Как найти длину и ширину прямоугольного параллелепипеда если известны объём и высота.
Вы открыли страницу вопроса Как найти длину и ширину прямоугольного параллелепипеда если известны объём и высота?. Он относится к категории
Математика. Уровень сложности вопроса – для учащихся 5 — 9 классов.
Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие
ответы по интересующей теме. Чтобы получить наиболее развернутый ответ,
можно просмотреть другие, похожие вопросы в категории Математика,
воспользовавшись поисковой системой, или ознакомиться с ответами других
пользователей. Для расширения границ поиска создайте новый вопрос, используя
ключевые слова. Введите его в строку, нажав кнопку вверху.
Ответ:
См. Пошаговое объяснение
Пошаговое объяснение:
Формула объёма прямоугольного параллелепипеда:
V = a · b · h,
где V — объём;
a — длина;
b — ширина;
h — высота.
Из приведённой формулы выразим а (неизвестный сомножитель a равен произведению V, делённому на известный сомножитель, которым в данном случае является bh):
а = V : (b · h).
Если известны объём, ширина и высота прямоугольного параллелепипеда, то для того, чтобы найти его длину, необходимо объём разделить на произведение ширины на высоту.
Ответ или решение 2
1) Сначала запишем формулу нахождения объёма прямоугольного параллелепипеда:
V = a × b × h, где а — длина, b — ширина, h — высота.
2) Из формулы нахождения объёма парвллелепипеда выразим формулу нахождения длины:
Объём параллелепипеда 40 м.куб. Высота равна 4 м, ширина 2 м. Найдите длину параллелепипеда.
40 : 4 : 2 = 5 (м) — длина параллелепипеда.
Прямоугольный параллелепипед — пространственная фигура с шестью гранями, каждая из которых является прямоугольником. Противолежащие грани параллелепипеда равны.
По условию задан прямоугольный параллелепипед со следующими параметрами:
Объём прямоугольного параллелепипеда
Объём прямоугольного параллелепипеда V вычисляется как произведение площади основания многогранника и его высоты.
Площадь основания, которая представляет собой прямоугольник, выражается как произведение его длины и ширины, то есть
S (основания) = а * b.
Соответственно, V (прямоугольного параллелепипеда) = S (основания) * h = а * b * h.
Объём прямоугольного параллелепипеда равен произведению всех его параметров: высоты, ширины и длины.
Длина прямоугольного параллелепипеда
Таким образом, из приведенной выше зависимости можно выразить длину прямоугольного параллелепипеда:
Итак, длина прямоугольного параллелепипеда равна отношению его объема к произведению ширины и высоты.
Ответ
Проверено экспертом
Ответ:
Объем = длина * ширина * высота
длина = объем : (ширина * высота)
Пошаговое объяснение:
- Комментарии (2)
- Отметить нарушение
Ответ
Чтобы найти объем прямоугольного параллелепипеда, нужно умножить длину, ширину и высоту. Пример: Длина прямоугольного параллелепипеда равна 5 см, ширина — 10 см, а высота — 4 см, то объем такого прямоугольного параллелепипеда будет равен 4*5*10=200 см куб.
Объем прямоугольного параллелепипеда, формула.
Параллелепипедом является призма, основание у которой – это параллелограмм. У параллелепипеда
6 граней, а они, в свою очередь, являются параллелограммами.
Параллелепипед, у которого 4 боковые грани — это прямоугольники, является прямым
Прямой параллелепипед, у которого все 6 граней прямоугольники, является прямоугольным.
Другими словами, прямоугольный параллелепипед — это объемная фигура, у которой есть 6 граней, и
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
где, H — высота параллелепипеда,
a – длина параллелепипеда,
b – ширина параллелепипеда,
h — высота прямоугольного параллелепипеда,
Примеры прямоугольного параллелепипеда: спортивный зал, кирпич, картонная коробка или столешница
Длины 3 рёбер прямоугольного параллелепипеда, которые имеют общий конец, называются измерениями
прямоугольного параллелепипеда.
Прямоугольный параллелепипед с одинаковыми измерениями является кубом. Все 6 граней куба — это
Квадрат длины диагонали прямоугольного параллелепипеда = сумме квадратов 3 его измерений.
Объем прямого параллелепипеда, формула.
Как найти объем параллелепипеда?
Площадь боковой поверхности параллелепипеда, формула:
где Ро — периметр основания,
Площадь полной поверхности, формула
где Sо — площадь основания
Формула объёма прямого параллелепипеда:
Объем произвольного параллелепипеда.
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры.
Чему равен объём параллелепипеда? Объем параллелепипеда равен абсолютной величине смешанного
произведения трёх векторов, которые определяются 3-мя сторонами параллелепипеда, которые исходят
из одной вершины.
Соотношение длина сторон параллелепипеда – угол между ними даёт утверждение, что определитель
Грама указанных 3х векторов равен квадрату их смешанного произведения.
Как найти длину, если известен объем
Если известен объем трехмерной геометрической фигуры, в большинстве случаев можно найти некоторые ее линейные размеры. Главный линейный размер любой фигуры – это длины ее сторон, а для сферы – радиус. Для различных типов фигур он находится по-разному.
Вам понадобится
- Объемы измеряемых фигур, свойства многогранников
Инструкция
Зная объем правильного многогранника (выпуклого многогранника, стороны которого правильные многоугольники) можно вычислить его сторону. Чтобы найти длину стороны тетраэдра (правильного четырехгранника, грани которого являются равносторонними треугольниками), умножьте его объем на 12 и разделите результат на корень квадратный из 2. Из полученного числа извлеките кубический корень.
Чтобы найти сторону куба, который является шестигранником, каждая грань которого квадрат, из его объема извлеките кубический корень. Вычислите сторону октаэдра, который состоит из 8 треугольных граней, каждая из которых является правильным треугольником, умножив его объем на 3 и поделив на корень квадратный из 2. Из полученного числа извлеките кубический корень. Найдите сторону додекаэдра, многогранника состоящего из 12 правильных пятиугольников, для чего поделите его объем на число 7,66, и извлеките из результата кубический корень.
Чтобы найти радиус шара, объем которого известен, умножьте этот объем на 3 и поделите последовательно на числа 4 и 3,14. Их полученного результат извлеките кубический корень.
Если же фигура не является правильным многогранником, то, зная ее объем, можно вычислить длины только некоторых ее элементов. Зная объем и площадь основания призмы, можно найти ее высоту. Для этого поделите значение объема на площадь основания h=V/S. Чтобы найти другие линейные элементы, нужно знать параметры площади основания, например, если это квадрат, из значения площади извлеките корень квадратный, это и будет сторона основания.
Если известен объем цилиндра, то можно найти его высоту, зная радиус. Для этого объем последовательно поделите на число 3,14 и квадрат радиуса основания. Если же известна высота, то найдите радиус основания, поделив объем на число 3,14 и значение высоты, а из результата извлеките корень квадратный.
Чтобы найти высоту пирамиды через объем, поделите его на площадь основания, а результат умножьте на число 3.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Прямоугольный параллелепипед — пространственная фигура с шестью гранями, каждая из которых является прямоугольником. Противолежащие грани параллелепипеда равны.
По условию задан прямоугольный параллелепипед со следующими параметрами:
- искомая длина а;
- ширина b;
- высота h;
- объём V.
Объём прямоугольного параллелепипеда
Объём прямоугольного параллелепипеда V вычисляется как произведение площади основания многогранника и его высоты.
Площадь основания, которая представляет собой прямоугольник, выражается как произведение его длины и ширины, то есть
S (основания) = а * b.
Соответственно, V (прямоугольного параллелепипеда) = S (основания) * h = а * b * h.
Объём прямоугольного параллелепипеда равен произведению всех его параметров: высоты, ширины и длины.
Длина прямоугольного параллелепипеда
Таким образом, из приведенной выше зависимости можно выразить длину прямоугольного параллелепипеда:
a = V / (b * h).
Итак, длина прямоугольного параллелепипеда равна отношению его объема к произведению ширины и высоты.