Как найти длину диагонали са1

Для решения рассмотрим рисунок (http://bit.ly/2GoDdZZ).

Первый способ.

Так как в параллелепипеде противоположные стороны равны, то ВС = В1С1 = 12 см.

Все боковые грани и основания есть прямоугольники. Проведем диагональ АС, тогда, в прямоугольном треугольнике АВС, по теореме Пифагора определим длину гипотенузы АС.

АС2 = АВ2 + ВС2 = 9 + 144 = 153.

Треугольник АА1С прямоугольный, тогда А1С2 = АС2 + АА12 = 153 + 576 = 729.

А1С = 27 см.

Второй способ.

Квадрат диагонали параллелепипеда равен сумме квадратов трех его измерений.

СА12 = АА12 + АВ2 + В1С12 = 576 + 9 + 144 = 729.

СА1 = 27 см.

Ответ: Длина диагонали СА1 равна 27 см.

Незнаю может да а может и нет

По 500 раз будешь байду свою выкладывать?)))

d=a*v3
где d-диагональ куба а-сторона куба
а=d/v3=2v3/v3=2 см
объём куба=а^3=2^3=8 см .куб.

∠1-∠2=75°   ⇒   ∠1=75°+∠2

∠2=∠3

180°=∠1+∠2+∠3=75°+∠2+∠2+∠2=75°+3·∠2

3·∠2=180°-75°=105°

∠2=105°:3=35°

∠1=35°+75°=110°

∠2=∠3=35°

Пусть х — одна диагональ. Тогда вторая равна 3х. Площадь ромба равна половине произведенич его диагоналей. На основании этого составим уравнение:
1/2х•3х = 54
3х² = 108
х² = 36
х = 6
Значит, одна диагональ равна 6 см.
Тогда другая равна 6•3 = 18 см.
В ромба диагонали точкой пересечения делятся пополам и угол между ними равен 90°
Тогда, используя теорему Пифагора, найдём сторону
Она равна √9² + 3² = √81 + 9 = 3√10
Ответ: 3√10.

Решение 1:Mawtun
5-9 Геометрия 203+102 б

дан треугольник авс вс=6 найдите периметр треугольника мен
Приложение
Комментарии (5) следить Отметить нарушение Askerova2000 16.02.2014
Комментарий удален
нет-нет, это большого
IUV
ВС=6 см- по условию
AC=BC/sin(30)=12
AB=AC*cos(30)=6*корень(3)
EM=AB/2=3*корень(3) — т.к. ЕМ — средняя линия треугольника ABC
MN=BC/2=3- т.к. MN — средняя линия треугольника ABC
EN=AC/2=6- т.к. ЕN — средняя линия треугольника ABC
Pemn = EM + MN + EN = 3+6+3*корень(3) = 9+3*корень(3) ~ 14,19615242 ~ 14,2
meripoppins60
12 корень из 3
IUV
нет
9+(3*корень(3))
Mawtun

Ответы и объяснения
IUV
IUV Ведущий Модератор

ВС=6 см- по условию
AC=BC/sin(30)=12
AB=AC*cos(30)=6*корень(3)
EM=AB/2=3*корень(3) — т.к. ЕМ — средняя линия треугольника ABC
MN=BC/2=3- т.к. MN — средняя линия треугольника ABC
EN=AC/2=6- т.к. ЕN — средняя линия треугольника ABC
Pemn = EM + MN + EN = 3+6+3*корень(3) = 9+3*корень(3) ~ 14,19615242 ~ 14,2
/// Решение 2:ВС=6см; АС=2*6=12см; АВ=12*cos30°=6√3; P(MEN)=3+6+3√3=9+3*1.7=14.1см.


Загрузить PDF


Загрузить PDF

Диагональ — это отрезок, который соединяет две противолежащие вершины прямоугольника.[1]
В прямоугольнике две равные диагонали.[2]
Если известны стороны прямоугольника, диагональ можно найти по теореме Пифагора, потому что диагональ делит прямоугольник на два прямоугольных треугольника. Если стороны не даны, но известны другие величины, например, площадь и периметр или отношение сторон, можно найти стороны прямоугольника, а затем по теореме Пифагора вычислить диагональ.

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 1

    1

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 2

    2

  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 3

    3

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 4

    4

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[5]
    Вы найдете c, то есть гипотенузу треугольника, а значит и диагональ прямоугольника.

    Реклама

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 5

    1

    Запишите формулу для вычисления площади прямоугольника. Формула: S=lw, где S — площадь прямоугольника, l — длина прямоугольника, w — ширина прямоугольника.[6]
    (На рисунке вместо S использовано обозначение А.)

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 6

    2

    В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо S.

    • Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула запишется так: 35=lw.
  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 7

    3

    Перепишите формулу так, чтобы обособить w. Для этого разделите обе стороны уравнения на l. Затем полученное выражение нужно подставить в формулу для вычисления периметра.

  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 8

    4

    Запишите формулу для вычисления периметра прямоугольника. Формула: P=2(w+l), где l — длина прямоугольника, w — ширина прямоугольника.[7]

  5. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 9

    5

    В формулу подставьте значение периметра прямоугольника. Это значение подставляется вместо P.

    • Например, если периметр прямоугольника равен 24 сантиметра, формула запишется так: 24=2(w+l).
  6. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 10

    6

    Разделите обе стороны уравнения на 2. Вы получите сумму сторон прямоугольника, а именно w+l.

  7. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 11

    7

    В формулу подставьте выражение для вычисления w. Это выражение, полученное при обособлении w.

  8. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 12

    8

    Избавьтесь от дроби. Для этого обе части уравнения умножьте на l.

  9. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 13

    9

    Приравняйте уравнение к 0. Для этого из обеих сторон уравнения вычтите член с переменной первого порядка.

  10. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 14

    10

    Упорядочьте члены уравнения. Первым членом будет член с переменной второго порядка, затем член с переменной первого порядка, а затем свободный член. При этом не забудьте про знаки («плюс» и «минус»), которые стоят перед членами. Обратите внимание, что уравнение запишется в виде квадратного уравнения.

  11. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 15

    11

    Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.

  12. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 16

    12

    Найдите l. Для этого приравняйте каждый множитель к нулю и вычислите l. Вы получите два значения (это корни уравнения), которые в случае прямоугольника являются его длиной и шириной.

  13. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 17

    13

  14. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 18

    14

  15. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 19

    15

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  16. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 20

    16

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[10]
    Вы найдете c, то есть гипотенузу треугольника, а значит, и диагональ прямоугольника.

    Реклама

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 21

    1

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 22

    2

  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 23

    3

    В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо S.

    • Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула примет вид: 35=lw.
  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 24

    4

    В формулу подставьте выражение, характеризующее отношение сторон. В случае прямоугольника можно подставить выражение для вычисления l или w.

  5. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 25

    5

    Запишите квадратное уравнение. Для этого раскройте скобки и приравняйте уравнение к нулю.

  6. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 26

    6

    Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.

  7. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 27

    7

    Найдите w. Для этого приравняйте каждый множитель к нулю и вычислите w. Вы получите два значения (так называемые корни уравнения).

  8. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 28

    8

    Подставьте найденное значение ширины (или длины) в уравнение, характеризующее отношение сторон. Так можно найти другую сторону прямоугольника.

  9. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 29

    9

  10. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 30

    10

  11. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 31

    11

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  12. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 32

    12

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[16]
    Вы найдете c, то есть гипотенузу треугольника, а значит и диагональ прямоугольника.

    Реклама

Об этой статье

Эту страницу просматривали 557 104 раза.

Была ли эта статья полезной?

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Определение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Свойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Ромб – это параллелограмм, у которого все стороны равны.

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объекты яблони теплица сарай жилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объекты яблони теплица сарай жилой дом
Цифры 3 5 1 7

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазина Расход краски Масса краски в одной банке Стоимость одной банки краски Стоимость доставки заказа
1 0,25 кг/кв.м 6 кг 3000 руб. 500 руб.
2 0,4 кг/кв.м 5 кг 1900 руб. 800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Многоугольник. Нахождение диагоналей вписанного четырехугольника. Теорема Птоломея.

Обозначим стороны вписанного четырехугольника ABCD через a, b, с, d и его диагонали через x и y .Проведем AK ^ BС и СL ^ AD.

Так как сумма противоположных углов вписанного четырехугольника равна 2d, то, если угол B острый, угол D должен быть тупым.

Поэтому из треугольников ABС и ADС можем написать:

x 2 = a 2 + b 2 – 2b . BK [1];

x 2 = с 2 + d 2 + 2d . DL [2].

Прямоугольные треугольники ABK и СDL подобны, т.к. они содержат по равному острому углу (углы B и СDL равны, потому что каждый из них служит дополнением до 2d к углу ADС).

Из их подобия выводим:

откуда BK . с = DL . a [3].

Таким образом, мы получим три уравнения с тремя неизвестными x, BK и DL.

Чтобы исключить BK и DL , уравняем в первых двух уравнениях последние члены, для чего умножим уравнение [1] на сd , а уравнение [2] на ab .

Сложив затем результаты и, приняв во внимание уравнение [3], найдем:

(ab + сd)x 2 = a 2 сd + b 2 сd + с 2 ab + d 2 ab =aс(ad + bс) + bd(bс+ad)=(aс + bd)(ad+bс),

.

Заметим, что в числителе подкоренной величины первый множитель — сумма произведений противоположных сторон, а второй — сумма произведений сторон, сходящихся в концах определяемой диагонали, знаменатель же представляет сумму произведений сторон, сходящихся в концах другой диагонали.

После этого мы можем, по аналогии, написать следующую формулу для диагонали y:

.

Следствие 1.

Произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон.

Действительно, перемножив выражения, выведенные для x и для y, получим:

.

Это предложение известно под именем теоремы Птоломея.

Следствие 2.

Отношение диагоналей вписанного четырехугольника равно отношению суммы произведений сторон, сходящихся в концах первой диагонали, к сумме произведений сторон, сходящихся в концах второй диагонали.

Действительно, разделив те же два равенства, найдем:

.

Эти два следствия удобны для запоминания. Из них можно обратно вывести формулы для x и y (перемножением или делением равенств, определяющих xy и x/y).

Геометрия. Урок 4. Четырехугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение четырехугольника
  • Выпуклые четырехугольники
  • Параллелограмм

Определение четырехугольника

Четырехугольником называется фигура, которая состоит из четырех точек (вершин) и четырех отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырехугольники бывают выпуклые ( A B C D ) и невыпуклые ( A 1 B 1 C 1 D 1 ) .

Выпуклые четырехугольники

В задачах ОГЭ встречаются выпуклые четырехугольники, поэтому подробно изучим их.

Смежные стороны – соседние стороны, которые выходят из одной вершины. Пары смежных сторон: A B и A D , A B и B C , B C и C D , C D и A D .

Противолежащие стороны – несмежные стороны (соединяют разные вершины). Пары противолежащих сторон: A B и C D , B C и A D .

Противолежащие вершины – вершины, не являющиеся соседними (лежат друг напротив друга). Пары противолежащих вершин: A и C , B и D .

Диагонали четырехугольника – отрезки, соединяющие противолежащие вершины. A C и B D – диагонали четырехугольника A B C D .

Диагонали выпуклого четырехугольника пересекаются в одной точке.

Площадь произвольного выпуклого четырехугольника можно найти по формуле:

S = 1 2 d 1 d 2 ⋅ sin φ

где d 1 и d 2 – диагонали четырехугольника, φ – угол между диагоналями (острый или тупой – не важно).

Рассмотрим более подробно некоторые виды выпуклых четырехугольников.

Класс параллелограммов : параллелограмм, ромб, прямоугольник, квадрат.

Класс трапеций : произвольная трапеция, прямоугольная трапеция, равнобокая (равнобедренная) трапеция.

Параллелограмм

Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.

Свойства параллелограмма:

  • Противолежащие стороны равны.
  • Противоположные углы равны.
  • Диагонали точкой пересечения делятся пополам.
  • Сумма углов, прилежащих к одной стороне, равна 180 ° .
  • Сумма квадратов диагоналей равна сумме квадратов сторон. d 1 2 + d 2 2 = 2 ( a 2 + b 2 )

Площадь параллелограмма можно найти по трём формулам.

Как произведение стороны и высоты, проведенной к ней.

Поскольку стороны имеют разные длины, то высоты, которые к ним проведены, тоже будут иметь разные длины.

Как произведение двух смежных (соседних) сторон на синус угла между ними.

Как полупроизведение диагоналей на синус угла между ними.

Ромб – параллелограмм, у которого все стороны равны.

Свойства ромба:

  • Диагонали пересекаются под прямым углом.
  • Диагонали являются биссектрисами углов, из которых выходят.
  • Сохраняются все свойства параллелограмма.

Площадь ромба можно найти по трём формулам.

Как произведение стороны ромба на высоту ромба.

Как квадрат стороны ромба на синус угла между двумя сторонами.

Как полупроизведение диагоналей ромба.

Прямоугольник

Прямоугольник – это параллелограмм, у которого все углы равны 90 ° .

Свойства прямоугольника:

  • Диагонали прямоугольника равны.
  • Сохраняются все свойства параллелограмма.

Площадь прямоугольника можно найти по двум формулам:

Как произведение двух смежных (соседних) сторон прямоугольника.

Как полупроизведение диагоналей (так как они обе равны, обозначим их буквой d ) на синус угла между ними.

Квадрат

Квадрат – прямоугольник, у которого все стороны равны.

Свойства квадрата:

  • Сохраняет свойства ромба.
  • Сохраняет свойства прямоугольника.

Площадь квадрата можно вычислить по двум формулам:

Как квадрат стороны.

Как полупроизведение квадратов диагоналей (диагонали в квадрате равны).

Трапеция

Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие нет.

Стороны, которые параллельны друг другу называются основаниями , другие две стороны называются боковыми сторонами .

B C и A D – основания, A B и C D – боковые стороны трапеции A B C D .

Свойства трапеции:

сумма углов, прилежащих к боковой стороне, равна 180 ° .

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Средняя линия параллельна основаниям. Её длина находится по формуле: m = a + b 2

Площадь трапеции можно найти по двум формулам:

Как полусумму оснований на высоту. Поскольку полусумма оснований есть средняя линия трапеции, можно найти площадь трапеции как произведение средней линии на высоту.

Как полупроизведение диагоналей на синус угла между ними.

Виды трапеций

Прямоугольная трапеция – трапеция, у которой два угла прямые.

Равнобокая (равнобедренная) трапеция – трапеция, у которой боковые стороны равны.

Свойство равнобокой трапеции: углы при основании равны

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с четырехугольниками

источники:

http://www.calc.ru/Mnogougolnik-Nakhozhdeniye-Diagonaley-Vpisannogo-Chetyrekhug.html

Геометрия. Урок 4. Четырехугольники

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как правильно найти основную мысль текста
  • Как толстому найти красивую девушку
  • Как найти пищевую моль на кухне
  • Unable to load vgcore error code 127 coreldraw 2020 windows 7 как исправить
  • Как составить заключение к психологической методике

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии