Как найти дисперсию нормально распределенной случайной величины

  1. Нормальное распределение, его математическое ожидание, дисперсия.

Случайная
величина  называется
распределенной по нормальному закону,
если ее плотность вероятности имеет
вид:

Здесь  математическое
ожидание,  дисперсия,  среднее
квадратическое отклонение. Как и
ранее, ,
однако, этот интеграл вычисляется
численными методами. Чтобы упростить
эту процедуру, пользуются преобразованием
случайной величины  и
правилом сохранения элемента вероятности ,
где  плотность
распределения вероятности случайной
величины :

.

Как
видим, индивидуальные числовые
характеристики распределения
(математическое ожидание и дисперсия)
в последнее выражение не входят, т.е.
вышеуказанным преобразованием нормальная
случайная величина  приведена
к нормальной стандартной случайной
величине  с
параметрами 0 (математическое ожидание)
и 1 (дисперсия). Дифференциальная и
интегральная функции стандартного
нормального распределения табулированы
(имеются таблицы), что существенно
облегчает вычисления. Интегральная
функция распределения обозначается ,

Часто
используют функцию Лапласа:

Очевидны
следующие свойства:

где .

Пример.
 Нормальная
случайная величина  задана
математическим ожиданием  и
средним квадратическим отклонением .
Записать соответствующую дифференциальную
функцию, схематично изобразить ее
график, вычислить вероятность попадания
случайной величины  в
интервал 

Решение:
Записать дифференциальную функцию
нормальной случайной величины  с
заданными значениями математического
ожидания и дисперсии значит в общее
выражение для дифференциальной функции
нормальной случайной величины подставить
заданные  и .
Например, если ,
то получим

.

При
изображении этой функции на схематичном
графике следует учесть, что эта функция
имеет максимум при ,
симметрична относительно  (это
видно непосредственно из приведенной
выше формулы) и стремится к нулю при .
Однако правило (вероятность
того, что случайная величина примет
значение, по модулю отличающееся от
математического ожидания на или
более, пренебрежимо мала – составляет
всего около 0,0027) позволяет нам закончить
правую ветвь в точке  а
левую – в точке  Высота
максимума в точке  составит  Дополнительно
надо учесть, что перегибы ветвей будут
иметь место в точках 

Вероятность
попадания случайной величины  в
интервал  вычислим
так:

При
этом следует воспользоваться таблицами
функции стандартного нормального
распределения  или
функции Лапласа .

36. Нормальная кривая.

Центральная
предельная теорема.
 Если
случайная величина Х представляет собой
сумму очень большого числа взаимно
независимых случайных величин, влияние
каждой из которых на всю сумму ничтожно
мало, то Х имеет распределение, близкое
к нормальному.

Говорят,
что случайная величина Х распределена
по нормальному
закону
 с
параметрами а и ,
если плотность распределения вероятностей
имеет вид:

,
–¥<t<¥.

Вероятностный
смысл параметров а и  таков: а –
математическое ожидание случайной
величины Х, s –
среднее квадратическое отклонение
величины.

Иногда
такой закон распределения
называют Гауссовским. График плотности
нормального распределения называют
нормальной кривой (кривой Гаусса). На
рисунке изображены нормальные кривые
с параметрами а=1
и  .

 Из
рисунка видно, что положение пика кривых
определяется параметром а=1,
а параметр s (среднее квадратическое отклонение)
характеризует форму нормальной кривой.
При увеличении s уменьшается
максимум кривой распределения, сама
кривая становится более пологой,
растягиваясь вдоль оси абсцисс. И,
наоборот, при уменьшении s  возрастает
максимум кривой распределения, сама
кривая становится более «островершинной».
Площадь, ограниченная любой нормальной
кривой и осью абсцисс, равна единице.
Параметр а(математическое
ожидание величины) определяет положение
максимума на оси абсцисс, не влияя на
форму кривой. На рисeyrt
ниже показаны нормальные кривые с
одинаковым средним квадратическим отклонением  и
разными математическими
ожиданиями а=–1, а=0, а=1.

         Нормальное
распределение с параметрами а=0
и  называется нормированным

  1. Вероятность
    попадания в заданный интервал нормальной
    случайной величины.

Вероятность
того, что Х примет значение, принадлежащее
интервалу (α,β)

P(α<X<β)=Ф((β-a)/σ)-Ф((α-a)/σ),
где

– функция Лапласа.

  1. Ф(-∞)=0

  2. Ф(+∞)=1

  3. Ф(-х)=1-Ф(х)

P(mx-l<x<mx+l)=Ф(l/σ)-Ф(-l/σ)=2Ф(l/σ)-1

38.
Вычисление вероятности заданного
отклонения.

Часто
требуется вычислить вероятность того,
что отклонение нормально распределенной
случайной вели­чины Х по
абсолютной величине меньше заданного
положительного числа d, т.
е. требуется найти вероятность
осуществления неравенства |x —а|<d.

Заменим
это неравенство равносильным ему двойным
неравенством

Тогда
получим:

Приняв
во внимание равенство:

(функция
Лапласа—нечетная), окончательно имеем

 Вероятность
заданного отклонения равна

На
рисунке наглядно показано, что если две
случайные величины нормально распределены
и а = 0,
то вероятность принять значение,
принадлежащее интервалу (-d,d),больше
у той величины, которая имеет меньшее
значение d. Этот
факт полностью соответствует вероятностному
смыслу параметра s .

Пример.
Случайная величина Х распределена
нормально. Математическое ожидание и
среднее квадратическое
отклонение Х соответственно
равны 20 и 10. Найти вероятность того, что
отклонение по абсолютной величине будет
меньше трех.

Решение: Воспользуемся
формулой

  

 По
условию ,

тогда

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как найти дисперсию?

Полезная страница? Сохрани или расскажи друзьям

Дисперсия — это мера разброса значений случайной величины $X$ относительно ее математического ожидания $M(X)$ (см. как найти математическое ожидание случайной величины). Дисперсия показывает, насколько в среднем значения сосредоточены, сгруппированы около $M(X)$: если дисперсия маленькая — значения сравнительно близки друг к другу, если большая — далеки друг от друга (см. примеры нахождения дисперсии ниже).

Если случайная величина описывает физические объекты с некоторой размерностью (метры, секунды, килограммы и т.п.), то дисперсия будет выражаться в квадратных единицах (метры в квадрате, секунды в квадрате и т.п.). Ясно, что это не совсем удобно для анализа, поэтому часто вычисляют также корень из дисперсии — среднеквадратическое отклонение $sigma(X)=sqrt{D(X)}$, которое имеет ту же размерность, что и исходная величина и также описывает разброс.

Еще одно формальное определение дисперсии звучит так: «Дисперсия — это второй центральный момент случайной величины» (напомним, что первый начальный момент — это как раз математическое ожидание).

Нужна помощь? Решаем теорию вероятностей на отлично

Формула дисперсии случайной величины

Дисперсия случайной величины Х вычисляется по следующей формуле:
$$
D(X)=M(X-M(X))^2,
$$
которую также часто записывают в более удобном для расчетов виде:
$$
D(X)=M(X^2)-(M(X))^2.
$$

Эта универсальная формула для дисперсии может быть расписана более подробно для двух случаев.

