Окружность. Касательная к окружности.
Прямая (MN), имеющая с окружностью только одну общую точку (A), называется касательной к окружности.
Общая точка называется в этом случае точкой касания.
Возможность существования касательной, и притом проведенной через любую точку окружности, как точку касания, доказывается следующей теоремой.
Теорема.
Если прямая перпендикулярна к радиусу в его конце, лежащем на окружности, то эта прямая — касательная.
Пусть O — центр некоторого круга и OA какой-нибудь его радиус. Через его конец A проведем MN ⊥ OA.Требуется доказать, что прямая MN — касательная, т.е. что эта прямая имеет с окружностью только одну общую точку A.
Допустим противное: пусть MN имеет с окружностью еще другую общую точку, например B. Тогда прямая OB была бы радиусом и, следовательно, равнялась бы OA.
Но этого быть не может, так как, если OA — перпендикуляр, то OB должна быть наклонной к MN, а наклонная больше перпендикуляра.
Обратная теорема.
Если прямая касательная к окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.
Следствие.
Через всякую данную на окружности точку можно провести касательную к этой окружности и притом только одну, так как через эту точку можно провести перпендикуляр, и притом только один, к радиусу, проведенному в нее.
Теорема.
Касательная параллельная хорде, делит в точке касания дугу, стягиваемую хордой, пополам.
Пусть прямая AB касается окружности в точке M и параллельна хорде СD. Требуется доказать, что ∪CM= ∪MD.
Проведя через точку касания диаметр ME, получаем: EM ⊥ AB и следовательно, EM ⊥ СD. Поэтому СM=MD.
Через данную точку провести касательную к данной окружности.
Если данная точка находится на окружности, то проводят через нее радиус и через конец радиуса перпендикулярную прямую. Эта прямая будет искомой касательной.
Рассмотрим тот случай, когда точка дана вне круга.
Пусть требуется провести к окружности с центром O касательную через точку A. Для этого из точки A, как из центра, описываем дугу радиусом AO, а из точки O, как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.
Проведя затем хорды OB и OС, соединим точку A с точками D и E, в которых эти хорды пересекаются с данной окружностью. Прямые AD и AE — касательные к окружности O. Действительно, из построения видно, что треугольники AOB и AOС равнобедренные (AO = AB =AС) с основаниями OB и OС, равными диаметру круга O.
Так как OD и OE — радиусы, то D — середина OB, а E — середина OС, значит AD и AE — медианы, проведенные к основаниям равнобедренных треугольников, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE, то они — касательные.
Следствие.
Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром.
Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE, имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной” от данной точки до точки касания.
Что такое касательная к окружности
Определение. Касательная к окружности — это прямая на плоскости, имеющая ровно одну общую точку с окружностью.
Вот парочка примеров:
Окружность с центром O касается прямой l в точке A
Из любой точки M за пределами окружности можно провести ровно две касательных
Различие между касательной l, секущей BC и прямой m, не имеющей общих точек с окружностью
На этом можно было бы закончить, однако практика показывает, что недостаточно просто зазубрить определение — нужно научиться видеть касательные на чертежах, знать их свойства и вдобавок как следует попрактиковаться в применении этих свойств, решая реальные задачи. Всем этим всем мы сегодня и займёмся.
Основные свойства касательных
Для того, чтобы решать любые задачи, нужно знать четыре ключевых свойства. Два из них описаны в любом справочнике / учебнике, а вот последние два — про них как-то забывают, а зря.
1. Отрезки касательных, проведённых из одной точки, равны
Чуть выше мы уже говорили про две касательных, проведённых из одной точки M. Так вот:
Отрезки касательных к окружности, проведённых из одной точки, равны.
Отрезки AM и BM равны
2. Касательная перпендикулярна радиусу, проведённому в точку касания
Ещё раз посмотрим на картинку, представленную выше. Проведём радиусы OAи OB, после чего обнаружим, что углы OAMи OBM — прямые.
Радиус, проведённый в точку касания, перпендикулярен касательной.
Этот факт можно использовать без доказательства в любой задаче:
Радиусы, проведённые в точку касания, перпендикулярны касательным
Кстати, заметьте: если провести отрезок OM, то мы получим два равных треугольника: OAM и OBM.
