC и AD — наклонные,
BC и BD — их проекции,
Так как AB — перпендикуляр к прямой a, то треугольники ABC и ABD — прямоугольные.
По теореме Пифагора AC²=AB²+BC² и AD²=AB²+BD².
Отсюда, AB²=AC²-BC² и AB²=AD²-BD².
Приравнивая правые части равенств, имеем: AC²-BC²=AD²-BD².
Так как BC>BD, то и BC²>BD².
Значит, и AC²>AD². А так как AC>0 и AD>0, то AC>AD.
Что и требовалось доказать.
И обратно: б о льшей наклонной соответствует б о льшая проекция.
http://kalk.top/sz/st-triangle-ugol
Размещено 3 года назад по предмету
Математика
от nik891821
-
Ответ на вопрос
Ответ на вопрос дан
elsahlouОтвет:
5см
Пошаговое объяснение:
Наклонная является гипотенузой даного прямоугольного треугольника. Треуголиник-египктский по отношению сторон.
-
Ответ на вопрос
Ответ на вопрос дан
uncl95Пошаговое объяснение:
Длинна наклонной это гипотенуза прямоугольного треугольника
По теореме Пифагора
√4²+3²=√25=5 см
Длина наклонной 5 см
Рисунок во вложении
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Найди верный ответ на вопрос ✅ «В прямоугольном треугольнике найти длину наклонной АС, если она образует с плоскостью альфа угол 30 градусов, а ее проекция ВС равна 3 …» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Главная » Геометрия » В прямоугольном треугольнике найти длину наклонной АС, если она образует с плоскостью альфа угол 30 градусов, а ее проекция ВС равна 3 корень из 3 см
Как найти стороны прямоугольного треугольника
- Главная
- /
- Математика
- /
- Геометрия
- /
- Как найти стороны прямоугольного треугольника
Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- для гипотенузы (с):
- длины катетов a и b
- длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
- для катета:
- длину гипотенузы (с) и длину одного из катетов
- длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
- длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
- длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)
Введите их в соответствующие поля и получите результат.
Найти гипотенузу (c)
Найти гипотенузу по двум катетам
Катет a =
Катет b =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?
Формула
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
c² = a² + b²
следовательно: c = √a² + b²
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:
c = √3² + 4² = √9 + 16 = √25 = 5 см
Найти гипотенузу по катету и прилежащему к нему острому углу
Катет (a или b) =
Прилежащий угол (β или α) =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
c = a/cos(β) = b/cos(α)
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:
c = 2 / cos(60) = 2 / 0.5 = 4 см
Найти гипотенузу по катету и противолежащему к нему острому углу
Катет (a или b) =
Противолежащий угол (α или β) =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
c = a/sin(α) = b/sin(β)
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:
c = 2 / sin(30) = 2 / 0.5 = 4 см
Найти гипотенузу по двум углам
Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.
Найти катет
Найти катет по гипотенузе и катету
Гипотенуза c =
Катет (известный) =
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?
Формула
a = √c² — b²
b = √c² — a²
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:
a = √5² — 4² = √25 — 16 = √9 = 3 см
Найти катет по гипотенузе и прилежащему к нему острому углу
Гипотенуза c =
Угол (прилежащий катету) = °
Катет =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?
Формула
a = c ⋅ cos(β)
b = c ⋅ cos(α)
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:
b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см
Найти катет по гипотенузе и противолежащему к нему острому углу
Гипотенуза c =
Угол (противолежащий катету) = °
Катет =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?
Формула
a = c ⋅ sin(α)
b = c ⋅ sin(β)
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:
a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см
Найти катет по второму катету и прилежащему к нему острому углу
Катет (известный) =
Угол (прилежащий известному катету) = °
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?
Формула
a = b ⋅ tg(α)
b = a ⋅ tg(β)
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:
b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см
Найти катет по второму катету и противолежащему к нему острому углу
Катет (известный) =
Угол (противолежащий известному катету) = °
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?
Формула
a = b / tg(β)
b = a / tg(α)
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:
a = 3 / tg(35) ≈ 3 / 0.7 ≈ 4.28 см
См. также
Под действием силы в 120 Н груз массой 12 кг перемещается вверх по наклонной плоскости. Коэффициент полезного действия наклонной плоскости 45%. Чему равна длина наклонной плоскости, если ее высота 120 см?
Сначала определим полезную работу, которая совершается при подъеме данного груза на высоту 120 см = 1,2 м. Апол = mgh = 12*10*1,2 = 144 Дж. После этого используя формулу КПД найдем полную работу. КПД = Апол/Аполн *100%, Аполн = Апол*100/45 = 320 Дж. После этого можно определить длину наклонной плоскости используя формулу работы A = F*s, где s=l (длине наклонной плоскости). l = A/F = 320/120 = 2,67 м = 267 см.
Примечание. Текст задачи взят с форума. Если Вы не нашли решения нужного типа задачи — пишите на форуме. Наверняка курс будет дополнен.
Задача.
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если наклонные относятся между собой как 1:2, а проекции наклонных равны 1 см и 7 см. | З точки до плоскості проведені дві похилі. Знайдіть довжини похилих, якщо похилі відносяться між собою як 1:2, а проекції похилих рівні 1 см і 7 див. |
Решение.
Обозначим заданную в условии точку как В. Пусть наклонные к плоскости пересекают плоскость в точках А и D .
Опустим из точки В перпендикуляр на данную плоскость. Обозначим точку пересечения перпендикуляра с плоскостью как С.
Отметим, что у нас образовались прямоугольные треугольники DBC и ABC с прямым углом C. Из чего следует, что по теореме Пифагора:
BC 2 + AC 2 = AB 2
и
BC 2 + CD 2 = BD 2
или
BC 2 = AB 2 — AC 2
и
BC 2 = BD 2 — CD 2
Теперь, учитывая, что левые части обоих выражений равны, получаем
AB 2 — AC 2 = BD 2 — CD 2
Подставим значения, которые известны по условию
AB 2 — 7 2 = BD 2 — 1
AB 2 — 49 = BD 2 — 1
Поскольку длины наклонных соотносятся как 1:2, обозначив длину BD как х (икс), получаем, что длина AB = 2x, откуда
4х 2 — 49 = х 2 — 1
3х 2 = 48
х 2 = 16
х = 4
Откуда длина второй наклонной равна 4 * 2 = 8 см
Ответ: 4 и 8 см.
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Решение.
Обозначим заданную в условии точку как В. Пусть наклонные к плоскости пересекают плоскость в точках А и D .
Опустим из точки В перпендикуляр на данную плоскость. Обозначим точку пересечения перпендикуляра с плоскостью как С.
Отметим, что у нас образовались прямоугольные треугольники DBC и ABC с прямым углом C. Из чего следует, что по теореме Пифагора: BC 2 + AC 2 = AB 2
и
BC 2 + CD 2 = BD 2
или
BC 2 = AB 2 — AC 2
и
BC 2 = BD 2 — CD 2
Теперь, учитывая, что левые части обоих выражений равны, получаем
AB 2 — AC 2 = BD 2 — CD 2
Примем во внимание, что большая наклонная имеет большую проекцию.
Кроме того, поскольку одна наклонная на 26 см больше другой, то пусть BD = AB — 26.
Откуда AB = BD + 26
Подставим значения, которые известны по условию
(BD + 26) 2 — 40 2 = BD 2 — 12 2
BD 2 + 52BD + 676 — 1600 = BD 2 — 144
52BD = 780
BD = 15
Наклонная к прямой
Что такое наклонная к прямой? Сколько наклонных можно провести из одной точки к данной прямой? Как найти расстояние между основаниями наклонных?
Наклонной, проведенной из точки A к прямой a, называется отличный от перпендикуляра отрезок, соединяющий точку A с некоторой точкой на прямой a.
Рисунок наклонной, проведенной из данной точки к данной прямой, начинают с изображения перпендикуляра (даже если в условии задачи о перпендикуляре не упоминается).
Чтобы нарисовать наклонную, нужно соединить точку, из которой проводится наклонная, с любой точкой на данной прямой.
На рисунке 1 AB — перпендикуляр, проведенный из точки A к прямой a, AC — наклонная.
Точка B — основание перпендикуляра, точка C — основание наклонной AC.
Отрезок BC, соединяющий основание перпендикуляра с основанием наклонной, — проекция наклонной AC на прямую a.
Из точки к прямой можно провести бесконечно много наклонных.
Две наклонные проведенные из данной точки к данной прямой, могут быть расположены как по одну сторону от перпендикуляра, так и по разные стороны от него.
На рисунке 2 наклонные AC и AD расположены по одну сторону от перпендикуляра AB.
BC — проекция наклонной AC на прямую a,
BD — проекция наклонной AD на прямую a.
CD — расстояние между основаниями наклонных
Если наклонные расположены по одну сторону от перпендикуляра, чтобы найти расстояние между основаниями наклонных, надо найти разность между длинами их проекций.
На рисунке 3 наклонные AC и AD расположены по разные стороны от перпендикуляра AB.
BC — проекция наклонной AC на прямую a,
BD — проекция наклонной AD на прямую a.
CD — расстояние между основаниями наклонных
Если наклонные расположены по разные стороны от перпендикуляра, расстояние между основаниями наклонных равно сумме длин проекций этих наклонных.
В следующий раз рассмотрим свойства наклонных.
2 Comments
Если наклонные расположены по разные стороны от перпендикуляра, расстояние между основаниями наклонных равно сумме длин проекций этих наклонных.