Если мы имеем дело с дискретной случайной величиной (которая задана перечнем значений $x_i$ и соответствующих вероятностей $p_i$), то формула принимает вид:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2.
$$
Если же речь идет о непрерывной случайной величине (заданной плотностью вероятностей $f(x)$ в общем случае), формула дисперсии Х выглядит следующим образом:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx — left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$

Пример нахождения дисперсии

Рассмотрим простые примеры, показывающие как найти дисперсию по формулам, введеным выше.

Пример 1. Вычислить и сравнить дисперсию двух законов распределения:
$$
x_i quad 1 quad 2 \
p_i quad 0.5 quad 0.5
$$
и
$$
y_i quad -10 quad 10 \
p_i quad 0.5 quad 0.5
$$

Для убедительности и наглядности расчетов мы взяли простые распределения с двумя значениями и одинаковыми вероятностями. Но в первом случае значения случайной величины расположены рядом (1 и 2), а во втором — дальше друг от друга (-10 и 10). А теперь посмотрим, насколько различаются дисперсии:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2 =\
= 1^2cdot 0.5 + 2^2 cdot 0.5 — (1cdot 0.5 + 2cdot 0.5)^2=2.5-1.5^2=0.25.
$$
$$
D(Y)=sum_{i=1}^{n}{y_i^2 cdot p_i}-left(sum_{i=1}^{n}{y_i cdot p_i} right)^2 =\
= (-10)^2cdot 0.5 + 10^2 cdot 0.5 — (-10cdot 0.5 + 10cdot 0.5)^2=100-0^2=100.
$$
Итак, значения случайных величин различались на 1 и 20 единиц, тогда как дисперсия показывает меру разброса в 0.25 и 100. Если перейти к среднеквадратическому отклонению, получим $sigma(X)=0.5$, $sigma(Y)=10$, то есть вполне ожидаемые величины: в первом случае значения отстоят в обе стороны на 0.5 от среднего 1.5, а во втором — на 10 единиц от среднего 0.

Ясно, что для более сложных распределений, где число значений больше и вероятности не одинаковы, картина будет более сложной, прямой зависимости от значений уже не будет (но будет как раз оценка разброса).

Пример 2. Найти дисперсию случайной величины Х, заданной дискретным рядом распределения:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Снова используем формулу для дисперсии дискретной случайной величины:
$$
D(X)=M(X^2)-(M(X))^2.
$$
В случае, когда значений много, удобно разбить вычисления по шагам. Сначала найдем математическое ожидание:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Потом математическое ожидание квадрата случайной величины:
$$
M(X^2)=sum_{i=1}^{n}{x_i^2 cdot p_i}
= (-1)^2cdot 0.1 + 2^2 cdot 0.2 +5^2cdot 0.3 +10^2cdot 0.3+20^2cdot 0.1=78.4.
$$
А потом подставим все в формулу для дисперсии:
$$
D(X)=M(X^2)-(M(X))^2=78.4-6.8^2=32.16.
$$
Дисперсия равна 32.16 квадратных единиц.

Пример 3. Найти дисперсию по заданному непрерывному закону распределения случайной величины Х, заданному плотностью $f(x)=x/18$ при $x in(0,6)$ и $f(x)=0$ в остальных точках.

Используем для расчета формулу дисперсии непрерывной случайной величины:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx — left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$
Вычислим сначала математическое ожидание:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{6} frac{x}{18} cdot x dx = int_{0}^{6} frac{x^2}{18} dx =
left.frac{x^3}{54} right|_0^6=frac{6^3}{54} = 4.
$$
Теперь вычислим
$$
M(X^2)=int_{-infty}^{+infty} f(x) cdot x^2 dx = int_{0}^{6} frac{x}{18} cdot x^2 dx = int_{0}^{6} frac{x^3}{18} dx = left.frac{x^4}{72} right|_0^6=frac{6^4}{72} = 18.
$$
Подставляем:
$$
D(X)=M(X^2)-(M(X))^2=18-4^2=2.
$$
Дисперсия равна 2.

Другие задачи с решениями по ТВ

Подробно решим ваши задачи на вычисление дисперсии

Вычисление дисперсии онлайн

Как найти дисперсию онлайн для дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку «Вычислить».
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$ и затем искомое значение дисперсии $D(X)$.

Видео. Полезные ссылки

Видеоролики: что такое дисперсия и как найти дисперсию

Если вам нужно более подробное объяснение того, что такое дисперсия, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Лучшее спасибо — порекомендовать эту страницу

Полезные ссылки

Не забывайте сначала прочитать том, как найти математическое ожидание. А тут можно вычислить также СКО: Калькулятор математического ожидания, дисперсии и среднего квадратического отклонения.

Что еще может пригодиться? Например, для изучения основ теории вероятностей — онлайн учебник по ТВ. Для закрепления материала — еще примеры решений задач по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Нормальным называют распределение вероятностей непрерывной случайной величины

, плотность которого имеет вид:

где

 –
математическое ожидание,

 –
среднее квадратическое отклонение

.

Вероятность того, что

 примет
значение, принадлежащее интервалу

:

где  

 – функция Лапласа:

Вероятность того, что абсолютная
величина отклонения меньше положительного числа

:

В частности, при

 справедливо
равенство:

Асимметрия, эксцесс,
мода и медиана нормального распределения соответственно равны:

,  где

Правило трех сигм

Преобразуем формулу:

Положив

. В итоге получим

если

, и, следовательно,

, то

то есть вероятность того, что
отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонение, равна 0,9973.

Другими словами, вероятность того,
что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна
0,0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие
события исходя из принципа невозможности маловероятных
событий можно считать практически невозможными. В этом и состоит
сущность правила трех сигм: если случайная величина распределена нормально, то
абсолютная величина ее отклонения от математического ожидания не превосходит
утроенного среднего квадратического отклонения.

На практике правило трех сигм
применяют так: если распределение изучаемой случайной величины неизвестно, но
условие, указанное в приведенном правиле, выполняется, то есть основание
предполагать, что изучаемая величина распределена нормально; в противном случае
она не распределена нормально.

Смежные темы решебника:

  • Таблица значений функции Лапласа
  • Непрерывная случайная величина
  • Показательный закон распределения случайной величины
  • Равномерный закон распределения случайной величины

Пример 2

Ошибка
высотометра распределена нормально с математическим ожиданием 20 мм и средним
квадратичным отклонением 10 мм.

а) Найти
вероятность того, что отклонение ошибки от среднего ее значения не превзойдет 5
мм по абсолютной величине.

б) Какова
вероятность, что из 4 измерений два попадут в указанный интервал, а 2 – не
превысят 15 мм?