3. Соотношение между касательной и секущей
А вот это уже факт посерьёзнее, и большинство школьников его не знают. Рассмотрим касательную и секущую, которые проходят через одну и ту же общую точку M. Естественно, секущая даст нам два отрезка: внутри окружности (отрезок BC — его ещё называют хордой) и снаружи (его так и называют — внешняя часть MC).
Произведение всей секущей на её внешнюю часть равно квадрату отрезка касательной
Соотношение между секущей и касательной
4. Угол между касательной и хордой
Ещё более продвинутый факт, который часто используется для решения сложных задач. Очень рекомендую взять на вооружение.
Угол между касательной и хордой равен вписанному углу, опирающемуся на эту хорду.
Откуда берётся точка B? В реальных задачах она обычно «всплывает» где-то в условии. Поэтому важно научиться распознавать данную конфигурацию на чертежах.
Иногда всё-таки касается 🙂
Касательные к окружности
В обычной жизни ты очень хорошо представляешь себе, что значит слово «коснуться».
И вот представь себе, в математике тоже существует такое понятие.
В этой теме мы разберёмся с выражениями «прямая касается окружности» и «две окружности касаются».
Касательные к окружности. Коротко о главном
Касательная – прямая, которая имеет с окружностью только одну общую точку.
Касательная окружности перпендикулярна радиусу, проведённому в точку касания.
Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла: ( displaystyle angle CAB=fracangle AOB), где:
Касание окружностей: если две окружности касаются, то точка касания лежит на прямой, соединяющей их центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей:
Внешнее касание
Внутреннее касание
Для двух окружностей с центрами ( displaystyle >) и ( displaystyle _>), и радиусами ( displaystyle R=OA) и ( displaystyle r=_>A):
Касательные к окружности. Определения и основная теорема
Прямая касается окружности, если имеет с ней ровно одну общую точку.
Такая прямая называется касательной к данной окружности.
Посмотри-ка внимательно: очень похоже на жизнь, не правда ли? Прямая на картинке лишь чуть-чуть дотрагивается до окружности, касается ее.
Ну вот, и точно так же:
Две окружности касаются, если имеют ровно одну общую точку.
Что же тебе нужно знать о касательных и касающихся окружности?
Самая важная теорема гласит, что:
Радиус, проведённый в точку касания, перпендикулярен касательной.
Запомни это прямо как таблицу умножения! Все остальные факты о касательных и касающихся окружностях основаны именно на этой теореме.
Доказывать её мы здесь не будем, а вот как эта самая важная теорема работает, увидим сейчас несколько раз.
Угол между касательной и хордой
Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.
Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги», написано в теме «Окружность. Вписанный угол».
Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу.
То есть «градусная мера дуги» – это «сколько градусов в центральном угле» – и всё!
Ну вот, как говорит Карлсон, продолжаем разговор. Рисуем ещё раз теорему об угле между касательной и хордой.
Смотри, хорда ( displaystyle AB) разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла ( displaystyle BAC), а другая дуга – внутри угла ( displaystyle BAD).
И теорема об угле между касательной и хордой говорит, что ( displaystyle angle CAB) равен ПОЛОВИНЕ угла ( displaystyle AOB), ( displaystyle angle DAB) равен ПОЛОВИНЕ большего (на рисунке — зеленого) угла ( displaystyle AOB).
При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?
Сейчас и увидим. ( displaystyle OA) – радиус, ( displaystyle AC) – касательная.
Значит, ( displaystyle angle OAC=90^circ ).
Поэтому:( displaystyle angle 1=90^circ -angle 4).
Но ( displaystyle angle 2=angle 1) (( displaystyle OA) и ( displaystyle OB) – радиусы)( displaystyle angle 2=90^circ -angle 4).
И осталось вспомнить, что сумма углов треугольника ( displaystyle AOB) равна ( displaystyle 180^circ ).
Здорово, правда? И самым главным оказалось то, что ( displaystyle angle OAC=90^circ ).
Равенство отрезков касательных
Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:
А ещё более удивительный факт состоит в том, что:
Отрезки касательных, проведённых из одной точки к одной окружности, равны.
То есть, на нашем рисунке, ( displaystyle AB=AC).
И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.
Проведём радиусы ( displaystyle OB) и ( displaystyle OC) и соединим ( displaystyle O) и ( displaystyle A).
( displaystyle OB) – радиус.
( displaystyle AB) – касательная, значит, ( displaystyle OBbot AB).
Ну, и так же ( displaystyle OCbot AC).
Получилось два прямоугольных треугольника ( displaystyle AOB) и ( displaystyle AOC), у которых:
(заглядываем в тему «Прямоугольный треугольник«, если не помним, когда бывают равны прямоугольные треугольники).
Но раз ( displaystyle Delta AOB=Delta AOC,) то( displaystyle AB=AC). УРА!
И ещё раз повторим – этот факт тоже очень важный:
Отрезки касательных, проведённых из одной точки, – равны.
И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.
Для любой прямой ( displaystyle AD), пересекающей окружность,( displaystyle ADcdot AC=A^>), где ( displaystyle AB) – отрезок касательной.
Хитроумными словами об этом говорят так:
«Квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».
Tangent to a Circle is a straight line that touches the circle at any one point or only one point to the circle, that point is called tangency. At the tangency point, the tangent of the circle will be perpendicular to the radius of the circle. In the below figure PQ is the tangent to the circle and a circle can have infinite tangents.
- From the above figures, PQ is the tangent.
- The two tangents can be drawn parallel to a secant that can be drawn at a circle
Note: A circle can have an infinite number of tangents.
A tangent can be drawn between two circles in two ways. They are
Externally
An external tangent can be drawn between two circles in one way
- We can name the upper tangent as AB
- And lower tangent as CD
Example: AB is the common tangent to O, P circles. Find the length of AB.
Solution:
AB is a tangent,
Draw a line parallel to AB as shown below
Point on OA can be assumed as Q
Now POQ forms right angle triangle as shown below
So, 12 + B2 = 32
B2 = 9 – 1
B2 = 8
B = √8 cm
so the length of AB is 2√8 cm
Internally
If Tangents of two circles intersect at a common point is called the internal tangents. We have four cases for internal tangents
Case 1
If the two circles touch at just one point, with one inside the other, there is just one line that is a tangent to both.
Example: If The radius of the big circle is 6 cm and the small circle is 3 cm then find the shortest perpendicular distance from the common tangent to 2 circles.
Solution:
Given r1 = 6cm, r2 = 3cm
For the big circle,
the shortest distance isy2 = 32 + 32
y2 = 9 + 9
y = √18
for small circle, the shortest distance is
x2 = 62 + 62
x2 = 36 + 36
x = √72
Hence, the shortest distance from the tangent where it grazes and to perpendicular to top of the circle.
Case 2
A tangent of two circles is a common internal tangent. The intersection of the tangent and the line segment joining the centers is not empty.
For example, line AB common internal tangents.
Example: Find the number of common tangents to the circles x2 + y2 − 4x − 6y − 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0.
Solution:
Small circle equation is x2 + y2 − 4x − 6y − 12 = 0 and big circle equation is x2 + y2 + 6x + 18y + 26 = 0.
Centers of circles are C1 (2, 3) and C2 (−3, −9) and their radii are r1 = 5 and r2 = 8 Obviously r1 + r2 = C1C2 i.e., circles touch each other externally.
Hence, there are three common tangents.
Case 3
In case the tangents of two circles will intersect at a point we can name as O
- AB is the common tangent
- CD also a common tangent
- These two tangents AB, CD intersecting at one point.
Example: Given equations of 2 tangents with equations x + 2y + 1 = 0 and 2x + 3y + 5 = 0. Check whether the tangents will
intersect or not?
Solution:
Firstly checking the slopes of two tangents.
1st equation = slope = – y/x = -2 /1
2nd equation = slope = – y/x = -3 /2
Hence there are no slopes, so the tangents will intersect.
Note 1: The set of circles cannot have common internal and external tangents.
Note 2: If one circle is inside another circle, then we cannot draw a tangent. It was shown below
Secant
The line which intersects two points on the circle is known as the secant. (or) The line which cuts the circle at two distinct points is called Secant
- From the above figure, AB is the secant to the circle
- In the above figure the points A and B, two distinct points cutting the circle.
- The secant cut the circle in any direction.
- The secant can even be drawn from outside the circle.
Example 1: Describe the tangents and secants from the given figure
Solution:
According to the above figure,
AB is a tangent.
CD is the secant.
EF is the tangent.
GH is the secant.
IJ is the tangent
Example 2: List out the number of tangents and secants from the given figure
Solution:
From the figure,
we have 3 tangents, i.e AB, EF, IJ.
And we have 2 secants, i.e CD, GH.
Chord
The Line which divides a circle into two halves is called a chord. (or) The two distinct points which divide the circle into two equal parts called as chord.
- From the figure, the CD is the chord of the circle
- The chord touches the two points in the circle, the two points are CD from above.
- The chord lies within the circle.
Radius is perpendicular to the tangent line
Theorem
The Tangent at any point of a circle is perpendicular to the radius.
Proof
To prove: OP perpendicular to AB
- Here O is the center of the circle.
- AB is the tangent to the circle with the center O.
- P is the point of tangency.
- Let Q be a point on the tangent AB.
- Draw an imaginary line from point O to Q it touches the circle at R.
- As OQ > OP
- OQ = OR + RQ.
- OP < OR + RQ.
- So same will be the case with all other points on the tangent
- Hence, OP is the smallest line that connects tangent AB.
- We know that the smallest line is always perpendicular. Therefore, OP is perpendicular to AB
Sample Problems on Tangent to a Circle
Problem 1: RA and RB are two tangents to the circle with a radius of 6 cm. Find the length of the arc ACB?
Solution:
Step 1: Write all the given values in the question.
RA and RB are two tangents.
Radius r = 6.
Step 2: Write the angle degree between the two tangents RA and RB, if not given the default angle between the two tangents is 60 degrees.
Now the angle between RA and RB is 60 degree
Step 3: Try to extend the line from point A to O and B to O it should make 900 with the tangent.
it forms a quadrilateral.
Step 4: Apply the rules of a quadrilateral to find the angle between AOB.
here RAOB will be a quadrilateral. So, Ro + Ao + Bo+ AOBo = 3600
60o + 90o + 900 + AOB0 = 3600
AOB0 = 3600 – 2400
AOB0 = 1200
Note: Ao = Bo = 90o Since A, B are perpendicular to the tangents RA and RB.
Step 5: Now we need to find the length of ARC by using the following formula
Length of arc = (angle/360) * radius
We get = (120 / 360) * 6
= (1.9) = 2
therefore, the length of the arc ACB is 2 cm.
Problem 2: RA and RB are two tangents to the circle with a radius of 9 cm. Find the length of the arc ACB?
Solution:
Given RA and RB are two tangents.
Radius r = 6, lets us assume the point where two tangent is R
And angle between two tangents RA and RB is 300
Extend the line from point A to O and B to O it should make 900 with the tangent.
It forms a quadrilateral as above.
Here RAOB will be a quadrilateral So, Ro + Ao + Bo + AOBo = 3600.
30o + 90o + 900 + AOB0 = 3600
AOB0 = 3600 – 2100
AOB0 = 1500
Note: Ao = Bo = 90o since A, B are perpendicular to the tangents RA and RB.
Length of arc = (angle/360) * radius
We get = (150 / 360) * 9
= (3.75) = 4cm
Problem 3: Find the value of x from the given figure.
Solution:
Given A is tangent (from the figure)
by using Right angle triangle properties we can find the value of x
i.e A2 + B2 = C2
A = 16cm, B = xcm, C = 25cm
(16)2 + (x)2 = (25)2
256 + (x)2 = 625
(x)2 = 625 – 256
(x)2 = 369
Taking root on both the sides
√(x)2 = √369 (square and root get cancelled)
we get, x = 3√41cm.
Общие сведения
Важно знать терминологию, соотношения и теоремы для решения задач этого класса. Касательной к окружности называется прямая, которая имеет с ней только одну точку соприкосновения. Прямая — это линия, не имеющая границ, т. е. она ничем не ограничена. Окружностью называется геометрическое место точек, удаленных от центра на одинаковые расстояния.
Следует отметить, что касательные бывают внешними и внутренними. Внешней называет прямая линия, проходящая с внешней стороны окружности. Внутренние касательные пересекают отрезок, который соединяет центры двух окружностей. Последний тип прямых не существует, когда два круга пересекаются. Касательные нужно уметь правильно строить, поскольку от этого зависит правильность решения задачи.
Построение касательных
Для построения касательной к окружности следует на последней отметить произвольную точку. Затем необходимо через нее провести прямую. Нужно отметить, что у круга может быть несколько таких прямых. Когда даны две окружности, тогда можно проводить не только внешние, но и внутренние. Существует определенный алгоритм, по которому можно построить первый тип:
- Начертить 2 окружности с центрами в точках О1 и О2. При этом должно соблюдаться условие r1 > r2, где r1 и r2 — радиусы I и II соответственно.
- Нарисовать III окружность с центром в О1 и радиусом r3 = r1 — r2.
- Провести 2 касательные из точки О2 к III. Они параллельны искомым, поскольку радиусы I и II уменьшаются на r2.
Существует более простая модель построения таких прямых. Для этого следует начертить один круг, а затем отметить две произвольные точки на его противоположных сторонах. Далее начертить II круг, превышающий I по радиусу. Отметить на нем точки, воспользовавшись подобием, т. е. они должны быть в тех же местах, что и на I. Затем провести прямые, которые должны соприкасаться с I и II кругами только в одной точке.
Для построения внутренних касательных существует определенная методика. В интернете можно найти много информации. В одних источниках алгоритм построения является сложным, а в других — простым. Однако есть один метод, позволяющий осуществить данную операцию. Специалисты описали его на «понятном» языке для новичков. Суть методики заключается в следующем:
- Необходимо построить два круга, которые не пересекаются, с радиусами r1 и r2. Расстояния между ними должно составлять r1 + r2.
- Соединить их центры (середины) отрезком.
- Отметить на нем среднюю точку, которая делит его на две равные части.
- Через точку, полученную на третьем шаге методики, провести прямую. Она должна иметь только одну точку соприкосновения с I и II окружностями.
- Аналогично провести еще одну прямую.
- Искомые прямые являются внутренними касательными.
Далее нужно рассмотреть некоторые свойства, на основании которых можно решать задачи и доказывать геометрические тождества.
Основные свойства
Свойства — утверждения, полученные в результате доказательства теорем о касательной к окружности. Первые нет необходимости доказывать, поскольку об этом уже позаботились математики. Они выделяют всего 4 свойства касательных к окружности:
- Если провести из одной точки две касательные к некоторой окружности, то отрезки, лежащие на них, будут равны. Искомый угол будет делиться радиусом пополам.
- Любая касательная и радиус, проведенный к ее точке, образуют прямой угол. Справедливо и обратное утверждение: радиус, который проведен в точку касания, перпендикулярен данной прямой.
- Вся секущая, умноженная на свою внешнюю часть, равна квадрату расстояния касательной, которая проведена из общей с ней точки.
- Образованный угол между касательной и секущей, эквивалентен градусной мере угла, который опирается на образованную хорду.
Для рассмотрения I свойства необходимо начертить окружность с центром О1. Затем нужно отметить точку М вне окружности. Из М провести одну прямую, которая соприкасается с кругом в точке А. Такую же операцию следует проделать и для другой касательной. Точку соприкосновения назвать В. Отрезки АМ и ВМ равны между собой.
Если провести радиусы к точкам А и В, то можно сделать вывод, что углы являются прямыми. Чтобы понять третье свойство, необходимо начертить окружность и отметить некоторую точку М за ее пределами. После этого следует из искомой точки провести секущую и касательную. Первой называется прямая, проходящая через окружность и пересекающая ее в двух точках. Для касательной точку соприкосновения необходимо обозначить А. Тогда секущая пересекает круг в точках В (ближняя) и С (дальняя). В результате этого получается такое соотношение: АМ 2 = АВ * МС.
Когда для произвольной окружности существуют касательная и секущая, тогда между ними образуется некоторый угол.
Хорда, полученная в результате прохождения через окружность, образует также угол. Он опирается на искомую хорду и является вписанным. Следовательно, по свойству градусные меры углов равны между собой. Далее нужно разобрать частные случаи, на основании которых можно сделать вывод о количестве касательных.
Когда окружность вписана в ромб, тогда их точки касания нужно рассматривать по первому свойству. Радиус окружности можно найти по следующим формулам:
- Через диагонали (d1, d2) и сторону (a): r = (d1 * d2) / 4а.
- Только по диагоналям: r = (d1 * d2) / [(d1)^2 + (d2)^2]^(½).
Следует отметить, что у ромба две диагонали. Они различаются по размеру. Одна из них больше другой (d1 > d2).
Частные случаи
В некоторых задачах нужно определить количество касательных у двух окружностей. Можно выполнить ряд сложных и трудоемких доказательств. В результате этого будет потрачено много времени, а можно воспользоваться уже готовыми дополнительными свойствами:
- Четыре касательных: круги не соприкасаются, т. е. d > r1 + r2 (значение диаметра больше суммы радиусов r1 и r2).
- Две общие внешние и одна внутренняя: окружности соприкасаются только в одной точке (d = r1 + r2).
- Только две внешние: пересечение окружностей в двух точках (|r1 — r2| < d < r1 + r2).
- Одна общая внешняя: окружности касаются внутри друг друга (d = |r1 — r2|).
- Отсутствуют: один круг находится внутри другого (d < |r1 — r2|).
В последнем случае любая касательная будет являться секущей для другой окружности. Существует еще одно положение, когда окружности совпадают. Тогда любая касательная считается общей. В высшей математике разбирается также «отрицательный» радиус. Тогда вышеперечисленные свойства можно править следующим образом:
- Нет касательных: окружности не соприкасаются, и для них выполняется условие d < — (r1 + r2).
- Две внутренние (общие) и одна внешняя: круги соприкасаются в одной точке (d = -r1 — r2).
- Одна пара внутренних: пересечение в 2 точках (|r1 — r2| > d > — r1 — r2).
- Внутренняя общая (одна): соприкасаются внутри (d = |r2 — r1|).
- Четыре: при d > |r1 — r2|.
Когда заданы окружности, радиус одной из которых равен 0, тогда «нулевой» круг эквивалентен двойной точке. Прямая является двойной и проходит через эту точку. В этом случае математики определяют всего две внешних. Если r1 = r2 = 0, то всего 4 внешних общих касательных. Далее для решения задач нужно разобрать доказательства некоторых свойств.
Доказательства утверждений
Очень важно знать доказательства некоторых свойств и теорем, поскольку одним из типов задач считаются упражнения повышенной сложности, требующие логических расчетов в общем виде. Например, нужно доказать, что касательная образует с радиусом, проведенным к точке касания, прямой угол. Существует тип доказательства от противного.
Для этого следует предположить, что искомый угол не равен 90 градусам. Пусть дана некоторая касательная р. Она имеет с кругом общую точку А. Нужно провести к ней перпендикуляр (радиус). Далее нужно провести из центра О отрезок ОВ на р. Образуется прямоугольный треугольник АВО с гипотенузой ОВ. Если опираться на утверждение от противного, то гипотенуза будет меньше катета (d < r). Однако радиус не может быть больше диаметра, поскольку он рассчитывается по следующей формуле: d = 2 * r. Следовательно, утверждение доказано.
Аналогично доказывается и обратное свойство. Его формулировка имеет такой вид: прямая, проходящая под прямым углом через точку, которая образована радиусом, является касательной. В этом случае можно доказывать не от противного. Расстояние от прямой до центра окружности эквивалентно некоторой величине и является радиусом. Из определения следует, что прямая и окружность имеют общую точку, и только одну. Следовательно, она и есть касательная.
Доказательство об отрезках, проведенных из одной точки, тоже нужно разобрать, поскольку такой прием применяется в решении сложных задач. Отрезки равны между собой и образуют с прямой, проведенной к центру круга, эквивалентные углы.
Следует выполнить построение окружности с центром Р. Далее нужно обозначить точку А за ее пределами и провести из нее лучи-касательные к искомой окружности. Они образуют на круге точки А и В. Кроме того, следует доказать равенство углов ОАВ и САО. При построении образовалось два треугольника ОВА и ОСА. Фигуры являются прямоугольными на основании свойства о касательной и радиусе.
Далее необходимо доказать равенство фигур ОВА и ОСА. Это сделать довольно просто: гипотенуза — общая, катеты ОВ и ОС равны (радиусы) и углы АВО = АСО = 90. Следовательно, они равны по первому признаку, а также эквивалентны друг другу стороны АВ и АС. Кроме того, угол ОАВ = САО. Утверждение доказано. Гипотенуза является также и биссектрисой. В некоторых источниках можно встретить доказательство равенства тангенсов углов.
Пример решения задачи
Нужно составить уравнения касательных к окружности (описанной графиком функции х 2 + y 2 = 2x + 6y + 19), проходящих через координаты х =0 у= -14. Для решения задачи следует действовать по такому алгоритму:
- Перенести все слагаемые, кроме 19, в левую сторону: х 2 + y 2 — 2x — 6y = 19.
- Выделить полный квадрат для окончательной записи уравнения окружности: х 2 — 2x + 1 — 1 + y 2 — 6y +9 — 9 = (х — 1)^2 + (y — 3)^2 = 29.
- Уравнение прямой, проходящей через (0;-14) в общем виде: y — (-14) = k * (x — 0) или у = кх — 14.
- Составить систему уравнений: (х — 1)^2 + (y — 3)^2 = 29 и у = кх — 14.
- Подставить второе в первое: (х — 1)^2 + (кх — 14 — 3)^2 = 29.
- Упростить выражение: (х — 1)^2 + (кх — 14 — 3)^2 — 29 = х 2 — 2x + 1 +k 2 * x 2 — 34kx + 289 — 29 = (1 + k 2 ) * x 2 — 2 * (17k + 1) + 261.
- Решением уравнения должен быть один корень: D/4 = 0.
- Упростить тождество: D/4 = (-(17k + 1))^2 — 261 (1 + k 2 ) = 289k 2 + 34k + 1 — 261 — 261k 2 = 28k 2 + 34k — 260 = 0.
- Найти значение D: 17 2 — 28 * (-260) = 289 + 7280 = 7569.
- Первый коэффициент к1 = (-17 — 87) / 28 = -26/7.
- Коэффициент к2 = (-17 + 87) / 28 = 5/2.
- Записать уравнения прямых с учетом к1 и к2: у1 = (-26/7) * х — 14 (26х + 7у + 98 = 0) и у2 = (5/2) * х — 14 (5х — 2у — 28 = 0).
Следует отметить, что уравнение окружности с радиусом, равным единице, описывается функцией x2 + y 2 = 1. Эта запись применяется для решения задач в общем виде. Прямая — функция, описанная прямой пропорциональностью у = кх + b. Чтобы связать окружность и касательные, нужно составить систему уравнений. Этот математический ход объясняется тем, что у функций должны быть общие решения (точка на окружности). После решения можно выполнить проверочные вычисления, подставив корни в систему.
Таким образом, для решения задач об окружности и касательной следует знать общие понятия, а также основные свойства и теоремы.
Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Понятие касательной к окружности
Окружность имеет три возможных взаимных расположений относительно прямой:
-
Если расстояние от центра окружности до прямой меньше радиуса, то прямая имеет две точки пересечения с окружностью.
-
Если расстояние от центра окружности до прямой равно радиусу, то прямая имеет две точки пересечения с окружностью.
-
Если расстояние от центра окружности до прямой больше радиуса, то прямая имеет две точки пересечения с окружностью.
Введем теперь понятие касательной прямой к окружности.
Определение 1
Касательной к окружности называется прямая, которая имеет с ней одну точку пересечения.
Общая точка окружности и касательной называется точкой касания (рис 1).
Рисунок 1. Касательная к окружности
Теоремы, связанные с понятием касательной к окружности
Теорема о свойстве касательной: касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Доказательство.
Рассмотрим окружность с центром $O$. Проведем в точке $A$ касательную $a$. $OA=r$ (Рис. 2).
Докажем, что $abot r$
Будем доказывать теорему методом «от противного». Предположим, что касательная $a$ не перпендикулярна радиусу окружности.
Рисунок 2. Иллюстрация теоремы 1
То есть $OA$ — наклонная к касательной. Так как перпендикуляр к прямой $a$ всегда меньше наклонной к этой же прямой, то расстояние от центра окружности до прямой меньше радиуса. Как нам известно, в этом случае прямая имеет две точки пересечения с окружностью. Что противоречит определению касательной.
«Касательная к окружности» 👇
Следовательно, касательная перпендикулярна к радиусу окружности.
Теорема доказана.
Теорема 2
Обратная теореме о свойстве касательной: Если прямая, проходящая через конец радиуса какой-либо окружности перпендикулярна радиусу, то данная прямая является касательной к этой окружности.
Доказательство.
По условию задачи мы имеем, что радиус — перпендикуляр, проведенный из центра окружности к данной прямой. Следовательно, расстояние от центра окружности до прямой равняется длине радиуса. Как мы знаем, в этом случае окружность имеет только одну точку пересечения с этой прямой. По определению 1 и получаем, что данная прямая — касательная к окружности.
Теорема доказана.
Теорема 3
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Доказательство.
Пусть дана окружность с центром в точке $O$. Из точки $A$ (лежащей все окружности) проведены две различные касательные. Из точки касания соответственно $B$ и $C$ (Рис. 3).
Докажем, что $angle BAO=angle CAO$ и что $AB=AC$.
Рисунок 3. Иллюстрация теоремы 3
По теореме 1, имеем:
Следовательно, треугольники $ABO$ и $ACO$ — прямоугольные. Так как$OB=OC=r$, а гипотенуза $OA$ — общая, то эти треугольники равны по гипотенузе и катету.
Отсюда и получаем, что $angle BAO=angle CAO$ и $AB=AC$.
Теорема доказана.
Пример задачи на понятие касательной к окружности
Пример 1
Дана окружность с центром в точке $O$ и радиусом $r=3 см$. Касательная $AC$ имеет точку касания $C$. $AO=4 см$. Найти $AC$.
Решение.
Изобразим вначале все на рисунке (Рис. 4).
Рисунок 4.
Так как $AC$ касательная, а $OC$ радиус, то по теореме 1, получаем, что$angle ACO={90}^{{}^circ }$. Получили, что треугольник $ACO$ — прямоугольный, значит, по теореме Пифагора, имеем:
[{AC}^2={AO}^2+r^2] [{AC}^2=16+9] [{AC}^2=25] [AC=5]
Ответ: $5$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Определение формулы касательной к окружности
Общая формула окружности |
Уравнение касательной в указанной точке |
Касательная к окружности
Если не использовать понятие производной, и взять объяснение из учебников середины прошлого века, то «Касательная к окружности — это прямая пересекающая окружность в двух совпадающих точках»
Окружность на плоскости может быть представлена в виде нескольких исходных данных
1. В виде координат центра окружности (x0,y0) и её радиуса R.
2. В виде общего уравнения
В виде параметрического вида и в полярных координатах мы рассматривать не будем, так как там формулы тоже на базируются на координатах центра окружности и радиусе.
Наша задача, зная параметры окружности и точку принадлежащую этой окружности вычислить параметры касательной к этой окружности.
Эта задача, является частным решением более общего калькулятор касательная к кривой второго порядка
Итак, если окружность выражена формулой
Уравнение касательной к окружности если нам известны параметры общего уравнения таково:
Таким образом, зная все коэффициенты, мы очень легко найдем уравнение касательной в заданной точке.
ВАЖНО: При указании точки, она должна быть обязательно(!!) принадлежать окружности,
и не быть точкой в какой либо стороне. В противном случае, уравнение касательной будет неверным.
Примеры
Вычислить уравнение касательной в точке (13.8, 0) к окружности выраженной формулой
Запишем коэффиценты этой кривой, взглянув на общую формулу
Второй пример:
Через окружность с центром (8.71, -4) и радиусом 7 проходит касательная и касается в точке (4,-4)
Найти уравнение этой прямой.
Раз у нас заданы радиус и коордианты центтра то уравнение имеет вид
раскроем скобки, получим
Отрисовав, полученные линии в GeoGebra мы убедимся что расчет произведен верно.
Формально, используя вышеупомянутую программу, касательную можно провести там проще и быстрее. Смотрите где и как проще.
Удачных расчетов!