в)
Сформулируйте правило трех сигм для данной случайной величины и изобразите
схематично функции плотности вероятностей и распределения.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

а) Вероятность того, что случайная величина, распределенная по
нормальному закону, отклонится от среднего не более чем на величину

:

В нашем
случае получаем:

б) Найдем
вероятность того, что отклонение ошибки от среднего значения не превзойдет 15
мм:

Пусть событие

 – ошибки 2
измерений не превзойдут 5 мм и ошибки 2 измерений не превзойдут 0,8664 мм

 – ошибка не
превзошла 5 мм;

 – ошибка не
превзошла 15 мм

в)
Для заданной нормальной величины получаем следующее правило трех сигм:

Ошибка высотометра будет лежать в интервале:

Функция плотности вероятностей:

График плотности распределения нормально распределенной случайной величины

Функция распределения:

График функции
распределения нормально распределенной случайной величины

Задача 1

Среднее
количество осадков за июнь 19 см. Среднеквадратическое отклонение количества
осадков 5 см. Предполагая, что количество осадков нормально-распределенная
случайная величина найти вероятность того, что будет не менее 13 см осадков.
Какой уровень превзойдет количество осадков с вероятностью 0,95?


Задача 2

Найти
закон распределения среднего арифметического девяти измерений нормальной
случайной величины с параметрами m=1.0 σ=3.0. Чему равна вероятность того, что
модуль разности между средним арифметическим и математическим ожиданием
превысит 0,5?

Указание:
воспользоваться таблицами нормального распределения (функции Лапласа).


Задача 3

Отклонение
напряжения в сети переменного тока описывается нормальным законом
распределения. Дисперсия составляет 20 В. Какова вероятность при изменении
выйти за пределы требуемых 10% (22 В).

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 4

Автомат
штампует детали. Контролируется длина детали Х, которая распределена нормально
с математическим ожиданием (проектная длинна), равная 50 мм. Фактическая длина
изготовленных деталей не менее 32 и не более 68 мм. Найти вероятность того, что
длина наудачу взятой детали: а) больше 55 мм; б) меньше 40 мм.


Задача 5

Случайная
величина X распределена нормально с математическим ожиданием a=10и средним
квадратическим отклонением  σ=5. Найти
интервал, симметричный относительно математического ожидания, в котором с
вероятностью 0,9973 попадает величина Х в результате испытания.


Задача 6

Заданы
математическое ожидание ax=19 и среднее квадратическое отклонение σ=4
нормально распределенной случайной величины X. Найти: 1) вероятность
того, что X примет значение, принадлежащее интервалу (α=15;
β=19); 2) вероятность того, что абсолютная величина отклонения значения
величины от математического ожидания окажется меньше δ=18.


Задача 7

Диаметр
выпускаемой детали – случайная величина, распределенная по нормальному закону с
математическим ожиданием и дисперсией, равными соответственно 10 см и 0,16 см2.
Найти вероятность того, что две взятые наудачу детали имеют отклонение от
математического ожидания по абсолютной величине не более 0,16 см.


Задача 8

Ошибка
прогноза температуры воздуха есть случайная величина с m=0,σ=2℃. Найти вероятность
того, что в течение недели ошибка прогноза трижды превысит по абсолютной
величине 4℃.


Задача 9

Непрерывная
случайная величина X распределена по нормальному 
закону: X∈N(a,σ).

а) Написать
плотность распределения вероятностей и функцию распределения.

б) Найти
вероятность того, что в результате испытания случайная величина примет значение
из интервала (α,β).

в) Определить
приближенно минимальное и максимальное значения случайной величины X.

г) Найти
интервал, симметричный относительно математического ожидания a, в котором с
вероятностью 0,98 будут заключены значения X.

a=5; σ=1.3; 
α=4; β=6


Задача 10

Производится измерение вала без
систематических ошибок. Случайные ошибки измерения X
подчинены нормальному закону с σx=10.  Найти вероятность того, что измерение будет
произведено с ошибкой, превышающей по абсолютной величине 15 мм.


Задача 11

Высота
стебля озимой пшеницы — случайная величина, распределенная по нормальному закону
с параметрами a = 75 см, σ = 1 см. Найти вероятность того, что высота стебля:
а) окажется от 72 до 80 см; б) отклонится от среднего не более чем на 0,5 см.


Задача 12

Деталь,
изготовленная автоматом, считается годной, если отклонение контролируемого
размера от номинала не превышает 10 мм. Точность изготовления деталей
характеризуется средним квадратическим отклонением, при данной технологии
равным 5 мм.

а)
Считая, что отклонение размера детали от номинала есть нормально распределенная
случайная величина, найти долю годных деталей, изготовляемых автоматом.

б) Какой
должна быть точность изготовления, чтобы процент годных деталей повысился до
98?

в)
Написать выражение для функции плотности вероятности и распределения случайной
величины.


Задача 13

Диаметр
детали, изготовленной цехом, является случайной величиной, распределенной по
нормальному закону. Дисперсия ее равна 0,0001 см, а математическое ожидание –
2,5 см. Найдите границы, симметричные относительно математического ожидания, в
которых с вероятностью 0,9973 заключен диаметр наудачу взятой детали. Какова
вероятность того, что в серии из 1000 испытаний размер диаметра двух деталей
выйдет за найденные границы?

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 14

Предприятие
производит детали, размер которых распределен по нормальному закону с
математическим ожиданием 20 см и стандартным отклонением 2 см. Деталь будет
забракована, если ее размер отклонится от среднего (математического ожидания)
более, чем на 2 стандартных отклонения. Наугад выбрали две детали. Какова вероятность
того, что хотя бы одна из них будет забракована?


Задача 15

Диаметры
деталей распределены по нормальному закону. Среднее значение диаметра равно d=14 мм
, среднее квадратическое
отклонение σ=2 мм
. Найти вероятность того,
что диаметр наудачу взятой детали будет больше α=15 мм и не меньше β=19 мм; вероятность того, что диаметр детали
отклонится от стандартной длины не более, чем на Δ=1,5 мм.


Задача 16

В
электропечи установлена термопара, показывающая температуру с некоторой
ошибкой, распределенной по нормальному закону с нулевым математическим
ожиданием и средним квадратическим отклонением σ=10℃. В момент когда термопара
покажет температуру не ниже 600℃, печь автоматически отключается. Найти
вероятность того, что печь отключается при температуре не превышающей 540℃ (то
есть ошибка будет не меньше 30℃).


Задача 17

Длина
детали представляет собой нормальную случайную величину с математическим
ожиданием 40 мм и среднеквадратическим отклонением 3 мм. Найти:

а)
Вероятность того, что длина взятой наугад детали будет больше 34 мм и меньше 43
мм;

б)
Вероятность того, что длина взятой наугад детали отклонится от ее
математического ожидания не более, чем на 1,5 мм.


Задача 18

Случайное
отклонение размера детали от номинала распределены нормально. Математическое
ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно
0,25 мм, стандартами считаются детали, размер которых заключен между 199,5 мм и
200,5 мм. Из-за нарушения технологии точность изготовления деталей уменьшилась
и характеризуется средним квадратическим отклонением 0,4 мм. На сколько
повысился процент бракованных деталей?


Задача 19

Случайная
величина X~N(1,22). Найти P{2

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 20

Заряд пороха для охотничьего ружья
должен составлять 2,3 г. Заряд отвешивается на весах, имеющих ошибку
взвешивания, распределенную по нормальному закону со средним квадратическим
отклонением, равным 0,2 г. Определить вероятность повреждения ружья, если максимально
допустимый вес заряда составляет 2,8 г.


Задача 21

Заряд
охотничьего пороха отвешивается на весах, имеющих среднеквадратическую ошибку
взвешивания 150 мг. Номинальный вес порохового заряда 2,3 г. Определить
вероятность повреждения ружья, если максимально допустимый вес порохового
заряда 2,5 г.


Задача 21

Найти
вероятность попадания снарядов в интервал (α1=10.7; α2=11.2).
Если случайная величина X распределена по
нормальному закону с параметрами m=11; 
σ=0.2.


Задача 22

Плотность
вероятности распределения случайной величины имеет вид

Найти
вероятность того, что из 3 независимых случайных величин, распределенных по
данному закону, 3 окажутся на интервале (-∞;5).


Задача 23

Непрерывная
случайная величина имеет нормальное распределение. Её математическое ожидание
равно 12, среднее квадратичное отклонение равно 2. Найти вероятность того, что
в результате испытания случайная величина примет значение в интервале (8,14)


Задача 24

Вероятность
попадания нормально распределенной случайной величины с математическим
ожиданием m=4 в интервал (3;5) равна 0,6. Найти дисперсию данной случайной
величины.


Задача 25

В
нормально распределенной совокупности 17% значений случайной величины X
 меньше 13% и 47% значений случайной величины X
больше 19%. Найти параметры этой совокупности.


Задача 26

Студенты
мужского пола образовательного учреждения были обследованы на предмет
физических характеристик и обнаружили, что средний рост составляет 182 см, со
стандартным отклонением 6 см. Предполагая нормальное распределение для роста,
найдите вероятность того, что конкретный студент-мужчина имеет рост более 185
см.

Содержание:

Нормальный закон распределения:

Нормальный закон распределения имеет плотность вероятности

Нормальный закон распределения - определение и вычисление с примерами решения

где Нормальный закон распределения - определение и вычисление с примерами решения

График функции плотности вероятности (2.9.1) имеет максимум в точке Нормальный закон распределения - определение и вычисление с примерами решения а точки перегиба отстоят от точки Нормальный закон распределения - определение и вычисление с примерами решения на расстояние Нормальный закон распределения - определение и вычисление с примерами решения При Нормальный закон распределения - определение и вычисление с примерами решения функция (2.9.1) асимптотически приближается к нулю (ее график изображен на рис. 2.9.1).

Нормальный закон распределения - определение и вычисление с примерами решения

Помимо геометрического смысла, параметры нормального закона распределения имеют и вероятностный смысл. Параметр Нормальный закон распределения - определение и вычисление с примерами решения равен математическому ожиданию нормально распределенной случайной величины, а дисперсия Нормальный закон распределения - определение и вычисление с примерами решения Если Нормальный закон распределения - определение и вычисление с примерами решения т.е. X имеет нормальный закон распределения с параметрами Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения то Нормальный закон распределения - определение и вычисление с примерами решения

где Нормальный закон распределения - определение и вычисление с примерами решения– функция Лапласа

Значения функции Нормальный закон распределения - определение и вычисление с примерами решения можно найти по таблице (см. прил., табл. П2). Функция Лапласа нечетна, т.е. Нормальный закон распределения - определение и вычисление с примерами решения Поэтому ее таблица дана только для неотрицательныхНормальный закон распределения - определение и вычисление с примерами решения График функции Лапласа изображен на рис. 2.9.2. При значениях Нормальный закон распределения - определение и вычисление с примерами решения она практически остается постоянной. Поэтому в таблице даны значения функции только для Нормальный закон распределения - определение и вычисление с примерами решения При значениях Нормальный закон распределения - определение и вычисление с примерами решения можно считать, что Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения - определение и вычисление с примерами решения

Если Нормальный закон распределения - определение и вычисление с примерами решения то

Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Случайная величина X имеет нормальный закон распределения Нормальный закон распределения - определение и вычисление с примерами решения Известно, что Нормальный закон распределения - определение и вычисление с примерами решения а Нормальный закон распределения - определение и вычисление с примерами решенияНормальный закон распределения - определение и вычисление с примерами решения Найти значения параметров Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения

Решение. Воспользуемся формулой (2.9.2): Нормальный закон распределения - определение и вычисление с примерами решения

Так как Нормальный закон распределения - определение и вычисление с примерами решения По таблице функции Лапласа (см. прил., табл. П2) находим, что Нормальный закон распределения - определение и вычисление с примерами решения Нормальный закон распределения - определение и вычисление с примерами решения Поэтому Нормальный закон распределения - определение и вычисление с примерами решения или Нормальный закон распределения - определение и вычисление с примерами решения

Аналогично Нормальный закон распределения - определение и вычисление с примерами решения Так как Нормальный закон распределения - определение и вычисление с примерами решения то Нормальный закон распределения - определение и вычисление с примерами решения По таблице функции Лапласа (см. прил., табл. П2) находим, что Нормальный закон распределения - определение и вычисление с примерами решения Поэтому Нормальный закон распределения - определение и вычисление с примерами решения или Нормальный закон распределения - определение и вычисление с примерами решения Из системы двух уравнений Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения находим, что Нормальный закон распределения - определение и вычисление с примерами решения а  Нормальный закон распределения - определение и вычисление с примерами решения т.е. Нормальный закон распределения - определение и вычисление с примерами решения Итак, случайная величина X имеет нормальный закон распределения N(3;4).

График функции плотности вероятности этого закона распределения изображен на рис. 2.9.3.

Нормальный закон распределения - определение и вычисление с примерами решения

Ответ. Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Ошибка измерения X имеет нормальный закон распределения, причем систематическая ошибка равна 1 мк, а дисперсия ошибки равна 4 мк2. Какова вероятность того, что в трех независимых измерениях ошибка ни разу не превзойдет по модулю 2 мк?

Решение. По условиям задачи Нормальный закон распределения - определение и вычисление с примерами решения Вычислим сначала вероятность того, что в одном измерении ошибка не превзойдет 2 мк. По формуле (2.9.2)Нормальный закон распределения - определение и вычисление с примерами решения

Вычисленная вероятность численно равна заштрихованной площади на рис. 2.9.4.

Нормальный закон распределения - определение и вычисление с примерами решения

Каждое измерение можно рассматривать как независимый опыт. Поэтому по формуле Бернулли (2.6.1) вероятность того, что в трех независимых измерениях ошибка ни разу не превзойдет 2 мк, равна Нормальный закон распределения - определение и вычисление с примерами решенияНормальный закон распределения - определение и вычисление с примерами решения

Ответ. Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Функция плотности вероятности случайной величины X имеет вид Нормальный закон распределения - определение и вычисление с примерами решения

Требуется определить коэффициент Нормальный закон распределения - определение и вычисление с примерами решения найти Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения определить тип закона распределения, нарисовать график функции Нормальный закон распределения - определение и вычисление с примерами решения вычислить вероятность Нормальный закон распределения - определение и вычисление с примерами решения

Замечание. Если каждый закон распределения из некоторого семейства законов распределения имеет функцию распределения , Нормальный закон распределения - определение и вычисление с примерами решения где Нормальный закон распределения - определение и вычисление с примерами решения– фиксированная функция распределения, a Нормальный закон распределения - определение и вычисление с примерами решения Нормальный закон распределения - определение и вычисление с примерами решения то говорят, что эти законы распределения принадлежат к одному виду или типу распределений. Параметр Нормальный закон распределения - определение и вычисление с примерами решения называют параметром сдвига, Нормальный закон распределения - определение и вычисление с примерами решения – параметром масштаба.

Решение. Так как (2.9.4) функция плотности вероятности, то интеграл от нее по всей числовой оси должен быть равен единице: Нормальный закон распределения - определение и вычисление с примерами решения

Преобразуем выражение в показателе степени, выделяя полный квадрат: Нормальный закон распределения - определение и вычисление с примерами решения

Тогда (2.9.5) можно записать в виде Нормальный закон распределения - определение и вычисление с примерами решения

Сделаем замену переменных так, чтобы Нормальный закон распределения - определение и вычисление с примерами решения т.е. Нормальный закон распределения - определение и вычисление с примерами решения Пределы интегрирования при этом останутся прежними. Тогда (2.9.6) преобразуется к виду

Нормальный закон распределения - определение и вычисление с примерами решения

Умножим и разделим левую часть равенства на Нормальный закон распределения - определение и вычисление с примерами решения Получим равенство Нормальный закон распределения - определение и вычисление с примерами решения

Так как Нормальный закон распределения - определение и вычисление с примерами решения  как интеграл по всей числовой оси от функции плотности вероятности стандартного нормального закона распределения N(0,1), то приходим к выводу, что

Нормальный закон распределения - определение и вычисление с примерами решения

Поэтому

Нормальный закон распределения - определение и вычисление с примерами решения

Последняя запись означает, что случайная величина имеет нормальный закон распределения с параметрами Нормальный закон распределения - определение и вычисление с примерами решения и Нормальный закон распределения - определение и вычисление с примерами решения График функции плотности вероятности этого закона изображен на рис. 2.9.5. Распределение случайной величины X принадлежит к семейству нормальных законов распределения. По формуле (2.9.2)

Нормальный закон распределения - определение и вычисление с примерами решения

Ответ. Нормальный закон распределения - определение и вычисление с примерами решения

Пример:

Цех на заводе выпускает транзисторы с емкостью коллекторного перехода Нормальный закон распределения - определение и вычисление с примерами решения Сколько транзисторов попадет в группу Нормальный закон распределения - определение и вычисление с примерами решения если в нее попадают транзисторы с емкостью коллекторного перехода от 1,80 до 2,00 пФ. Цех выпустил партию в 1000 штук.

Решение.

Статистическими исследованиями в цеху установлено, что Нормальный закон распределения - определение и вычисление с примерами решения можно трактовать как случайную величину, подчиняющуюся нормальному закону.

Чтобы вычислить количество транзисторов, попадающих в группу Нормальный закон распределения - определение и вычисление с примерами решения необходимо учитывать, что вся партия транзисторов имеет разброс параметров, накрывающий всю (условно говоря) числовую ось. То есть кривая Гаусса охватывает всю числовую ось, центр ее совпадает с Нормальный закон распределения - определение и вычисление с примерами решения (т. к. все установки в цеху настроены на выпуск транзисторов именно с этой емкостью). Вероятность попадания отклонений параметров всех транзисторов на всю числовую ось равна 1. Поэтому нам необходимо фактически определить вероятность попадания случайной величины Нормальный закон распределения - определение и вычисление с примерами решения в интервал Нормальный закон распределения - определение и вычисление с примерами решения а затем пересчитать количество пропорциональной вероятности.

Для расчета этой вероятности надо построить математическую модель. Экспериментальные данные говорят о том, что нормальное распределение можно принять в качестве математической модели. Эмпирическая оценка (установлена статистическими исследованиями в цеху) среднего значения Нормальный закон распределения - определение и вычисление с примерами решения

дает Нормальный закон распределения - определение и вычисление с примерами решения оценка среднего квадратического отклонения Нормальный закон распределения - определение и вычисление с примерами решения

Обозначая Нормальный закон распределения - определение и вычисление с примерами решения подставим приведенные значения в (6.3):
Нормальный закон распределения - определение и вычисление с примерами решения

Тогда количество транзисторов Нормальный закон распределения - определение и вычисление с примерами решения попавших в интервал [1,8; 2,0] пФ, можно найти так: Нормальный закон распределения - определение и вычисление с примерами решения Таким образом можно планировать и рассчитывать количество транзисторов, попадающих в ту или иную группу.

Нормальное распределение и его свойства

Если выйти на улицу любого города и случайным образом выбранных прохожих спросить о том, какой у них рост, вес, возраст, доход, и т.п., а потом построить график любой из этих величин, например, роста… Но не будем спешить, сначала посмотрим, как можно построить такой график.

Сначала, мы просто запишем результаты своего исследования. Потом, мы отсортируем всех людей по группам, так чтобы каждый попал в свой диапазон роста, например, «от 180 до 181 включительно».

После этого мы должны посчитать количество людей в каждой подгруппе-диапазоне, это будет частота попадания роста жителей города в данный диапазон. Обычно эту часть удобно оформить в виде таблички. Если затем эти частоты построить по оси у, а диапазоны отложить по оси х, можно получить так называемую гистограмму, упорядоченный набор столбиков, ширина которых равна, в данном случае, одному сантиметру, а длина будет равна той частоте, которая соответствует каждому диапазону роста. Если

Вам попалось достаточно много жителей, то Ваша схема будет выглядеть примерно так:

Нормальный закон распределения - определение и вычисление с примерами решения

Дальше можно уточнить задачу. Каждый диапазон разбить на десять, жителей рассортировать по росту с точностью до миллиметра. Диаграмма станет глаже, но уменьшится по высоте, «оплывет» вниз, т.к. в каждом маленьком диапазоне количество жителей уменьшается. Чтобы избежать этого, просто увеличим масштаб по вертикальной оси в 10 раз. Если гипотетически повторить эту процедуру несколько раз, будет вырисовываться та знаменитая колоколообразная фигура, которая характерна для нормального (или Гауссова) распределения. В результате, относительная частота встречаемости каждого конкретного диапазона роста может быть посчитана как отношение площади «ломтика» кривой, приходящегося на этот диапазон к площади подо всей кривой. Стандартизированные кривые нормального распределения, значения функций которых приводятся в таблицах книг по статистике, всегда имеют суммарную площадь под кривой равную единице. Это связано с тем, что, как Вы помните из курса теории вероятности, вероятность достоверного события всегда равна 100% (или единице), а для любого человека иметь хоть какое-то значение роста — достоверное событие. А вот вероятность того, что рост произвольного человека попадет в определенный выбранный нами диапазон, будет зависеть от трех факторов.

Во-первых, от величины такого диапазона — чем точнее наши требования, тем меньше вероятности, что нам повезет.

Во-вторых, от того, насколько «популярен» выбранный нами рост. Напомним, что мода — самое часто встречающееся значение роста. Кстати для нормального распределения мода, медиана и среднее значение совпадают. Кривая нормального распределения симметрична относительно среднего значения.

И, в-третьих, вероятность попадания роста в определенный диапазон зависит от характеристики рассеивания случайной величины. Отчасти это связано с единицами измерения (представьте, что мы бы измеряли людей в дюймах, а не в миллиметрах, но сами люди и их рост были бы теми же). Но дело не только в этом. Просто некоторые процессы кучнее группируются возле среднего значения, в то время как другие более разбросаны.

Например, рост собак и рост домашних кошек имеют разный разброс значений, их кривые нормального распределения будут выглядеть по-разному (напомним еще раз, что площадь под обеими кривыми будет единичной).

Так, кривая для роста кошек будет более узкой и высокой, а для роста собак кривая будет ниже и шире. Для характеристики разброса конечного ряда данных в прошлом разделе мы использовали величину среднего квадратического отклонения. Аналогичная величина используется для характеристики кривой нормального распределения. Она обозначается буквой s и называется в этом случае стандартным отклонением. Это очень важная величина для кривой нормального распределения. Кривая нормального распределения полностью задана, если известно среднее значение Нормальный закон распределения - определение и вычисление с примерами решения и отклонение s. Кроме того, любой житель города с вероятностью 68% попадет в диапазон роста Нормальный закон распределения - определение и вычисление с примерами решения с вероятностью 95% — в диапазон Нормальный закон распределения - определение и вычисление с примерами решенияНормальный закон распределения - определение и вычисление с примерами решения и с вероятностью 99,7% — в диапазон Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения - определение и вычисление с примерами решения

Для вычисления других значений вероятности, которые могут Вам понадобиться, можно воспользоваться приведенной таблицей:

Таблица вероятности попадания случайной величины в отмеченный (заштрихованный) диапазон

Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения

Нормальный закон распределения случайных величин, который иногда называют законом Гаусса или законом ошибок, занимает особое положение в теории вероятностей, так как 95 % изученных случайных величин подчиняются этому закону. Природа этих случайных величин такова, что их значение в проводимом эксперименте связано с проявлением огромного числа взаимно независимых случайных факторов, действие каждого из которых составляет малую долю их совокупного действия. Например, длина детали, изготавливаемой на станке с программным управлением, зависит от случайных колебаний резца в момент отрезания, от веса и толщины детали, ее формы и температуры, а также от других случайных факторов. По нормальному закону распределения изменяются рост и вес мужчин и женщин, дальность выстрела из орудия, ошибки различных измерений и другие случайные величины.

Определение: Случайная величина X называется нормальной, если она подчиняется нормальному закону распределения, т.е. ее плотность распределения задается формулойНормальный закон распределения - определение и вычисление с примерами решения — средне-квадратичное отклонение, a m = М[Х] — математическое ожидание.

Приведенная дифференциальная функция распределения удовлетворяет всем свойствам плотности вероятности, проверим, например, свойство 4.:

Нормальный закон распределения - определение и вычисление с примерами решения

Выясним геометрический смысл параметров Нормальный закон распределения - определение и вычисление с примерами решения Зафиксируем параметр Нормальный закон распределения - определение и вычисление с примерами решения и будем изменять параметр m. Построим графики соответствующих кривых (Рис. 8). Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 8. Изменение графика плотности вероятности в зависимости от изменения математического ожидания при фиксированном значении средне-квадратичного отклонения. Из рисунка видно, кривая Нормальный закон распределения - определение и вычисление с примерами решения получается путем смещения кривой Нормальный закон распределения - определение и вычисление с примерами решения вдоль оси абсцисс на величину m, поэтому параметр m определяет центр тяжести данного распределения. Кроме того, из рисунка видно, что функция Нормальный закон распределения - определение и вычисление с примерами решения достигает своего максимального значения в точке Нормальный закон распределения - определение и вычисление с примерами решения Из этой формулы видно, что при уменьшении параметра Нормальный закон распределения - определение и вычисление с примерами решения значение максимума возрастает. Так как площадь под кривой плотности распределения всегда равна 1, то с уменьшением параметра Нормальный закон распределения - определение и вычисление с примерами решения кривая вытягивается вдоль оси ординат, а с увеличением параметра Нормальный закон распределения - определение и вычисление с примерами решения кривая прижимается к оси абсцисс. Построим график нормальной плотности распределения при m = 0 и разных значениях параметра Нормальный закон распределения - определение и вычисление с примерами решения (Рис. 9): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 9. Изменение графика плотности вероятности в зависимости от изменения средне-квадратичного отклонения при фиксированном значении математического ожидания.

Интегральная функция нормального распределения имеет вид: Нормальный закон распределения - определение и вычисление с примерами решения

График функции распределения имеет вид (Рис. 10): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 10. Графика интегральной функции распределения нормальной случайной величины.

Вероятность попадания нормальной случайной величины в заданный интервал

Пусть требуется определить вероятность того, что нормальная случайная величина попадает в интервал Нормальный закон распределения - определение и вычисление с примерами решения Согласно определениюНормальный закон распределения - определение и вычисление с примерами решения пересчитаем пределы интегрирования Нормальный закон распределения - определение и вычисление с примерами решения Нормальный закон распределения - определение и вычисление с примерами решения Следовательно,Нормальный закон распределения - определение и вычисление с примерами решения

Рассмотрим основные свойства функции Лапласа Ф(х):

  1. Ф(0) = 0 — график функции Лапласа проходит через начало координат.
  2. Ф (-х) = — Ф(х) — функция Лапласа является нечетной функцией, поэтому
  3. таблицы для функции Лапласа приведены только для неотрицательных значений аргумента.
  4. Нормальный закон распределения - определение и вычисление с примерами решения — график функции Лапласа имеет горизонтальные асимптотыНормальный закон распределения - определение и вычисление с примерами решения

Следовательно, график функции Лапласа имеет вид (Рис. 11): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 11. График функции Лапласа.

Пример №1

Закон распределения нормальной случайной величины X имеет вид: Нормальный закон распределения - определение и вычисление с примерами решения Определить вероятность попадания случайной величины X в интервал (-1;8).

Решение:

Согласно условиям задачи Нормальный закон распределения - определение и вычисление с примерами решения Поэтому искомая вероятность равна: Нормальный закон распределения - определение и вычисление с примерами решения 0,4772 + 0,3413 = 0,8185.

Вычисление вероятности заданного отклонения

Вычисление вероятности заданного отклонения. Правило Нормальный закон распределения - определение и вычисление с примерами решения.

Если интервал, в который попадает нормальная случайная величина X, симметричен относительно математического ожидания Нормальный закон распределения - определение и вычисление с примерами решения то, используя свойство нечетности функции Лапласа, получим

Нормальный закон распределения - определение и вычисление с примерами решения

Данная формула показывает, что отклонение случайной величины Х от ее математического ожидания на заданную величину l равна удвоенному значению функции Лапласа от отношения / к среднему квадратичному отклонению. Если положить Нормальный закон распределения - определение и вычисление с примерами решенияслучаях нормальная случайная величина X отличается от своего математического ожидания на величину равную среднему квадратичному отклонению. Если Нормальный закон распределения - определение и вычисление с примерами решения то вероятность отклонения равна Нормальный закон распределения - определение и вычисление с примерами решения Наконец, в случае Нормальный закон распределения - определение и вычисление с примерами решения то вероятность отклонения равна Нормальный закон распределения - определение и вычисление с примерами решения

Нормальный закон распределения - определение и вычисление с примерами решения Из последнего равенства видно, что только приблизительно в 0.3 % случаях отклонение нормальной случайной величины X от своего математического ожидания превышает Нормальный закон распределения - определение и вычисление с примерами решения Это свойство нормальной случайной величины X называется правилом “трех сигм”. На практике это правило применяется следующим образом: если отклонение случайной величины X от своего математического ожидания не превышает Нормальный закон распределения - определение и вычисление с примерами решения то эта случайная величина распределена по нормальному закону.

Показательный закон распределения

Определение: Закон распределения, определяемый фу нкцией распределения:

Нормальный закон распределения - определение и вычисление с примерами решения называется экспоненциальным или показательным.

График экспоненциального закона распределения имеет вид (Рис. 12): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 12. График функции распределения для случая экспоненциального закона.

Дифференциальная функция распределения (плотность вероятности) имеет вид: Нормальный закон распределения - определение и вычисление с примерами решения а ее график показан на (Рис. 13): Нормальный закон распределения - определение и вычисление с примерами решения

Рис. 13. График плотности вероятности для случая экспоненциального закона.

Пример №2

Случайная величина X подчиняется дифференциальной функции распределения Нормальный закон распределения - определение и вычисление с примерами решения Найти вероятность того, что случайная величина X попадет в интервал (2; 4), математическое ожидание M[Х], дисперсию D[X] и среднее квадратичное отклонение Нормальный закон распределения - определение и вычисление с примерами решения Проверить выполнение правила “трех сигм” для показательного распределения.

Решение:

Интегральная функция распределения Нормальный закон распределения - определение и вычисление с примерами решения следовательно, вероятность того, что случайная величина X попадет в интервал (2; 4), равна: Нормальный закон распределения - определение и вычисление с примерами решения Математическое ожидание Нормальный закон распределения - определение и вычисление с примерами решения Вычислим значение величины МНормальный закон распределения - определение и вычисление с примерами решения тогда дисперсия случайной величины X равна Нормальный закон распределения - определение и вычисление с примерами решения а средне-квадратичное

отклонение Нормальный закон распределения - определение и вычисление с примерами решения Для проверки правила “трех сигм” вычислим вероятность заданного отклонения:

Нормальный закон распределения - определение и вычисление с примерами решения

  • Основные законы распределения вероятностей
  • Асимптотика схемы независимых испытаний
  • Функции случайных величин
  • Центральная предельная теорема
  • Повторные независимые испытания
  • Простейший (пуассоновский) поток событий
  • Случайные величины
  • Числовые характеристики случайных величин

Нормальное распределение

Время на прочтение
7 мин

Количество просмотров 36K

Автор статьи: Виктория Ляликова

Нормальный закон распределения или закон Гаусса играет важную роль в статистике и занимает особое положение среди других законов. Вспомним как выглядит нормальное распределение

frac{1}{sigmasqrt{2pi}}e^left(-frac{(x-a)^2)}{2sigma^2}right)

где a -математическое ожидание, sigma — среднее квадратическое отклонение.

Тестирование данных на нормальность является достаточно частым этапом первичного анализа данных, так как большое количество статистических методов использует тот факт, что данные распределены нормально. Если выборка не подчиняется нормальному закону, тогда предположении о параметрических статистических тестах нарушаются, и должны использоваться непараметрические методы статистики

Нормальное распределение естественным образом возникает практически везде, где речь идет об измерении с ошибками. Например, координаты точки попадания снаряда, рост, вес человека имеют нормальный закон распределения. Более того, центральная предельная теорема вообще утверждает, что сумма большого числа слагаемых сходится к нормальной случайной величине, не зависимо от того, какое было исходное распределение у выборки. Таким образом, данная теорема устанавливает условия, при которых возникает нормальное распределение и нарушение которых ведет к распределению, отличному от нормального.

Можно выделить следующие этапы проверки выборочных значений на нормальность

  • Подсчет основных характеристик выборки. Выборочное среднее, медиана, коэффициенты асимметрии и эксцесса.

  • Графический. К этому методу относится построение гистограммы и график квантиль-квантиль или кратко QQ

  • Статистические методы. Данные методы вычисляют статистику по данным и определяют, какая вероятность того, что данные получены из нормального распределения

При нормальном распределении, которое симметрично, значения медианы и выборочного среднего будут одинаковы, значения эксцесса равно 3, а асимметрии равно нулю. Однако ситуация, когда все указанные выборочные характеристики равны именно таким значениям, практически не встречается. Поэтому после этапа подсчета выборочных характеристик можно переходить к графическому представлению выборочных данных.

Гистограмма позволяет представить выборочные данные в графическом виде – в виде столбчатой диаграммы, где данные делятся на заранее определенное количество групп. Вид гистограммы дает наглядное представление функции плотности вероятности некоторой случайной величины, построенной по выборке.

 График QQ (квантиль-квантиль) является графиком вероятностей, который представляет собой графический метод сравнения двух распределений путем построения их квантилей. QQ график сравнивает наборы данных теоретических и выборочных (эмпирических) распределений. Если два сравниваемых распределения подобны, тогда точки на графике QQ будут приблизительно лежать на линии y=x. Основным шагом в построении графика QQ является расчет или оценка квантилей.

Существует множество статистических тестов, которые можно использовать для проверки выборочных значений на нормальность. Каждый тест использует разные предположения и рассматривает разные аспекты данных.

Чтобы применять статистические критерии сформулируем задачу. Выдвигаются две гипотезы H0 и H1, которые утверждают 

H0 — Выборка подчиняется нормальному закону распределения

H1 — Выборка не подчиняется нормальному распределению

Установи уровень значимости alpha=0,05.

Теперь задача состоит в том, чтобы на основании какого-то критерия отвергнуть или принять основную нулевую гипотезу при уровне значимости

Критерий Шапиро-Уилка

Критерий Шапиро-Уилка основан на отношении оптимальной линейной несмещенной оценки дисперсии к ее обычной оценке методом максимального правдоподобия. Статистика критерия имеет вид

W=frac{1}{s^2}{sumlimits_{i=1}^n{a_{n-i+1}(x_{n-i+1}-x_{i})}} s^2=sumlimits_{i=1}^n(x_i-overline x^2) overline x=frac{1}{n}sumlimits_{i=1}^n{x}

Числитель является квадратом оценки среднеквадратического отклонения Ллойда. Коэффициенты  {a_{n-i+1}} и критические {W(alpha)} значения статистики являются табулированными значениями.  Если W<{W({alpha})}, то нулевая гипотеза нормальности распределения отклоняется на уровне значимости alpha.

В Python функция shapiro() содержится в библиотеке scipy.stats и возвращает как статистику, рассчитанную тестом, так и значение p. В Python можно использовать выборку до 5000 элементов. Интерпретация вывода осуществляется следующим образом

Если значение p-value>alpha, тогда принимается гипотеза H0, в противном случае, т.е. если, p-value<alpha, тогда принимается гипотеза H1, т.е. что выборка не подчиняется нормальному закону.

Критерий Д’Агостино

В данном критерии в качестве статистики для проверки нормальности распределения используется отношение оценки Даутона для стандартного отклонения к выборочному стандартному отклонению, оцененному методом максимального правдоподобия 

D=frac{T}{n^2s}  T=sumlimits_{i=1}^nbigg(i-frac{n+1}{2}bigg)x_i  s^2=sumlimits_{i=1}^n(x_i-overline x^2),   {x_1}leq...leq{x_n}

В качестве статистики критерия Д’Агостино используется величина

Y=sqrt{n}frac{(D-0,28209479)}{0,02998598}

значение которой рассчитывается на основе центральной предельной теоремы, которая утверждает, что при nlongrightarrow{infty}

limlimits_{x to infty}Pbigg(frac{D-M[D]}{sqrt{D[D]}}{<x}bigg)=Phi(x)

где Phi(x)стандартная нормальная случайная величина.

Критические значения являются табулированными значениями. Гипотеза нормальности принимается, если значение статистики лежит в интервале критических значений. Данный критерий показывает хорошую мощность против большого спектра альтернатив, по мощности немного уступая критерию Шапиро-Уилка.

В Python функция normaltest() также содержится в библиотеке scipy.stats и возвращает статистику теста и значение p. Интерпретация результата аналогична результатам в критерии Шапиро-Уилка.

Критерий согласия chi^2— Пирсона

Данный критерий является одним из наиболее распространенных критериев проверки гипотез о виде закона распределения и позволяет проверить значимость расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Таким образом, данный критерий позволяет проверить гипотезу о принадлежности наблюдаемой выборки некоторому теоретическому закону. Можно сказать, что критерий является универсальным, так как позволяет проверить принадлежность выборочных значений практическому любому закону распределения.

Для решения задачи используется статистика chi^2 — Пирсона

          G=sumlimits_{k=1}^mfrac{(v_k-np_k)^2}{np_k}

где nu_k — эмпирические частоты (подсчитывается число элементов выборки, попавших в интервал), {np_k} — теоретические частоты. Подсчитывается критическое значение chi^2_{кр}. Если Ggeq chi^2_{кр}, отклоняется гипотеза  о принадлежности выборки нормальному распределению и принимается, если G< chi^2_{кр}.

Теперь перейдем к практической части. Для демонстрации функций будем использовать Dataset, взятый с сайта kaggle.com по прогнозированию инсульта по 11 клиническим характеристикам.

Загружаем необходимые библиотеки

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

 Загружаем датасет

data_healthcares = pd.read_csv('E:/vika/healthcare-dataset-stroke-data.csv')

Набор состоит из 5110 строк и 12 столбцов.

Посмотрим на основные характеристики, каждого признака.
data_healthcares.describe()

Из данных характеристик можно увидеть, что есть пропущенные значения в показателях индекс массы тела. Посчитаем количество пропущенных значений.

Если бы нам необходимо было делать модель для прогноза, то пропущенные значения bmi являются достаточно большой проблемой, в которой возникает вопрос как их восстановить. Поэтому будем предполагать, что значения столбца bmi (индекс массы тела) подчиняются нормальному закону распределения (предварительно был построен график распределения, поэтому сделано такое предположение). Но так как, на данный момент, у нас нет необходимости в построении модели для прогноза, то удалим все пропущенные значения

new_data=data_healthcares.dropna()

Теперь можем приступать к проверке выборочных значений показателя bmi на нормальность. Вычислим основные выборочные характеристики

Выборочная характеристика

Код в python

Значение характеристики

Выборочное среднее

new_data.bmi.mean()

28,89

Выборочная медиана

new_data.bmi.median()

28,1

Выборочная мода

new_data.bmi.mode()

28,7

Выборочное среднеквадратическое отклонение

new_data.bmi.std()

7.854066729680458

Выборочный коэффициент асиметрии

new_data.bmi.skew()

1.0553402052962928

Выборочный эксцесс

new_data.bmi.kurtosis()

3.362659165623678

После вычислений основных характеристик мы видим, что выборочное среднее и медиана можно сказать принимают одинаковые значения и коэффициент эксцесса равен 3. Но, к сожалению коэффициент асимметрии равен 1, что вводить нас в некоторое замешательство, т.е. мы уже можем предположить, что значения bmi не подчиняются нормальному закону. Продолжим исследования, перейдем к построению графиков.

Строим гистограмму

fig = plt.figure
fig,ax= plt.subplots(figsize=(7,7))
sns.distplot(new_data.bmi,color='red',label='bmi',ax=ax)
plt.show()

Гистограмма достаточно хорошо напоминает нормальное распределение, кроме конечно, небольшого выброса справа, но смотрим дальше. Тут скорее, можно предположить, что значения bmi подчиняются распределению  chi^2.

Строим QQ график. В python есть отличная функция qqplot(), содержащаяся в библиотеке statsmodel, которая позволяет строить как раз такие графики.

from statsmodels.graphics.gofplots import qqplot
from matplotlib import pyplot
qqplot(new_data.bmi, line=’s’)
Pyplot.show

Что имеем из графика QQ? Наши выборочные значений имеют хвосты слева и справа, и также в правом верхнем углу значения становятся разреженными. 

 На основе данных графика можно сделать вывод, что значения bmi не подчиняются нормальному закону распределения. Рядом приведен пример QQ графика распределения хи-квадрат с 8 степенями свободы из выборки в 1000 значений.

Для примера построим график QQ для выборки из нормального распределения с такими же показателями стандартного отклонения и среднего, как у bmi.

std=new_data.bmi.std() # вычисляем отклонение
mean=new_data.bmi.mean() #вычисляем среднее
Z=np.random.randn(4909)*std+mean # моделируем нормальное распределение
qqplot(Z,line='s') # строим график
pyplot.show()

Продолжим исследования. Перейдем к статистическим критериям. Будем использовать критерий Шапиро-Уилка и Д’Агостино, чтобы окончательно принять или опровергнуть предположение о нормальном распределении. Для использования критериев подключим библиотеки

from scipy.stats import shapiro
from scipy.stats import normaltest
shapiro(new_data.bmi)
ShapiroResult(statistic=0.9535483717918396, pvalue=6.623218133972133e-37)
Normaltest(new_data.bmi)
NormaltestResult(statistic=1021.1795052962864, pvalue=1.793444363882936e-222)

После применения двух тестов мы имеем, что значение p-value намного меньше заданного критического значения alpha , значит выборочные значения не принадлежат нормальному закону.

Конечно, мы рассмотрели не все тесты на нормальности, которые существуют. Какие можно дать рекомендации по проверке выборочных значений на нормальность. Лучше использовать все возможные варианты, если они уместны.

На этом все. Еще хочу порекомендовать бесплатный вебинар, который 15 июня пройдет на платформе OTUS в рамках запуска курса Математика для Data Science. На вебинаре расскажут про несколько часто используемых подходов в анализе данных, а также разберут, какие математические идеи работают у них под капотом и почему эти подходы вообще работают так, как нам нужно. Регистрация на вебинар доступна по этой ссылке.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить программу обучения английскому языку самостоятельно с нуля
  • Как исправить круглую форму бровей
  • Составьте план развернуто ответа по теме молодежь как социальная группа
  • Как найти сопротивление обмотки якоря генератора
  • Как исправить комплекс неполноценности

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии